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While the genome contains the coded
information that allows an organism

to live and reproduce, the essential functions
of living cells are accomplished by gene
products. Those structures—mainly pro-
teins, although ribonucleic acids are also
essential—provide the scaffold, regulatory,
and catalytic functions
that drive metabolism.
Proteomics seeks to
measure the expres-
sion of all proteins
within an organism
and monitor changes
in response to devel-
opmental and envi-
ronmental cues in
health and disease.
Because the 30,000 or
so human genes sustain life through a con-
siderably larger variety of mature proteins,
the technological challenge dramatically ex-
ceeds that of genomics. Ultimately, we
would like a computer model that mimics
life in silico, allowing accurate projections
for metabolic engineering experiments in
medicine and the life sciences. This grand
experiment is just starting and the race is on
to develop high-throughput technology to
provide proteome-scale insights, as well as
computational systems that allow realistic
modeling of simple cells. Yates and cowork-
ers (1) present the results of recent attempts
to map the rice proteome and compare
metabolism in three different functional
states of the organism—that is, leaf, root,
and seed. Although central metabolic path-
ways were present in all tissues, metabolic
specialization was detected, confirming the
existence of divergent regulatory mecha-
nisms in starch biosynthesis and degrada-
tion in different tissues, as well as the pres-
ence of allergenic proteins in seed.

A central facet of proteomics is the
matching of protein data to a corresponding
gene providing a direct readout of expres-
sion for functional genomics, as opposed to
inferences drawn from measurements of
messenger RNA that can be misleading, as
well as allowing for the measurement of
posttranslational modifications. Rapid ad-
vances in mass spectrometry technology
have driven proteomics to what is clearly the
most dramatically expanding arena in the
life sciences today. The recent 50th annual
meeting of the American Society for Mass

Spectrometry (www.asms.org) featured a
number of new proteomics sessions to ac-
commodate this interest. Accurate mea-
surement of peptide masses and tandem
mass spectrometry (MS–MS) experiments
that produce peptide sequence data allow
correlation with genomic data using soft-

ware that translates
genes and calculates
peptide mass and�or
fragment mass data.
Measurement of intact
protein masses is insuf-
ficient to allow assign-
ment of all proteins (2),
and thus enzymatic
(trypsin) or chemical
(CNBr) cleavage is used
to break, in a sequence-

dependent fashion, whole gene products
into manageable pieces, some of which com-
pletely match a portion of a translated gene.
Early proteomics studies relied on separa-
tion of proteins by two-dimensional (2D) gel
electrophoresis, for example, followed by
identification of individual protein spots af-
ter excision from the gel, cleavage reactions,
extraction of peptides, and mass spectrom-
etry with database searches (3–7). More
recently, Yates and others (8, 9) have pio-
neered a ‘‘shotgun’’ approach whereby
whole-cell protein extracts are immediately
cleaved and the peptide mixture subjected
to separation before mass spectrometry to
generate peptide sequence data. Multidi-
mensional chromatography is used to en-
hance fractionation of the complex peptide
mixture from a whole-cell digest, giving rise
to the MudPIT acronym (Multidimensional
Protein Identification Technology; Fig. 1).
The paper by Koller et al. (1) compares the
2D-gel approach to MudPIT, demonstrat-
ing the superior detection efficiency of the
latter technique, while confirming the com-
plementary nature of the methods.

The rice genome includes an as yet un-
known number of genes currently reported
to be in the range 32–56,000 (http:��
genome.sinica.edu.tw�irgsp.htm; http:��
rgp.dna.affrc.go.jp�index.html; refs. 10 and
11), although not all are expressed at the
same time. The combined 2D-gel�MudPIT
approach detected 2,528 unique proteins,
many of which were tissue specific. Only 189
proteins were detected in all three tissues,
highlighting the fact that the central meta-

bolic pathways require relatively minor
genetic commitment. Emphasizing this
point, Tomita (12) has modeled a virtual
self-surviving cell, based on a nonreplicat-
ing prokaryote, that has just 105 protein-
coding genes and 22 RNA-coding genes.
The increased complexity of eukaryotic
central metabolism including glycolysis�
gluconeogenesis, citric acid cycle, oxidative
pentose phosphate pathway, amino acid bio-
synthesis, transcription, translation, and
protein degradation still only accounts for a
tiny fraction of the genome. A much greater
number of genes are expressed in a tissue-
specific fashion, and the proteomic analysis
revealed 622 leaf-specific, 862 root-specific,
and 512 seed-specific proteins. In some
cases the origin of this specialization is ob-
vious, such as the expression of photosyn-
thesis genes in leaves, whereas other distri-
butions, such as that observed for the large
subunit of ADP-glucose pyrophosphory-
lase, are not at all intuitive. The assignment
of function reported by Koller et al. (1) is
based on BLAST (www.ncbi.nlm.nih.gov�
BLAST�) homology to proteins from other
species of ‘‘known function’’ according to
current annotation. Of the proteins de-
tected, 360 had no homology to any other
protein in the NCBI nonredundant data-
base and were thus assigned as rice-specific
proteins. Because the only other higher
plant whose complete genome sequence is
available in the public domain is that of
Arabidopsis thaliana, a dicotyledonous mus-
tard that split from monocotyledonous rice
around 200 million years ago, it seems likely
that some of these proteins may be found in
other cereals. However, the availability of
the rice genome and now proteomic data
establishes a base for comparative genomics
and proteomics within the cereals and be-
yond (13). Soon, the forthcoming genome
of the eukaryotic unicellular green alga
Chlamydomonas reinhardtii (www.biology.
duke.edu�chlamy�genome�) will help link
green plant phylogeny with other eu-
karyotes and prokaryotes such as the cya-
nobacteria (www.kazusa.or.jp�cyanobase�)
that have harbored evolving genes and in
some cases shared them.

See companion article on page 11969.
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The importance of plant metabolic engi-
neering stems from the diversity of second-
ary metabolism that results in biosynthesis
of a myriad of compounds of known and
unknown potential uses. A fine example is
the recent engineering of rice plants that
accumulate high levels of �-carotene in their
seed. By engineering the overexpression
in seed of phytoene synthase, lycopene �-
cyclase, and phytoene desaturase, Ye et al.
(14) engineered a crop plant producing
‘‘golden rice’’ that has the potential to ad-
dress world vitamin A deficiency. However,
other attempts to elevate accumulation of a
desirable product have been thwarted by
parallel acceleration of product degradation
despite flux increase. Experimental hypoth-
eses would be beneficially preinvestigated
using virtual cell�organism modeling soft-
ware (www.nrcam.uchc.edu; ref. 15) to more
thoroughly test the metabolic consequences
of proposed engineering and thereby avoid
costly and time-consuming practical mu-

tagenesis experiments with unforeseen re-
sults. Japan has initiated its own program to
model rice (the Rice Simulator Project; ref.
16) and a number of U.S. programs embrace
the concept, including the Department
of Energy’s Genomes to Life program
(www.ornl.gov�hgmis�), which includes the
Microbial Cell Project, the National Science
Foundation’s 2010 Arabidopsis initiative
(www.arabidopsis.org�workshop1.html),
and the National Institute of General Med-
ical Sciences’ Alliance for Cellular Signaling
(www.cellularsignaling.org�). With substan-
tial funds being directed toward such mod-
eling efforts, it is certainly not too soon to be
considering the technologies that will drive
the testing of such models.

Technology that allows us to monitor
global protein accumulation and turnover
under physiological conditions for direct
testing of virtual-cell technologies is needed
and several criteria must be addressed if
proteomics is to realize the expectations

that have piqued our interest. Absolute and
relative quantitation of cellular protein is of
central importance, and a number of attrac-
tive approaches are under serious consider-
ation (17). Coverage of ‘‘difficult’’ classes of
proteins focuses on issues such as alternative
splicing that can generate hundreds of pro-
tein sequence variants per gene (18), com-
plex glycoproteins that can be decorated
with hypervariable posttranslational modi-
fications (19), and the integral membrane
proteins that constitute one-third of the
proteome but often elude us with their
propensity to aggregate, precipitate, and
generally fall from view when removed from
their native environment (20). Measure-
ment of protein turnover rate will allow us to
incorporate protein flux into our cellular
models and allow consideration of meta-
bolic cost�benefit analysis in systems biol-
ogy. Dynamic regulation of physiological
adaptation and signal transduction path-
ways will test our ability to accurately mon-
itor what can be chemically labile posttrans-
lational modifications. A variety of
proteomics technologies are being devel-
oped to supplement the shortfalls of 2D-gel
approaches; aside from shotgun global pep-
tide approaches, including MudPIT and the
accurate mass tag approach described by
Smith and coworkers (9), these include
chromatographic 2D separation techniques
for intact proteins and, in some cases, mass
spectrometry of the intact protein as
well. While the mass spectrum of an intact
protein defines the native covalent form of a
gene’s product, as well as associated heter-
ogeneity (20, 21), the ‘‘top-down’’ approach
to proteomics described by McLafferty (22)
faces a through-put challenge, just as oc-
curred in genomic sequencing technologies.

MudPIT is shaping up to be a major
contributor in the proteomics arena and the
work of Koller et al. (1) demonstrates the
ability to generate large amounts of useful
data addressing at least some of the factors
mentioned above. Especially worthy of men-
tion is the coverage of integral membrane
proteins; a hunt through the extensive list of
detected proteins reveals many that have
one or more predicted transmembrane helix
domains, as well as some that are known to
be among the most challenging, such as the
chloroplast psbA gene product, for example.
The proportion of total proteins detected
has allowed genomic annotation of a de-
tailed metabolic map of the rice cell that will
be central to modeling efforts and ongoing
studies to more thoroughly understand the
diverse aspects of a plant’s functional
genomics.
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Fig. 1. Multidimensional Protein Identification Technology (MudPIT). The complex mixture of proteins
present in a whole cell lysate is fragmented first with lysine-specific endoproteinase lysC in the presence of 8
M urea and then with immobilized trypsin, after dilution to 2 M urea, generating a highly complex mixture.
The peptides are collected on a strong cation exchange (SCX) column that is positioned immediately upstream
of a reverse-phase (RP) column. Successive peptide fractions are released, depending on their isoelectric point,
with salt steps of increasing concentration at low organic solvent concentrations and captured by the
second-dimension reverse-phase column. The reverse-phase column is eluted with a gentle gradient of
increasing organic solvent concentration between each salt step to displace the peptides, depending on their
hydrophobicity, into the mass spectrometer. The ion-trap mass spectrometer (LCQ-DECA, ThermoFinnigan,
San Jose, CA) employs data-dependent acquisition software to limit the time spent sequencing any particular
peptide, so that as many different peptides as possible are sequenced, regardless of their abundance. SEQUEST

software correlates experimental sequence with genomic data (courtesy of Christine Wu, The Scripps Institute,
La Jolla, CA).
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