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The number of genes in the human genome is still a controversial
issue. Whereas most of the genes in the human genome are said to
have been physically or computationally identified, many short cDNA
sequences identified as tags by use of serial analysis of gene expres-
sion (SAGE) do not match these genes. By performing experimental
verification of more than 1,000 SAGE tags and analyzing 4,285,923
SAGE tags of human origin in the current SAGE database, we exam-
ined the nature of the unmatched SAGE tags. Our study shows that
most of the unmatched SAGE tags are truly novel SAGE tags that
originated from novel transcripts not yet identified in the human
genome, including alternatively spliced transcripts from known genes
and potential novel genes. Our study indicates that by using novel
SAGE tags as probes, we should be able to identify efficiently many
novel transcripts�novel genes in the human genome that are difficult
to identify by conventional methods.

One of the goals of human genome studies is to identify all
of the genes in the human genome for further functional

analysis of each gene. However, the correct number of genes in
the human genome remains a controversial issue. Among various
estimates, the Human Genome Project predicted the presence of
29,691 genes (ENSEMBL Ver. 0.8) (1), and the Celera Human
Genome Project estimated around 39,114 genes (2). Comparison
between these two sets of data shows, however, that there is little
overlap between novel genes predicted by these two studies (3).
A recent study of human chromosomes 21 and 22 shows that the
number of transcriptional units in the human genome could be
an order of magnitude higher than the current estimates (4). We
believe that the definitive determination of the correct number
of genes in the human genome depends on the physical identi-
fication of all of the genes.

One of the major ways for physical gene identification is to
analyze the expressed transcripts by using the expressed sequence
tag (EST) approach (5–7). Data collected by large-scale EST
projects over the past decades provide a significant contribution
toward this goal (www.ncbi.nlm.nih.gov�GenBank�). Analysis of
the EST data shows an inverted relationship over time between the
total collected sequences and the proportion of novel sequences
identified from them. That is, as the number of collected sequences
increases, the rate of novel sequences identified from these se-
quences decreases. For example, 10.4% of ESTs collected in 1996
were novel sequences, whereas only 2.7% of ESTs collected in 1998
were novel sequences (8). The novel sequences in the 2,512,344
ESTs collected between 1998 and 2001 are about 1.6% (41,417)
(http:��www.ncbi.nlm.nih.gov�ncigap�lib�report.html). There are
at least two possible explanations for these results: (i) most of the
transcripts expressed in the human genome have been identified by
use of the EST approach, or (ii) the identification of novel tran-
scripts in the human genome has nearly reached the technical
limitation of the EST approach, leaving many novel transcripts
unidentified.

Recently, millions of short cDNA sequences named serial anal-
ysis of gene expression (SAGE) tags have been collected from
human tissues by use of the SAGE method (refs. 9–12; http:��
www.ncbi.nlm.nih.gov�SAGE�). When the SAGE data are ana-
lyzed, a frequent observation is that a large number of SAGE tags
do not match the existing expressed sequences (10, 13, 14).

Given the uncertainty of gene numbers, the saturation of novel
EST identification, and the presence of a large number of un-
matched SAGE tags in the human genome, we wondered whether
it was possible that the unmatched SAGE tags originated from
potentially novel transcripts or novel genes that were unidentified
in the human genome. If this were the case, it would imply that a
significant number of novel transcripts or genes have not been
identified in the human genome. We performed experiments and
analyzed the current SAGE tag database to test systematically this
hypothesis. Data from these studies provide evidence that most of
the unmatched SAGE tags have indeed originated from novel
transcripts and potentially represent many novel genes. We present
our data in this report.

Materials and Methods
Conversion of SAGE Tags into 3� cDNA. A high-throughput GLCI
(generation of longer cDNA fragments from SAGE tags for gene
identification) procedure was used for simultaneous conversion of
a large number of SAGE tags into their corresponding 3� cDNAs
(15, 16). Briefly, the sense primers were designed on the basis of
each SAGE tag (GGATCCCATGxxxxxxxxxx, where x represents
the sequences of the tag), and the antisense primer used the
sequence (ACTATCTAGAGCGGCCGCTT) in the 3� end of all
3� cDNAs incorporated from reverse transcription primers. PCR
was performed by using the sense primer, antisense primer, and the
same 3� cDNA sample used previously for the SAGE analysis. The
amplified products were cloned and sequenced. The sequences
were matched to the GenBank Database (nonredundant and ESTs,
http:��www.ncbi.nlm.nih.gov�BLAST�). All unmatched sequences
were matched to the human genomic sequences for sequence
confirmation (http:��genome.ucsc.edu�goldenPath�hgTracks.
html; December 12, 2000, or April 1, 2001).

Conversion of 3� cDNA into Full-Length cDNA. The full-length cDNAs
were generated by using a modified 5� rapid amplification of cDNA
ends (RACE) method (17). Briefly, total RNA and mRNA were
isolated from human CD15� bone marrow mononuclear cells with
Trizol reagent (Invitrogen) and oligo(dT)25 beads (Dynal, Lake
Success, NY). cDNA templates were synthesized with a modified
RNA ligase-mediated-5�-RACE method by use of the GeneRacer
Kit (Invitrogen) following the manufacturer’s instructions, except
that the regular oligo(dT) primer was replaced by the 5� biotin-
ylated, 3� anchored oligo(dT) primers (5� biotin-ATCTAGAGCG-
GCCGC-T16-A, G, CA, CG, and CC) to generate poly dA�dT(�)
cDNAs (8). On the basis of the GLGI-amplified 3� cDNA sequence,
two reverse primers were designed for each gene: the primary
reverse primer based on the sequence at the 3� end of the cDNA
and the nested reverse primer located upstream of the primary
reverse primer. The full-length cDNAs were amplified by use of the
GeneRacer 5� primer (5�-CGACTGGAGCACGAGGA-
CACTGA-3�) and primary reverse primers. If there were multiple
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products, nested PCR was performed by use of the Generacer 5�
nested primer (5�-GGACACTGACATGGACTGAAGGAGTA-
3�) and the nested reverse primer. PCR products were cloned and
sequenced. Only the sequences that contained the original SAGE
tag and the 3� cDNA sequences were used for analysis. The resulting
cDNA sequences were matched to GenBank (NR and ESTs,
http:��www.ncbi.nlm.nih.gov�BLAST�) and the human genomic se-
quences (http:��genome.ucsc.edu�goldenPath�hgTracks.html,
December 12, 2000 or April 1, 2000). The putative ORFs and
amino acids for the full-length sequences were determined by
using the EDITSEQ program (DNAstar). BLASTP (http:��
www4.ncbi.nlm.nih.gov�BLAST�) was used to search SwissProt to
identify potential domains in the putative ORFs.

Strand-Specific RT-PCR. The strand-specific RT-PCR (18) was used
for confirmation that the 3� cDNAs and full-length cDNAs gener-
ated by GLGI and 5� RACE were derived from targeted mRNA
rather than from genomic DNA contamination. Briefly, two gene-
specific primers located on both ends of a 3� cDNA or full-length
cDNA were designed. The first-strand cDNA was synthesized by
use of strand-specific antisense primer. The specific cDNA was then
amplified with the paired sense and antisense primers. The ampli-
fied products were confirmed by sequencing.

Determination of the Error Rate of SAGE Tags During the SAGE
Process. Two SAGE tag sequences were used for the analysis.
SAGE tag A (GTGCACTGAG) was derived from the HLA-C
gene (X58536), and SAGE tag B (TACCTGCAGA) was derived
from the S100A8 gene (NM�002964). Four oligos were synthesized
(Integrated DNA Technologies, Coralville, IA): A1 (5�-TTT-
GGAT T TGCTGGTGCAGTACA ACTAGGCT TA ATA-
GGGACATGGTGCACTGAG-3�), A2 (5�-CTCAGTGCAC-
CATGTCCCTATTAAGCCTAGTTGTACTGCACCAGCA-
AATCC-3�), B1 (TTTCTGCTCGAATTCAAGCTTCTA-
ACGATGTACGGGGACATGTACCTGCAGA-3�) and B2
(TCTGCAGGTCATGTCCCCGTACATCGT TAGA AG-
CTTGAATTCGAGCAG-3�). Oligos A1 and A2 were an-
nealed to form dimer A, and oligos B1 and B2 were annealed
to form dimer B. Dimers A and B resemble the fragments
containing SAGE tag A and SAGE tag B released from 3�
cDNA by BsmFI digestion in the beginning of the SAGE
process. The SAGE steps from ditag formation and release,
concatamerization, and cloning were performed following the
SAGE protocol (19). Sequencing reactions were performed by
use of the Big-Dye sequencing reagent (Applied Biosystems),
and sequences were collected by use of an ABI 377 automatic
sequencer (Applied Biosystems). The error rate was deter-
mined by comparison of the experimental SAGE tag A or B
sequences with the original SAGE tag A or B sequences.

Analyses of SAGE Data. SAGE tags from 101 human SAGE libraries
were used for the analysis (ftp:��ftp.ncbi.nih.gov�pub�sage�extr�,
September 4, 2001; Table 6, which is published as supporting
information on the PNAS web site, www.pnas.org). A series of JAVA
and C programs were designed for this analyses. The analyses
included the following: (i) identification of unique SAGE tags from
the total SAGE tags; (ii) determination of the relationship between
SAGE tag collection and unique SAGE tag identification from
different numbers of SAGE libraries (1, 1–10, 1–20, 1–40, 1–60,
1–80, and 1–101); (iii) determination of the frequency distribution
of unique SAGE tags in different numbers of SAGE libraries (1,
1–10 and 1–101); (iv) determination of the origin of unique SAGE
tags through matching of the human SAGE tag reference database
SAGEmap�tag�ug-full-Nla3-Hs (ftp:��ftp.ncbi.nih.gov�pub�sage�
map�Hs�NlaIII�); (v) determination of the ratio between unique
SAGE tags and the UniGene clusters; (vi) comparison of the
proportion of mismatches of the low-frequency unmatched or
matched SAGE tags to the high-frequency SAGE tags; (vii) analysis

of the lower-frequency SAGE tags with single-base mismatch to the
top 10 high-frequency SAGE tags in the SAGE library SAGE-
Duke-H1126.

Results and Discussion
Classification of SAGE Tags in the SAGE Database. A total of 375,856
unique SAGE tags were identified from 4,285,923 SAGE tags
collected from the 101 SAGE libraries of human origin. Compar-
ison of the number of unique SAGE tags and the total number of
SAGE tags shows that the number of unique SAGE tags continues
to rise with an increase in total SAGE tags, suggesting that more
unique SAGE tags would be identified if more SAGE tags were
collected (Fig. 1A). Matching the 375,856 unique SAGE tags to
existing expressed sequences in the UniGene database yields two
subgroups: 141,599 unique SAGE tags match to sequences in
62,946 UniGene clusters (Unique SAGE tag: UniGene cluster �
2.25:1, because of alternative splicing and heterogeneity of poly-
adenylation sites, etc.; refs. 20, 21), and 234,257 unique SAGE tags
do not have any match. The matched SAGE tags tend to be present
in higher-copy numbers, whereas the unmatched tags tend to have
lower-copy numbers. The origins of the unmatched SAGE tags are
uncertain.

About 70% of the Unmatched SAGE Tags Are Derived from Novel
Transcripts. To determine whether the unmatched SAGE tags may
be derived from novel transcripts from the human genome, we
converted 1,183 human SAGE tags (699 matched and 484 un-
matched) to their corresponding 3� cDNAs experimentally by using
a high-throughput GLGI method. Comparison of the 699 3� cDNAs
with their matched known expressed sequences confirmed that 624
(89%) of these 3� cDNAs are correct. A database search for the 484

Fig. 1. Analyses of the SAGE tags collected from the 101 human SAGE libraries.
(A) Relationship between SAGE tag collection and unique SAGE tag identifica-
tion. The total SAGE tags and unique SAGE tags were extracted from 1, 10, 20, 40,
60, 80, and 101 human SAGE libraries and used for comparison. (B) Changes in
frequency of unique SAGE tags with increasing SAGE tag numbers. Unique SAGE
tags from 1, 10, and 101 SAGE libraries were divided into groups based on copy
number; therateofuniqueSAGEtags ineachgroupis illustrated inthebargraph.
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3� cDNAs converted from unmatched SAGE tags showed that 324
(67%) of these 3� cDNAs still had no match to existing expressed
sequences (Table 1); 283 of 324 (87%) of these unmatched 3�
cDNAs were mapped to human genome sequences, of which only
42 and 49 had partial overlap with existing ESTs and predicted
expressed sequences, respectively (Tables 7 and 8, which are
published as supporting information on the PNAS web site). Not
every 3� cDNA could be amplified by the GLGI method, because
a sense primer for the GLGI reaction is based solely on a SAGE tag
that does not always provide ideal sequences as the primer for
efficient amplification. Therefore, the actual rate of correct 3�
cDNA templates corresponding to the SAGE tags in the cDNA
sample should be higher than 67% confirmed by the GLGI
reaction.

Many Unmatched SAGE Tags Represent Novel Genes Not Yet Identified
in the Human Genome. To investigate further whether the 3� cDNAs
generated from novel SAGE tags were originated from novel genes,
we converted 17 3� cDNAs into 22 full-length cDNAs (Table 2). By
use of strand-specific RT-PCR, we confirmed that all of these
full-length cDNAs were derived from transcripts rather than
genomic DNA contamination. Analysis of these full-length cDNA
sequences showed that:

(i) Each sequence has a putative ORF, with exons and introns
and typical or atypical exon–intron boundaries in the matched
genomic sequences.

(ii) Thirteen sequences do no match any ESTs, and 9 of these 13
do not match any predicted exons. Among these sequences, two
(BM285382 and BM285387) matched introns of the IL18RAP gene
(NM�003853). Five sequences (BM285379, BM285381, BM285384,
BM285388, and BM285389) matched to the location of known
genes (SSR2, RPL18, SSR2 alternative splicing, CD37, and �-2
microglobin), but were transcribed from the antisense strand (Table
2). For example, the full-length cDNA derived from SAGE tag
GTTCACACGG present in three copies matches exactly the
antisense strand of the �-2 microglobin gene, whereas the SAGE
tag GTTGTGGTTA on the sense strand for �-2 microglobin gene
was present in 853 copies in the same SAGE library (Fig. 2A). Using
semiquantitative strand-specific RT-PCR, we observed that both
the sense and antisense transcripts were amplified although the
signals from the �-2 microglobin appeared earlier than the anti-
sense signal, reflecting the quantitative differences in the original
transcripts. Similar results were found for four other antisense
sequences converted from the corresponding SAGE tags. Consid-
ering the functional importance of the �-2 microglobin in the
regulation of antigen presentation in the immune response, the
presence of the in vivo antisense transcript might be related to a
regulatory function using the mechanism such as antisense�RNA

Table 1. Classification of GLGI-converted 3� cDNAs from 484
unmatched SAGE tags

Classification

Number of
GLGI-amplified

3� cDNAs Percentage

Novel 3� cDNAs 324 66.9
Match to known sequences* 76 15.7
With internal CATGs† 14 2.9
Single-base mismatch‡ 18 3.7
Artifacts or no amplifications 52 10.7
Total 484 100

*These are the novel isoforms of known expressed sequences.
†These cDNAs are generated by incomplete NlaIII digestion during SAGE library
construction.

‡These 3� cDNAs matched known expressed sequences, but there are single-base
mismatches between their SAGE tag sequences.

Table 2. Twenty-two full-length cDNAs converted from unmatched SAGE tags

SAGE tag Copy
Full-length
cDNA, bp Genomic location (strand*)

GenBank
accession no.

Antisense
to

Putative ORF,
aa† Domain‡

No.
exon

Partial overlap§

EST Prediction

ACCCCAAAGG 1 1090 1q23.1:176093307-176144968 (�) BM285379 SSR2 268–555 (95) No 6 No No
ATGGCGCCTC 7 649 19q13.32:58623673-58627513 (�) BM285381 RPL18 155–517 (120) No 7 No No
ATGGTTATGG 2 1216 2q12.1:103454832-103456192 (�) BM285382 381–518 (45) No 2 No No
CAGATAACTA 1 975 1q23.2:180430823-180431959 (�) BM285383 584–841 (85) No 2 No No
CCTTGAGCCA 1 1048 1q23.1:176093570-176144976 (�) BM285384 SSR2 320–673 (117) No 6 No No
CTCTGTGGCA 3 1040 1p36.13:18621891-18622912 (�) BM285385 180–512 (110) No 1 No No
GCCAACAGTG 2 1359 2q12.1:103459588-103461351 (�) BM285387 282–491 (69) No 3 No No
GTGAAGATTC 7 1091 19q13.32-33:60195829-60200846 (�) BM285388 CD37 640–972 (110) No 8 No No
GTTCACACGG 3 949 15q15.3:40860800-40867421 (�) BM285389 B2M 55–192 (45) No 4 No No
ACAGCTATGA 1 819 4p16.1:6729161-6822034 (�) BM285378 461–598 (45) No 3 No Yes
GTTGAATGCT 3 1679 12q12:43047796-43145951 (�) BM285390 188–1288 (366) No 13 No Yes
TTCTTCCTGT 1 1329 11p13:36556073-36557467 (�) BM285393 866–1057 (63) No 2 No Yes
TTTTAGGTGG 3 2014 20p13:1439442-1460217 (�) BM285394 231–764 (177) IG 8 No Yes
ACTAAGATTA 2 1268 2p22.2:38076599-38088752 (�) BM285380 68–925 (285) G_patch 9 Yes Yes
TAACTGCATC 2 1754 19q13.42:66283838-66312096 (�) BM285391 121–903 (260) No 8 Yes Yes

Isoform
CTTCTTGTAC 3 1195 20p13:1516039-1522630 (�) BM285386 540–779 (79) No 3 Yes Yes
CTTCTTGTAC 3 824 20P13:1516039-1523706 (�) BQ635328 380–712 (110) No 4 Yes Yes
CTTCTTGTAC 3 923 20P13:1516039-1522630 (�) BQ635329 268–507 (79) No 3 Yes Yes
CTTCTTGTAC 3 944 20P13:1516039-1522630 (�) BQ635330 289–528 (79) No 3 Yes Yes
CTTCTTGTAC 3 963 20P13:1516039-1522630 (�) BQ635331 308–547 (79) No 3 Yes Yes
TTCTGGAAGT 1 1570 1p34.2:45499099-45515163 (�) BM285392 91–1227 (378) KRAB 5 Yes Yes
TTCTGGAAGT 1 1347 1P34.2:45499099-45515163 (�) BQ635332 204–1004 (266) No 5 Yes Yes

We define an amplified cDNA as a nonmatch one if it does not match any expressed sequences, or it matches the antisense strand of genomic DNA, whose
sense-strand are transcripted for known expressed sequences.
*The full-length cDNAs were mapped to human genomic sequences through http:��genome.ucsc.edu�goldenPath�hgTracks.html (December 12, 2000, or April 1,
2001).

†The putative ORFs and amino acid length were determined with the EDITSEQ program (DNASTAR).
‡Conserved domains were determined using BLASTP (http:��www4.ncbi.nlm.nih.gov�BLAST�) against SWISSPROT.
§Yes refers to partial overlap of some exons between the full-length cDNAs and EST�predicted exons on the same strand of genomic DNA.
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interference (22). A misconception in gene identification is that the
transcripts from both the sense and the antisense strands of the
genomic DNA represent the same gene, as reflected in the Uni-
Gene database where sense and antisense sequences are grouped
into a single UniGene cluster, with only seven UniGene clusters
clearly marked as antisense (opposite) in the human UniGene
database (http:��www.ncbi.nlm.nih.gov�UniGene). We think that
the antisense transcript is likely to represent novel genes whose
function may or may not be related to regulation of the expression
for the genes transcribed from the sense strand.

(iii) Four sequences have partial overlap with ESTs, and eight
have partial overlap with predicted exons. However, these full-
length cDNAs have far more novel exons than these partially
overlapped ESTs or predicted genes (Fig. 2B).

(iv) Five sequences are isoforms from two genes, partially over-
lapped with ESTs and predicted exons.

Most of the Unmatched SAGE Tags Are Not Generated by Experimental
Errors. A regular SAGE tag consists of 10 bases. A single-base
difference between two SAGE tags will define these two SAGE
tags as being different. A current popular interpretation of the
unmatched SAGE tags is that they are largely generated by
sequencing errors (6.8–10% per SAGE tag). Because of this
concern, the majority of unmatched SAGE tags, especially for the
low-frequency SAGE tags, are excluded from further analysis (10,
23, 24). The assumption of the high error rate in SAGE tags is based
on estimates using early EST sequences collected before 1996 (25).

Since then, the quality of collected sequences has improved signif-
icantly because of advances in sequencing technologies (1, 26–29).
In fact, most SAGE tag sequences have been collected after 1998
(refs. 10, 12, 23; ftp:��ncbi.ftp.nih.gov�pub�sage�extr�).

We consider that the rate of sequencing error in these SAGE tag
sequences may be lower than the estimates. To support our
hypothesis, we performed experiments to determine the actual
error rate covering nearly the whole SAGE process until the
sequencing collection. The results of three independent experi-
ments show that the error rate is about 1.67% per SAGE tag (Table
3 Upper), with the erroneous nucleotides being rather randomly
distributed along the tag sequences (Table 3 Lower). Although the
actual error rate might vary between different SAGE experiments,
it is unlikely that the error rates in most SAGE libraries would be
up to five times higher than our results. We also observed that all
of the erroneous SAGE tags contain only a single-base error (Table
3 Lower), suggesting that the tags containing two or more base
errors would be much more rare than those containing a single-base
error.

We analyzed the SAGE tags in the current SAGE database to
determine whether the unmatched SAGE tags were related to
sequencing errors. We focused on the analysis of a single-base error
for the reason described above. A SAGE tag has 10 bases. If the
error rate is M per base, the probability (P) that a single-base-error
SAGE tag with a specific nucleotide replacing a wild-type nucle-
otide at a specific position will follow the formula P � [(1 �
M)9M�3], in which M�3 represents the probability of a wild-type

Fig. 2. Genomic confirmation of novel full-length cDNAs converted from novel SAGE tags. Full-length cDNAs were generated from 3� cDNAs converted from novel
SAGE tags and matched to human genomic sequences. (A) The full-length cDNA originating from novel SAGE tag GTTCACACGG matches exactly the antisense strand
of the �-2 microglobin (B2M) gene. (B) Match of a full-length cDNA originating from novel SAGE tag TTTTAGGTGG partially overlapping with predicted exons, but with
no matches with known mRNA or EST.
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nucleotide replaced by one of the other three nucleotides at its
position (for example, a wild-type nucleotide A can be replaced by
G, C, or T), whereas (1 � M)9 represents the probability that the
other nine bases in this tag would be error-free. If the average
sequencing error rate is about 2% per SAGE tag as our results
indicated, in which M � 0.2%, then P � (1–0.002)9 � 0.002�3 �
6.55 � 10�4 � 1�1,527. Even if the estimated sequencing error rate
of about 10% per SAGE tag (23, 24) is used for the calculation, in
which M � 1%, then P � (1–0.01)9 � 0.01�3 � 3.04 � 10�3 �
1�329. These probabilities mean that a collection of 1,527-fold or at
least 329-fold more tags would be needed for detecting another
erroneous tag with the same error derived from the same wild-type
SAGE tag. We observed that the number of SAGE tags increased
only 12.1-fold from the first SAGE library to the 10 SAGE libraries
and 8.2-fold from the 10 to the 101 SAGE libraries (524,256�43,442
and 4,285,923�524,256, respectively; Fig. 1A), far less than 329- or
1,527-fold. If a high error does exist and the single-copy SAGE tags
in the 1 or 10 SAGE libraries were largely generated from sequenc-
ing errors, then most of these single-copy error SAGE tags will stay
as a singleton in this scale of SAGE tag collection, and the
percentage of single-copy tags should increase significantly when
the collection of SAGE tags increases from 1 to 10 libraries and
from 10 to 101 libraries. Analysis of the SAGE tags collected from
the 101 human SAGE libraries shows, however, that the percentage
of single-copy unique SAGE tags decreases with increased collec-
tion of SAGE tags (Fig. 1B). For example, the rate of single-copy
tags is 75% in the first SAGE library, but it is only 50% in the 10

SAGE libraries and only 48% in the 101 SAGE libraries, suggesting
that most of the single-copy SAGE tags are not generated from
experimental errors.

We further analyzed the rate of mismatches between the low- and
higher-frequency tags of matched and unmatched tag sets to
investigate whether there was a difference between these two sets
of SAGE tags. If the unmatched low-frequency SAGE tags contain
more erroneous forms derived from the higher-frequency SAGE
tags than do the matched low-frequency SAGE tags, the rate of
mismatch between the unmatched low-frequency SAGE tags and
the higher-frequency tags should be higher than that between the
matched low- and the higher-frequency SAGE tags. However, the
results showed that the rates of mismatch were similar between the
unmatched and the matched low-frequency SAGE tags, indicating
that the unmatched SAGE tags do not have a higher probability of
errors than do the matched SAGE tags (Table 4). Although more
than 60% of low-frequency SAGE tags have single-base mismatch
with higher-frequency SAGE tags (Table 4), this does not mean
that these low-frequency SAGE tags originated from higher-
frequency SAGE tags because of sequencing errors (12). We
randomly selected a SAGE library (SAGE-Duke-H1126) from the
101 libraries and analyzed its top 10 SAGE tags and the low-
frequency tags with single-base mismatches to each of the top 10
tags. The result shows that 97 and 83% copies of the mismatched
low-frequency tags perfectly match mRNAs and genomic DNA
sequences, respectively (Table 9 Upper and Lower, which is pub-
lished as supporting information on the PNAS web site). Further-
more, it is possible that SAGE tags without matches could be due
to the presence of single-nucleotide polymorphism sites or the
incomplete gaps in human genomic DNA sequences where the
gene contributing these SAGE tag may be located, rather than
errors. An example is the RPL38 (Hs.2017) identified by SAGE tag
GCGACGAGGC with 279 copies. This gene has been well studied,
and its mRNA sequence is included in the RefSeq database
(www.ncbi.nlm.nih.gov�LocusLink�refseq.html). However, this
mRNA sequence does not match the human genomic sequence.
Further analysis of 1,500 unmatched single-copy SAGE tags ran-
domly selected from the first 10 libraries reveals that 75% of these
single-copy SAGE tags become higher-copy SAGE tags in the 101
SAGE libraries (Table 5). These analyses support the concept that
experimental errors contribute a much lower fraction in the un-
matched SAGE tags than currently estimated.

On the basis of these analyses, we conclude that most of the
unmatched SAGE tags are novel SAGE tags derived from novel
transcripts. These novel transcripts may originate from the alter-
natively spliced transcripts (20, 21); they may also belong to the
noncoding transcripts that have multiple regulatory functions (4, 30,
31). A significant number of these novel transcripts may represent
novel genes not yet identified in the human genome. Recent
experimental data using different approaches also show similar
results. For example, the number of genes estimated by using the
longSAGE approach suggests that the number of genes in the

Table 3. Determination of experimental error rate during SAGE
process

Summary of error rate in three independent SAGE experiments

Experiment
Total collected

SAGE tags Erroneous tags Error rate, %

1 1,200 20 1.67
2 1,086 18 1.66
3 1,062 18 1.69
Total 3,348 56 1.67

Distribution of error nucleotides

Wild-type tag A Detected number Wild-type tag B Detected number
GTGCACTGAG 1,638 TACCTGCAGA 1,654

Erroneous tag A Erroneous tag B
ATGCACTGAG 2 CACCTGCAGA 2
GCGCACTGAG 4 TTCCTGCAGA 2
GTACACTGAG 2 TACTTGCAGA 2
GTGCTCTGAG 2 TACCAGCAGA 2
GTGCAATGAG 2 TACCTACAGA 2
GTGCATTGAG 12 TACCTTCAGA 1
GTGCACCGAG 2 TACCTGTAGA 2
GTGCACTGAA 6 TACCTGCTGA 2
GTGCACTGAC 2 TACCTGCAAA 2
GTGCACTGAT 2 TACCTGCAGG 3

Table 4. Single-base mismatch between unmatched�matched low-frequency tags and
high-frequency tags

SAGE tags LF tags�HF tags*
Mismatched

LF SAGE tags (%)
Rate of HF tags with

mismatches�mismatched LF tags

1–2 copies��2 copies
Unmatched SAGE tags 31,812�23,269 19,615 (62) 1.7 (33,560�19,615)
Matched SAGE tags 36,827�23,269 24,055 (65) 1.9 (45,322�24,055)

3–4 copies��4 copies
Unmatched SAGE tags 1,802�13,841 1,150 (64) 1.6 (1,829�1,150)
Matched SAGE tags 7,626�13,841 4,548 (60) 1.9 (8,636�4548)

All unique SAGE tags were extracted from the first 10 libraries and matched to SAGEmap database.
*LF: low-frequency; HF: high-frequency. The low-frequency SAGE tags were divided into unmatched SAGE tags and
matched SAGE tags; the high-frequency SAGE tags included both unmatched and matched SAGE tags.
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human genome could be doubled from current estimates (32, 33).
The analysis of transcriptional units in human chromosomes 21 and
22 using oligo-microarray method shows that the number of tran-
scribed sequences in the human genome could be an order of
magnitude greater than current estimates (4), although full-length
sequences will be needed to provide the final proof.

Why Such a Large Number of Novel Transcripts Have Not Been
Identified. It is interesting that we still identify a large number of
novel transcripts in the human cells, despite the decade-long effort
in identifying the genes in the human genome. There are basically
two ways to identify genes: computational prediction based on
genomic sequences, etc., and experimental identification through
analysis of the expressed transcripts. It has been shown that the
current computational tools are inadequate for gene prediction,
particularly for complex genomes such as the human genome (34),
due largely to the high signal-to-noise ratio between coding and
noncoding sequences (1). For experimental identification, a major
barrier is the issue of redundancy of gene expression. Unlike the
genomic sequencing in which the DNA sequences are rather evenly
distributed in the genome and can be identified through increased
sequencing coverage several-fold, the identification of genes
through analysis of the expressed transcripts has to face the issue of
redundant expression, in which a few genes express at higher levels
contributing a large portion of the total transcripts, whereas most
of the genes express at lower levels and account for only a small

portion of the total transcripts. Although the approach of subtrac-
tion�normalization can certainly decrease the redundancy by re-
ducing the highly expressed transcripts, many of the lower-
expressed transcripts could be lost because of factors such as
cross-hybridization between unrelated transcripts (8). In contrast,
SAGE collects a short tag from a transcript and forms a concatemer
of multiple tags from many transcripts for a single sequencing
reaction, leading to a significant decrease in the sequencing scale.
Such an approach overcomes the obstacle of redundancy and makes
it possible to identify transcripts expressed from high to low levels
without exposing the samples to subtraction�normalization. By use
of methods such as GLGI and 5� rapid amplification of cDNA ends,
novel SAGE tags can be converted back to their corresponding 3�
cDNAs and full-length cDNAs. Applying the approach of convert-
ing novel SAGE tag to longer sequence should significantly accel-
erate the rate of discovery of novel transcripts�novel genes in the
human genome. The same approach should also be applicable to
gene identification in other eukaryotic genomes.
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Table 5. Distribution of 1,500 unmatched single-copy tags from 1 to 101 SAGE libraries

Tag copy

SAGE libraries

1 10 20 40 60 80 101

1 1,500 (100)* 797 (53) 679 (45) 556 (37) 479 (32) 416 (27) 374 (25)

2 0 467 (31) 461 (31) 437 (29) 408 (27) 402 (27) 361 (24)

3 0 123 (8) 136 (9) 178 (12) 182 (12) 174 (12) 192 (13)

4 0 44 (3) 77 (5) 78 (5) 104 (7) 116 (8) 117 (8)

5 0 20 (1) 29 (2) 49 (3) 68 (5) 71 (5) 88 (6)

6 to 10 0 23 (2) 67 (5) 109 (7) 114 (8) 131 (9) 146 (10)

11 to 50 0 23 (2) 40 (3) 74 (5) 120 (8) 156 (10) 180 (12)

over 50 0 3 (0) 11 (1) 19 (1) 25 (2) 34 (2) 42 (3)

The 1,500 unique SAGE tags were randomly selected from unmatched single-copy tags in the first 10 SAGE
libraries.
*The numbers in parentheses are the percentage of the SAGE tags in the 1,500 SAGE tags and are rounded to 1.
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