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Abstract
The basic mechanisms that drive the renewal of GH pulses in the human are not understood. Recent
ensemble models predict that pulse regeneration requires quenching of an ongoing GH pulse by
somatostatin outflow and evocation of a new burst by rebound GHRH release. We reasoned that
related principles might explain why women consistently maintain higher-amplitude GH secretory
bursts than men. Accordingly, the present study tests the hypothesis that gender modulates the
successive dynamics of GH feedback and escape in the morning fasting, when GH pulses are larger
in women. To this end, we infused single iv pulses of recombinant human (rh) GH (0, 1, and 3 μg/
kg) in eight young men and six women on separate randomly ordered mornings fasting and
quantitated serial inhibition and recovery of GH secretion by frequent sampling,
immunochemiluminometry, a deconvolution procedure, and regularity analysis. Statistical contrasts
revealed gender-comparable peak concentrations and kinetics of rhGH. However, women differed
from men by way of: (1) 3.5-and 4.0-fold less feedback suppression of GH secretory-burst mass;
(2) more irregular patterns of GH release during negative feedback; and (3) 12-and 14-fold greater
postnadir rebound-like GH secretion after rhGH pulses. Mechanistic analyses based on a minimal
feedback construct predicted that women generate higher endogenous secretagogue stimulation per
unit somatostatin outflow than men.

In summary, negative feedback induced by near-physiological GH pulses unmasks prominent
gender-related contrasts in hypothalamo-pituitary autoregulation in young adults. A frugal but
sufficient explanation of the ensemble outcomes is that women sustain greater hypothalamo-pituitary
agonist input than men.

Abbreviations
ANCOVA, Analysis of covariance; ApEn, approximate entropy; GHRP, GH-releasing peptide; rh,
recombinant human; SS, somatostatin
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GH IS SECRETED (>85%) in prominent discrete bursts, which stimulate somatic growth and mediate
certain metabolic adaptations (1–4). Laboratory investigations indicate that the generation of
successive high-amplitude GH pulses requires rapid reversible negative feedback followed by
rebound-like recovery of GH release (5–8). Accordingly, inactivating mutations of the GH
receptor gene and administration of peptidyl antagonists of the human GH receptor disinhibit
feedback and elevate pulsatile GH secretion by several-fold (3,9). In experimental animals,
autoinhibition proceeds via hypothalamic GH receptors, which stimulate somatostatin (SS)
release and repress GHRH outflow to the pituitary gland (10–12). During the postinhibitory
phase, intrahypothalamic SS withdrawal evokes a burst of GHRH release, which triggers GH
secretion (13–17). In simplified biomathematical constructs, such cycles of autoinhibition and
recovery are sufficient to confer self-renewable GH pulsatility (18–21).

Negative feedback is more prominent in the male than female rodent (3). This basic sex contrast
putatively contributes to the higher amplitude, lower frequency, and lesser irregularity of GH
secretory patterns as well as sex-specific gene expression in the male animal (22–24). Sexual
dimorphism of the human somatotropic axis differs in certain fundamental ways (25). In
particular, women secrete 2-fold more GH per burst than men (and, thus, have double the peak
amplitude); maintain the same mean GH pulse frequency; and generate quantitatively more
irregular GH secretory patterns (26–33). The mechanisms that mediate such gender-defined
regulatory features are not known. Among other considerations (25), we postulated that men
and women sustain distinct dynamics of GH pulse renewal, as transduced by sequential
autofeedback and recovery. In this context, the only direct gender comparison of feedback
properties used a single pharmacological dose of recombinant human (rh) GH (10 μg/kg). This
paradigm monitored maximal suppression but abolished the rebound recovery phase (34). In
that study, women manifested larger spontaneous GH pulses than men but comparable absolute
(maximal) inhibition. In mechanistic terms, the outcome would signify that inhibitory efficacy
does not differ significantly by gender. Thus, how gender impacts physiological mechanisms
that mediate dynamic feedback on and recovery of self-renewing GH pulses remains unknown.

The present study adopts a nonpharmacological strategy to dissect the basis of gender-specific
control of GH-pulse regeneration in young adults. Studies were performed in the morning
fasting to assess the hypothesis that larger GH pulses in women at the time (25) reflect gender-
related muting of negative feedback by a GH pulse. To this end, the design comprised iv
infusion of saline or mid- and high-physiological pulses of rhGH to impose submaximal
inhibition and evoke rebound recovery of GH secretion; intensive blood sampling to capture
both suppression and rebound phases of GH secretion; ultrasensitive GH
immunochemiluminometry to measure low GH concentrations accurately; and complementary
analytical tools to quantitate sequential repression and escape of GH secretion. We postulated
that gender would specifically determine feedback-driven inhibition of GH secretory-burst
mass, rebound GH release, and regularity of GH secretion patterns. The choice of these end
points reflects evidence of mechanistically distinguishable control of each (see Discussion).

Subjects and Methods
Clinical protocol

The same subjects participated in this and an earlier pharmacological feedback study (34).
Volunteers provided a detailed medical history and underwent a complete physical
examination, after giving written informed consent for the protocol as approved by the
institutional review board. The U.S. Food and Drug Administration authorized conduct of the
protocol under an investigator-initiated new drug file. Inclusion criteria were healthy young
adults who undertook recreational (but not competitive) aerobic exercise three or four times
per week. Eight men and six women participated. Characteristics were (men) age 26 ± 0.5 yr,
height 181 ± 1.0 cm, and weight 82 ± 1.6 kg; and (women) age 22 ± 0.5 yr, height 164 ± 1.0
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cm, and weight 60 ± 1.2 kg. Exclusion criteria included pregnancy or breast-feeding; age 30
yr or older; glucocorticoid, sex steroid, or other hormone use; alcohol or drug abuse; clinical
depression; acute or chronic systemic illness; endocrinopathy; hematologic, pulmonary, or
hepatorenal disease; diabetes mellitus; anemia (hematocrit <38%); exposure to neuro- or
psychoactive medications within 10 biological half-lives; recent transmeridian travel (more
than three time zones traversed within 1 wk) or shift work; weight gain or loss (exceeding 2
kg in the preceding 6 wk); and failure to provide written, witnessed informed consent.

Women were studied during the early follicular phase (d 2–8) of the menstrual cycle.
Volunteers were admitted to the General Clinical Research Center on three separate occasions
to receive saline and 1 or 3 μg/kg rhGH in prospectively randomized order at least 3 d apart.
To obviate nutritional confounds, participants ingested a constant meal at 1800 h the evening
before, which contained 500 kcal (60% carbohydrate, 20% protein, and 20% fat). Subjects then
remained fasting overnight and until the end of sampling on the next day. Use of coffee, alcohol,
and tobacco and vigorous exercise were disallowed during the study protocol.

Negative-feedback paradigm
To allow simultaneous sampling and infusion, forearm venous catheters were inserted
contralaterally at 0600 h. Blood samples (1.5 ml) were withdrawn every 10 min for a total of
7.5 h from 0630 to 1400 h. After a 60-min baseline, rhGH (1 or 3 μg/kg) or saline was infused
iv as a 6-min square-wave pulse (0730 h) by programmable infusion pump. Thereafter, blood
was sampled every 2.5 min for 10 min (0730–0740 h) and every 5 min for 50 min (0740–0830
h) for kinetic analyses, followed by every 10 min for 5 h 30 min (0830–1400 h).

Assays
GH concentrations were measured in duplicate in each sample by ultrasensitive
immunochemiluminescence assay (Nichols, San Juan Capistrano, CA) (35,36). Sensitivity is
0.005 μg/liter, when defined as 3 SD above the zero-dose tube. Median intra- and interassay
coefficients of variation were 5.8 and 6.7%, respectively. GH concentration-dependent
intraassay variance (SD

2) was modeled as a power function of sample means using all replicates
from each time series (37). Concentrations of total testosterone and estradiol were quantitated
by solid-phase RIA (Diagnostic Products Corp., Los Angeles, CA) (38). Comparisons were
made on the mean of all four fasting 0630 h samples collected in each subject. Mean intra- and
interassay coefficients of variation were, respectively, 6.9 and 8.3% (total testosterone) and
5.9 and 9.1% (estradiol) with sensitivities of 0.35 nmol/liter and 37 pmol/liter.

Deconvolution analysis
GH secretion was quantitated by deconvolution analysis, using the previously determined
rapid-phase GH half-life of 3.5 min, an analytically estimated slow-phase half-life, and a fixed
fractional (slow/total) decay amplitude of 0.63 (39,40). For statistical validity, the analysis was
conditioned on pulse times estimated independently by Cluster analysis (37,41). The combined
approach accounts mathematically for basal (nonpulsatile) secretion, partially overlapping GH
pulses, and decay of hormone concentrations during the observation interval. The entire 7.5-
h GH time series was analyzed, followed by computation of the summed mass of GH secreted
in bursts (micrograms per liter): (1) beginning 1.5 h after saline vs. rhGH injection and
continuing for 3 h until the nadir (thus defining the interval when GH-negative feedback is
evident); and (2) beginning at the nadir and continuing for a mean of 2 h until the end of
sampling (interval when initial rebound/recovery emerges) (34,42,43). The nadir was defined
as the single lowest value of a three-point moving average of GH concentrations (hence the
mean of three consecutive measurements).
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The half-life of infused GH was evaluated by deconvolving the injected peaks. The distribution
volume of rhGH (milliliters per kilogram) was computed as 1000-fold the quotient of the
dose (micrograms per kilogram) and the deconvolution-calculated mass (micrograms per liter)
of infused rhGH.

Approximate entropy
Approximate entropy (ApEn) analysis was applied to first-differenced (stationarized or epoch-
detrended) postinfusion GH concentration time series (44,45). ApEn pattern length and
threshold, as validated for data series of this size, were, respectively, m = 1 and r = 0.85 (46).
ApEn is a model-free statistic, which quantitates feedback-sensitive subpattern regularity.
ApEn calculations are independent of absolute concentrations or deconvolution analysis (47,
48). Higher ApEn values denote more irregular (less orderly) secretory patterns, as observed
in GH-secretory tumors, aging adults, puberty, and women, compared with men (26–28,38,
45). Mathematical simulations and clinical experiments have demonstrated that deterioration
of expected pattern regularity in an interlinked system denotes erosion of balanced signal
coordination (44,46,48). In the GH axis, irregularity provides a measure of unopposed
feedforward drive by GHRH or GH-releasing peptide (GHRP) (49–51) and attenuated
feedback restraint by SS or GH/IGF-I (20,48,52).

Statistical procedures
Statistical comparisons of derived measures, GH secretory-burst mass, and ApEn were made
on logarithmically transformed data to limit heterogeneity of variance. The model was two-
way analysis of covariance (ANCOVA) to test the effects of gender and two doses of rhGH,
compared with the response to saline, considered as a statistical covariate (53). This structure
accommodates the repeated-measures design, includes expected serial correlation within a
subject, and examines the individual effects and the interaction between genders (two factors)
and rhGH dose (two factors). Post hoc contrasts were based on Tukey’s honestly significantly
different criterion at an overall (experiment-wise) protected type I error rate of 0.05 (54). Data
are presented as the mean ± SEM.

Simulation of GH network
To simulate inferences made in Results and Discussion, we assumed greater GHRH potency,
GHRP/ghrelin efficacy, and GH feedback-induced SS release in women than men (at nominal
respective female to male ratios of 1.2, 2.2, and 2.5).

Results
Screening concentrations of testosterone were 20 ± 1.5 and 1.6 ± 0.28 nmol/liter (P < 0.001)
and of estradiol 92 ± 11 and 140 ± 15 pmol/liter (P > 0.10) in men and women, respectively.

Figure 1 depicts cohort mean (± SEM) GH concentration profiles in the eight men and six women
sampled every 10 min for 1.0 h before and 6.5 h after iv injection of a 6-min pulse of saline or
rhGH. The data illustrate higher mean GH concentrations in women (3.2 ± 0.61 μg/liter) than
men (1.3 ± 0.25 μg/liter) after saline infusion (P < 0.05). Visual inspection revealed dose-
varying and gender-comparable peak concentrations and kinetics of infused GH; relative
failure of the 1 μg/kg dose of rhGH to suppress ongoing GH release in women; and accentuated
initial rebound recovery of GH release after the 3 μg/kg rhGH dose in women, compared with
men (see below).

Table 1 summarizes peak concentrations, half-lives, and distribution volumes of rhGH in men
and women at the two doses of rhGH studied. No kinetic measures differed by gender. Peak-
infused GH concentrations were mid- and high physiological; viz. (pooled median) values were
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20 and 46 μg/liter after injection of 1 and 3 μg/kg, respectively. These data verify that gender-
related autofeedback differences (see below) are not attributable to sex-specific GH kinetics.

Absolute nadir (mean lowest three consecutive) GH concentrations induced by each pulse of
saline or rhGH were used as a model-free estimate of negative feedback (Fig. 2). Nadir GH
concentrations were higher in women than men after infusion of saline and each dose of rhGH
(P = 0.014). Nadir values decreased significantly only in response to the higher feedback signal
in women (3 μg/kg rhGH, P < 0.025). Time latencies to reach nadir GH concentrations after
the injected GH peak at 70 min were influenced by gender and feedback dose, viz. in men and
women, nadir values occurred, respectively, 274 ± 23 and 307 ± 19 min (P < 0.01) (1 μg/kg)
and 319 ± 13 and 318 ± 12 min (3 μg/kg) after the peak GH concentration.

Figure 3 depicts the dose dependency of rhGH-induced inhibition of summed GH secretory-
burst mass determined during the 3-h interval beginning 1.5 h after saline/rhGH injection in
men and women. A 1.5-h delay was chosen because stimulation of GH secretion by a maximally
effective dose of GHRH and a high dose of GHRP-2 is blocked within 2 h after injection of
rhGH (42,43,55). ANCOVA predicted P < 0.001 for the dose effect of rhGH dose, P < 0.001
for the gender effect, and P = 0.0031 for the dose × gender interaction. In men, administration
of rhGH suppressed GH secretory-burst mass progressively across the dose range 0, 1, and 3
μg/kg (Fig. 3). On the other hand, in women, the low dose of 1 μg/kg was not inhibitory (P =
NS vs. saline injection). Post hoc gender comparisons by Tukey’s honestly significantly
different test revealed 3.5- and 4-fold higher noninhibitable pulsatile GH secretion
(micrograms per liter per 3 h) after the 1 and 3 μg/kg doses of rhGH in women than men (both
P < 0.005).

Figure 4 summarizes gender differences in the delayed recovery (initial rebound) of GH release,
viz. during the mean 2-h (± 0.23 h) time window beginning at the absolute nadir. ANCOVA
disclosed 12- and 14-fold greater summed GH secretory-burst mass normalized per 2 h during
initial postnadir recovery in women than men after infusion of 1 and 3 μg/kg rhGH, respectively
(P < 0.001).

ApEn was used as a validated scale-independent measure of feedback-signal strength during
the 3-h interval beginning 1.5 h after the iv pulse of saline or rhGH and continuing until the
nadir (see above) (44,48). As shown in Figure 5 (top), the overall feedback effect to enhance
GH regularity was significant (P < 0.001). After infusion of saline and the lower dose of rh
GH, women maintained significantly higher ApEn values, signifying less feedback defined by
more irregular (disorderly) patterns of GH release (P < 0.01). Infusion of 3 μg/kg rh GH
enforced equivalent orderliness, consistent with gender-comparable feedback efficacy
(maximal inhibition).

The orderliness of GH secretion during the initial rebound phase was assessed by applying
ApEn to the 2-h GH time series after the nadir (Figure 5bottom). Initial rebound recovery of
GH release after the lower dose of GH yielded more orderly patterns (lower ApEn) than after
saline in both men and women, indicating persistence of SS release (P < 0.001). Women
manifested significantly more irregular GH release (higher ApEn values) than men during the
initial recovery phase of GH secretion after injection of saline and both doses of rhGH (P <
0.001).

Figure 6 presents model-based predictions that greater endogenous GHRH drive in women
could: (1) potentiate initial rebound GH secretion after the low dose of rhGH (as observed);
(2) prevent nadir suppression by the low dose of rhGH by opposing the effect of low SS outflow;
and (3) overcome low GH-induced SSergic inhibition of GH secretory-burst mass.
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Discussion
The present study reveals that gender determines both the inhibition and initial recovery phase
of GH autofeedback. In particular, absolute nadir GH concentrations after a pulse of rhGH are
higher, whereas the extent of suppression of GH secretory-burst mass and the induced
regularity of GH release are less in young women than men. Moreover, initial rebound-like
recovery of GH secretion after autoinhibition is markedly greater in women. Assuming that
GHRH and SS act antagonistically, these data indicate that a physiological GH feedback signal
evokes greater rebound-like release (agonist input) and/or stimulates less SS outflow
(antagonistic input) in women than men. Detecting this gender distinction required the use of
near-physiological rather than pharmacological feedback by exogenous GH.

Two gradations of GH autofeedback were compared with endogenous GH pulses in men and
women. To this end, the low dose of rhGH (1 μg/kg) approximated a nocturnal GH pulse (peak
concentration 20 μg/liter), whereas the higher dose (3 μg/kg) mimicked a high-physiological
GH peak (maximum 46 μg/liter) (27,28,45,56,57). The resultant responses establish the dose
dependence of GH feedback on nadir GH concentrations, GH secretory-burst mass, regularity
of GH release, and initial GH recovery in both genders. To our knowledge, these are the first
dose-response comparisons of feedback in men and women. Statistical comparisons disclosed
that sex differences operate prominently in the physiological GH feedback range. Therefore,
the present paradigm supports the relevance of endogenous GH pulses in enforcing interburst
nadirs and generating rebound-like secretory bursts.

Available studies indicate that iv infusions of GH do not significantly elevate IGF-I
concentrations within the brief interval studied here (5,6). Thus, the main feedback signal tested
is the rapid increase in blood GH concentrations. In experimental animals, a pulse of GH
stimulates hypothalamic SS secretion in vitro and in vivo within 45 min (58). More sustained
increases in GH and IGF-I concentrations induce periventricular SS and repress arcuate-
nucleus GHRH gene expression (24,59,60). Assuming an acute role of SS release in GH
autofeedback (61–64), the responses to midphysiological rhGH pulses permit indirect
inferences about hypothalamic SS outflow, as assisted by an objective three-peptide model of
GHRH-SS-GH interactions (20,21,65). The hypothesis was that sex differences observed could
be accounted for by reported effects of estradiol to: (1) attenuate the inhibitory potency of
available SS (52); (2) augment post-SS rebound-like release of hypothalamic GHRH and
thereby pituitary GH (10,14–16,64,66,67); (3) amplify the potency of individual GHRH pulses
(68); and (4) potentiate stimulation by GHRP (69). Objective modeling verified that these
ensemble observations are sufficient to predict the accompanying gender differences of higher
interpulse (nadir) GH concentrations, less negative feedback by a submaximal but not maximal
GH pulse, and greater initial rebound-like recovery of GH release in young women than men
(18–21).

Passive immunoneutralization of GHRH inhibits rebound-like GH release after SS withdrawal
in the rat (14,16,17). In addition, bolus octreotide administration initially suppresses and then
stimulates GHRH secretion into hypothalamo-pituitary portal-venous blood in the sheep (15).
Assuming that an analogous mechanism operates in the human, then heightened initial
rebound-like GH secretion in women would predict accentuated GHRH stimulation. This
inference agrees with the capabilities of estradiol to augment rebound-like GH release after iv
infusion of SS (66) and double the potency of GHRH pulses (68). Accordingly, we hypothesize
that both the release and action of GHRH are greater in young women than men.

ApEn, a regularity statistic, is a scale- and model-free measure of relative feedback/
feedforward strength in interlinked mathematical and biological systems (22,26,44–46,48,
70). Thus, infusion of somatostatin vs. GHRH enhances vs. degrades the regularity of GH
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patterns by imposing feedback vs. feedforward, respectively (20,21,48,49,52,71). ApEn
analyses disclosed that GH-induced feedback increases pattern regularity in both women and
men, consistent with SS release and GHRH withdrawal. During the initial rebound phase, GH
release remains more irregular in women than men, which would denote higher GHRH (and
possibly ghrelin) drive than SS inhibition. This gender difference is consistent with greater
hypothalamic GHRH drive and/or less SS outflow during initial rebound in women than men.
The rise in ApEn between the low and higher dose of GH in women also forecasts greater
GHRH outflow in women. The more than 12-fold greater mass of GH secreted during initial
rebound in women than men further points to heightened secretagogue action for the given
degree of SSergic restraint.

In conclusion, gender is a prominent determinant of GH autofeedback in healthy young adults.
The present mechanistic analyses suggest that women maintain greater feedforward by GHRH
for any given degree of SS inhibition than men, thus accounting for higher amplitude GH
pulses.
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Fig. 1.
Serum GH concentrations (y-axis) sampled every 10 min for a total of 7.5 h beginning 60 min
before a 6-min iv bolus injection of saline or rhGH (time, x-axis). The experimental negative-
feedback signal (top to bottom) was 0 (saline), 1, or 3 μg/kg rhGH administered fasting on
separate mornings in randomly assigned order. Peak GH concentrations occurred uniformly at
70 min. GH was measured by immunochemiluminometry (see Subjects and Methods). Data
are the mean ± SEM (n = 8 men, n = 6 women).
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Fig. 2.
Nadir GH concentrations induced by iv injection of saline vs. 1 or 3 μg/kg rhGH in young men
and women. Data are the mean ± SEM (n = 8 men, n = 6 women). Means with different (unshared)
alphabetic superscripts differ significantly by the post hoc Tukey test. ANCOVA was used to
estimate the overall P value indicated for the gender-by-intervention interaction (see Subjects
and Methods).
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Fig. 3.
Dose-dependent inhibition of the amount (mass) of GH secreted in bursts in healthy young
adults. Observations reflect the 3-h time interval beginning 1.5 h after iv injection of a pulse
of saline vs. the indicated dose of rhGH. Data are presented as described in the legend of Fig.
2. The overall P value reflects the effect of rhGH dose.
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Fig. 4.
Recovery of GH secretory-burst mass over a mean 2-h time interval after the nadir GH
concentration induced by bolus iv infusion of saline vs. the indicated doses of rhGH in young
men and women. Data are presented as noted in the legend of Fig. 3.
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Fig. 5.
Feedback imposed by a midphysiological pulse of rhGH enhances the regularity (orderliness)
of GH release to a lesser degree in women than men (top panel). Initial rebound-like recovery
of GH release also is less regular in women than men (bottom panel). Higher values of ApEn
(regularity statistic) denote decreased pattern reproducibility (greater relative randomness) due
to greater feedforward and/or less feedback within an interlinked system, e.g. greater GHRH
and/or less SS release. See legend of Fig. 3 for format of data presentation.
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Fig. 6.
Output of a simplified three-peptide model linking GHRH feedforward and GH feedback via
SS to pulsatile GH secretion via objective mathematical connections. Each curve is a computer-
driven plot of SS or GH release and injected GH pulses over time. The model parameters (see
Subjects and Methods) reflect the present clinical inference that women maintain greater
GHRH feedforward potency, maximal GH-induced SS outflow, and GHRP/ghrelin efficacy
than men. The three paired panels (top to bottom) depict predicted responses to infusion of
saline vs. 1 and 3 μg/kg rhGH in men (left) and women (right). The separate curves in each
panel represent injected (solid line) and secreted (broken line) GH and SS (dotted line) outflow.
GH pulses (saline) in the absence of exogenous feedback occur at the same frequency but attain
a higher mean amplitude in women than men. The delayed emergence of GH peaks about 5 h
after each rhGH bolus reflects feedback-induced rebound-like secretion of GHRH and thereby
GH as shown in Fig. 1.
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TABLE 1
Estimated kinetics of rhGH in men and women

Dose of Rh GH infused

Kinetic parameter 1 μg/kg 3 μg/kg

Half life (min)
 Men 13.6 ± 0.8 14.5 ± 1.2
 Women 12.4 ± 1.2 14.6 ± 2.9
Distribution volume (ml/kg)
 Men 38 ± 5.6 41 ± 3.7
 Women 34 ± 2.5 43 ± 5.4
Peak GH (μg/liter)
 Men 23 ± 3.2 51 ± 7.6
 Women 22 ± 1.4 47 ± 6.8

Gender and dose did not affect any values shown. n = 8 men; n = 6 women.
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