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An automatic protein design procedure is used to select amino acid
sequences that optimize the folding free energy function for a
given protein. The only information used in designing the se-
quences is a set of known backbone structures for each protein, a
rotamer library, and a well established classical empirical force
field, which relies on basic physical chemical principles that under-
lie molecular interactions and protein stability, and has not been
adjusted to yield native-like sequences. Applying the procedure to
7 different known protein folds, representing a total of 45 different
native protein structures, yields ensembles of designed sequences
displaying remarkable similarity to their natural counterparts in
the protein core, but which are distinctly non-native on the protein
surface. We show that natural and designed sequences for a given
fold score significantly higher than random sequences against
profiles derived from both, designed and natural sequence ensem-
bles. Furthermore, we find that designed sequence profiles can be
used to retrieve the native sequences for many of the analyzed
proteins using standard PSI-BLAST searches in sequence databases.
These findings may have important implications for our under-
standing the selection pressures operating on natural protein
sequences and hold promise for improving fold recognition.

Protein sequences are shaped by a complex interplay of
different selective pressures, which are poorly understood.

The selection pressure for performing the proper function is
probably overriding. But in addition, there presumably is selec-
tion for maintaining the stability of the 3D structure, for folding
or processing efficiency, as well as random drift resulting from
neutral mutations. Improving our ability to distinguish between
sequence features resulting from these different selection pres-
sures should have a major impact on our ability to predict protein
structure and function from sequence (1, 2).

One way of addressing these questions could be by using exper-
imental (3, 4) or computational (5–10) protein design approaches
to search sequence space for sequences that satisfy the stability
constraints for known protein structures, and comparing these
sequences to their naturally occurring counterparts.

Significant progress has been achieved recently in computational
methods for protein design (5, 6, 8, 11–13). Notable examples are
the de novo design of a sequence adopting the zinc finger fold (8)
and of a novel �-helix bundle protein with a right-handed super-
helical twist (14).

Applying these methods to redesigning the sequences of small
proteins was shown to yield sequences displaying significant simi-
larity to the native sequences (5, 6, 11), with overall identity scores
relative to the native sequences of 25–30% (10, 15). Kuhlman and
Baker (10), who obtained such results for a set of 108 small proteins,
deduced that the volume of sequence space optimal for a protein
structure is surprisingly restricted to a region around the native
sequence. They concluded that stability requirements have played
a significant role in shaping natural protein sequences.

Recently we described a new automatic procedure, DESIGNER,
for selecting amino acid sequences compatible with a given protein

3D structure (12). Selected sequences minimize a fitness function
akin to the free energy of folding, which relies on basic physical
chemical principles that underlie molecular interactions and protein
stability. This function combines the all-atom force field of
CHARMM (16) with a simple empirical surface area-dependent
hydration term (17). Unlike all previous studies mentioned above,
the parameters of this fitness function have not been adjusted to
yield native-like sequences, and no constraints are imposed on the
amino acid composition of the designed sequences.

DESIGNER therefore seems to be particularly well suited for
investigating, on a more rigorous basis, the relationships between
the designed sequences and their natural counterparts, and thereby
gaining insight into the factors that shape natural sequences. To this
end we apply it to redesign the sequences of seven protein domains
comprising the SH3 domain, homeobox domain, DNA binding
helix-turn-helix domain, B1 domain of streptococcal protein G, the
Ci2 inhibitor, the cold-hock, and antifreeze proteins. To improve
exploration of sequence space, backbone flexibility is taken into
account by performing the calculations on several backbone tem-
plates from different crystal structures of each domain. The pro-
cedure generates the family of low free energy sequences for each
backbone and these families are combined to yield the global
ensemble of designed sequences for the domain. Using these
ensembles we examine the relation between the predicted amino
acid sequences and the backbone conformations available for a
given fold. In addition, we evaluate the similarity between the
ensembles of designed and natural sequences. Position-dependent
frequencies of the designed and naturally occurring sequences are
computed and scored against one another, both for the entire
polypeptide, and for core positions only. Lastly, designed sequence
profiles are used to test the ability for recognition of native
sequences in public sequence databases, using standard sequence
alignment procedures.

Materials and Methods
Computing Sequences Compatible with a Given Protein Backbone. To
select the amino acid sequences that are compatible with a given
protein backbone structure, we use the procedure implemented in
the software DESIGNER (12). This software has two main compo-
nents. A function that measures the fitness of a given sequence for
the structure at hand, and the optimization procedure, which selects
high-scoring sequences from a very large number of possibilities.

The fitness function is computed as the difference between the
free energies of the protein native folded state and a reference state
used as a model for the unfolded protein, as described in ref. 12 and
Supporting Methods, which is published as supporting information
on the PNAS web site, www.pnas.org.

To select amino acid sequences with lowest free energies, a
simple heuristic procedure is used (12). This procedure yields
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solutions close to the global minimum when the number of itera-
tions is sufficiently large (typically �350,000; see supporting infor-
mation for details). For a full design of a 50-residue polypeptide and
typically about 100 rotamer�amino acids at each position, each
iteration screens 25,000 possible sequences, leading to a total of
�1010 sequences screened in the entire procedure. Selected se-
quences are those with energies between 2 and 6 kcal�mol from the
minimum energy sequence.

Combining Designed Sequences for Multiple Backbone Templates.
The full design procedure is applied to our set of seven small
single-domain proteins. For each domain a number of backbone
templates is selected from high-resolution structures deposited in
the PDB (refs. 18 and 19; see the legend of Table 1 for a full list).
The sequence design procedure is applied to each backbone
template individually, yielding its designed sequence family. The
families from all of the templates of a given domain are combined
on the basis of structural alignments (20), yielding a multiple
alignment for the designed sequence family of that domain. Align-
ments are listed in www.ucmb.ulb.ac.be��alfonso�supplement�.

Treatment of Natural Sequences and Sequence Analysis. For each
domain, the family of natural sequences was obtained from multiple
alignments available in PFAM (21). These alignments were pruned
of sequences with unusually large or numerous insertions or dele-
tions to ensure that the examined sequences share the same fold and
are of similar lengths. Structural alignments were used to improve
the sequence alignment in regions. The number of natural se-
quences used for each domain is given in the legend of Fig. 2.
Alignments are available at www.ucmb.ulb.ac.be��alfonso�
supplement�.

To quantify the similarity between the designed and natural
sequence families, position-dependent amino acid frequencies (22)
were computed from the designed and natural sequence families,
respectively. To score a given sequence against a profile, we use the
standard score s � �i�y fiy S(xi, y), were fiy is the frequency (on a
scale of 0–1) of amino acid y in the profile at position i of the

sequence, xi is the amino acid at position i of the target sequence,
and S(xi, y) is the BLOSSUM62 matrix (23).

Results
Properties of Minimum Energy Sequences of a Protein Domain. To
illustrate the properties of the minimum energy sequences com-
puted by our sequence design procedure, we first discuss results
obtained for the SH3 domain, the protein in our set with the largest
number of available high-resolution backbone templates and an
appreciable number of known natural sequences.

Thirteen backbones from evolutionarily and structurally related
SH3 domains were used in the calculations. Three additional
backbones were derived by quenching conformations after, respec-
tively, 20 ps, 40 ps, and 150 ps (1 ps � 10�12 s) of a high-temperature
(600 K) molecular dynamics simulation performed on the proto-
oncogen product c-Crk SH3 domain (PDB ID code 1cka) in
presence of explicit solvent. Details about the various natural and
simulated backbones are given in Table 2, which is published as
supporting information on the PNAS web site.

The different backbones display root mean square deviations
(rmsd) ranging between 1 and 2 Å, except for the unrelated HIV
integrase DNA binding domain where the rmsd are larger (3–4 Å
on average). For each of the considered backbones our procedure
selected from among all possible sequences those with energies of
2–6 kcal�mol above the minimum energy (see supporting infor-
mation). The number of sequences selected on this basis ranged
between 77 and 1,000, depending on the backbone. Given the
uncertainty associated with the energy function used in the selec-
tion procedure, all these sequences were considered to be compat-
ible with the considered fold (12).

The top-ranking lowest energy sequences computed for individ-
ual SH3 backbones display on average 23.9 � 4.2% identity to their
native counterpart. A significantly higher identity level of 54.8 �
11.7% is displayed when only buried positions are scored. These
positions are defined as residues exposing �10% of their solvent-
accessible surface area to solvent; they number between 10 and 15
in SH3. All these identity scores are highly significant, with P values
in the range of 10�16–10�4 (see Tables 2 and 3).

A direct consequence of these observations is that the identity
scores of the designed sequences are particularly low for surface
residues. These are defined here as residues exposing more than
50% of their solvent-accessible surface area to solvent. Their
identity scores are 11 � 7.9%, with some individual designed
sequences displaying zero identity to the native sequence.

We find, furthermore, that the amino acid composition of surface
residues is markedly different from native. It tends to be enriched
in Arg and Gln amino acids. Detailed analysis of a few structures
computed with the minimum energy sequences for the C-crk SH3
(PDB ID code 1cka) and cold-shock (1c9o) proteins shows that the
designed Gln and Arg side chains form stabilizing H bonds with
surrounding polar and charge residues, or otherwise stick into the
surrounding solvent. The number of H bonds in these structures is
on average somewhat higher (�9) than in the corresponding native
proteins (�6).

Sequences designed using backbones derived from the high-
temperature c-Crk SH3 molecular dynamics trajectory featured
somewhat different properties. Interestingly, although they had an
appreciable level of identity to the native sequence (29–32%), their
core residues were less well conserved (28–57%) than in the other
designs. We were able to verify that the limits of secondary
structures in these backbones (24) differed from those in the native
crystal structure, suggesting that the corresponding structures have
undergone some local unfolding. This interpretation is supported
by the observation that the identity scores of the core residues in the
MD conformations decrease as the simulation time at elevated
temperature, and hence the degree of unfolding, increases (see
Table 2).

Table 1. Sequence identities of minimum energy sequences
selected by DESIGNER relative to their native counterparts,
for seven small protein domains

Domain
Backbone
templates

% Identity to wt

All Core Surface

SH3 11 23.9 � 4.23 54.8 � 11.73 11.0 � 7.94
Homeobox 9 15.8 � 2.95 37.0 � 10.37 10.2 � 6.65
HTH 6 24.6 � 6.69 54.2 � 18.70 11.6 � 7.77
Protein G 2 23.6 � 5.45 48.9 � 23.86 11.8 � 0.00
CI2 7 25.2 � 2.68 60.5 � 12.70 18.9 � 5.84
Cold-shock 4 29.2 � 1.54 71.6 � 6.27 16.9 � 1.90
Antifreeze 6 19.8 � 2.96 43.1 � 7.93 1.4 � 3.11

The protein domain is listed in the leftmost column. The number of back-
bone templates used for each domain is given in the second column. The third
through fifth columns list the average identity scores (%) and standard
deviations of the designed minimum energy sequences relative to the corre-
sponding native sequence, considering all residues, only core residues, and
only surface residues, respectively. Average P values corresponding to these
scores were between �10�9–10�3 for the full sequences (all), between �10�13

and 10�5 for the core residues, and �10�1 for the surface residues. The P values
were computed as described in the legend of Table 3, which is published as
supporting information on the PNAS web site. The PDB ID codes of the
backbone templates used in the calculations are as follows: SH3, 1cka, 1shg,
1pwt, 1sem, 1shf, 1qcf, 1ckb, 2src, 1bk2, 1abo, and 1fmk; homeobox, 1enh,
1fil, 9ant, 1mnm, and 1au7; HTH domain, 1r69, 2cro, 1lmb, 1lli, 1b0n, and 1 per;
protein G B1 domain, 1pgb and 1idg; Ci2, 2ci2, 1cse, 1ypc, 2tec, 2acb, and 1coa;
cold-shock, 1csp, 1mjc, 1c9o, and 1csq; antifreeze, 1ops, 1msi, 2jja, 1ame, 1b7i,
and 1ekl.
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Influence of the Backbone Conformation on the Designed Sequences.
To further characterize the influence of the backbone conforma-
tion on the selected sequences, it is helpful to examine the relation
between sequence and backbone similarities, and to compare it with
previous analyses on natural sequences (25).

Fig. 1 displays the percent identity of the minimum energy
sequences relative to the sequence of c-Crk (1cka) computed over
the entire sequence after structural alignment, versus the rmsd of
the corresponding templates relative to the 1cka backbone. We see
clearly that the sequence identity level decreases as the rmsd of the
template relative to the reference backbone increases. As expected,
the lowest sequence similarity and largest rmsd, relative to 1cka, is
displayed by the sequence of the unrelated HIV integrase DNA
binding domain (1qmc).

Interestingly, the minimum energy sequence designed for a
particular template resembles more the native sequence of that
template than the native c-Crk sequence, or the native sequence of
any of the other SH3 domains. It is noteworthy that lowest energy
sequences designed using backbones derived from the molecular
dynamics trajectory of 1cka display �5–10% higher sequence
identity to 1cka than those using native backbones of other SH3
domains with equivalent rmsd.

Thus, information on the native sequence appears to be in some
way ‘‘encoded’’ in its backbone. This can be explained by consid-
ering that proteins with somewhat different sequences may be
viewed as stabilizing slightly different conformations of the same
fold. These conformations would correspond to distinct local
minima of the energy landscape for that fold (26, 27). Conversely,
somewhat different polypeptide backbones would ‘‘stabilize’’ dif-
ferent amino acid sequences, each defining a distinct local mini-
mum in sequence space. This, in turn, points out that the sequence
space accessible to a given 3D structure cannot be adequately
explored by computational procedures such as DESIGNER, unless

the conformational variability of the polypeptide backbone is taken
into account.

Minimum Energy Sequences for a Set of Small Globular Proteins.
Table 1 summarizes the identity scores relative to native for the
designed sequences of lowest energy computed for all of the seven
domains of different folds and secondary structures considered
here. The listed scores represent averages and standard deviations
of the percent identity of the minimum energy sequence relative to
its native counterpart, computed for the entire polypeptide and
taken over the all of the structural templates of each domain.

These scores are between 15.8 and 29.2%, and hence in the same
range as those obtained for the SH3 domain. The homeobox and
antifreeze proteins display the lowest scores (15.6–19.8%; Table 1),
corresponding to the highest P values (�10�5–10�3). The most
prominent differences are once more displayed between the core
and surface positions. The designed core amino acids are on
average 52.8% identical to their native counterparts, whereas
surface residues display significantly lower identity levels of 11.7%.

To further investigate the differences between the designed and
natural sequences, we extend our analysis to the ensemble of known
natural sequences associated with each of the seven protein do-
mains. This ensemble comprises between 113 and 1,225 sequences
for four of the domains (cold-shock, HTH, SH3, and homeobox),
and between 20 and 35 sequences for the three remaining domains
(Ci2, Protein G, and antifreeze).

Among the interesting questions to address is how the diversity
of the designed sequence ensembles compares with those of the
natural sequences, and to what extent the diversity of the two types
of ensembles differs in the core versus surface regions. A very rough
estimate can be obtained by comparing the average identity scores
computed, respectively, between the designed sequences for each
domain and between their natural counterparts. When the full
polypeptide is considered, the average identity scores of the de-
signed sequences for the seven domains range between 33.0 and
57.8%, with a rather uniform standard deviations of �10%. For the
natural sequences, the same quantity spans a wider range of
22.3–73.5%, with standard deviations of 7–18%. These differences
are probably due to biases resulting from the very small number of
natural sequences available for some of the domains and do not
represent real differences in sequence diversity.

Per domain, the diversity of the designed and natural sequences
is also comparable, but clearer differences appear when core or
surface regions are considered (see Tables 4 and 5, which are
published as supporting information on the PNAS web site). As
expected, all identity scores are generally much higher in the core
than in surface regions or than for the full polypeptide. But the
average identity scores of designed sequences are systematically
lower than those of the natural ones in the core, whereas the
opposite is true in surface regions. Thus, the designed se-
quences appear to be more diverse in the core and less diverse
in surface positions in comparison with the natural sequences,
at least in the set of protein domains examined here. But this
result clearly needs further confirmation by a proper statistical
analysis (28) of a larger protein sample (F. Sirota-Leite, A.J.,
and S.J.W., unpublished work).

Scoring Designed Sequences Against Their Natural Counterparts. To
that end, we compute for each domain the positional frequency
matrix (profile) (22, 29) from the multiple alignment of its natural
sequences. The natural and designed sequences for each fold are
then individually scored against the natural sequence profile of that
fold, using a standard scoring function (see Materials and Methods
and Fig. 2 legend). In addition, these scores are compared with
those of completely random sequences, and of random H�P
sequences. The latter are random sequences required to have
hydrophobic amino acids in buried positions and polar ones on the
surface (see Materials and Methods).

Fig. 1. Sequence identity of native and designed sequences as a function of the
rootmeansquaredeviation (rmsd)ofbackboneatomsofSH3domains. Sequence
identity levels (%; vertical axis) and the rmsd (Å) of backbone atoms (horizontal
axis) are measured relative to those of the c-Crk SH3 domain (1cka). Points
represent the various sequence�template combinations analyzed. They are de-
noted by the PDB ID code of the corresponding template, with designed se-
quences (bluecircles),nativesequences (purple squares),anddesignedsequences
using backbone templates from MD simulations (green triangles; see text). These
templates are denoted 1ckaMD20, 1ckaMD40, and 1ckaMD150, corresponding
to conformations from high-temperature MD simulations of respectively, 20 ps,
40 ps, and 150 ps (1 ps � 10�12 s). Structural alignments were performed using CE

software (39), and the identity scores were computed over the entire sequence,
without corrections for the alignment lengths, as those are essentially constant
across the examined SH3 proteins.
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Fig. 2, displays the score distributions obtained for the SH3,
HTH, and homeobox domains, and the cold-shock protein, the four
domains with the largest set of available natural sequences. Very
similar albeit noisier results were obtained for the three remaining
domains, for which many fewer native sequences are available (data
not shown).

A first important observation is that the designed sequences
score significantly better than completely random sequences, and
better than random H�P sequences. For all of the domains, the
score distributions of the random and random H�P sequence
ensembles overlap nearly perfectly on the low end of the scale of
Fig. 2, and are well separated not only from the scores of natural
sequences, but also from those of the designed ones. This behavior
indicates that our calculations introduce constraints that go well
beyond the requirement of simply burying nonpolar amino acids
and exposing polar amino acids.

A second key observation is that the scores of the designed

sequences span a rather wide range. In general, these scores are
lower than those of the natural sequences, but for several domains
(SH3 domain, HTH, and cold-shock in Fig. 2), some overlap
between the two distributions is nonetheless observed.

Scoring Sequences Against Profiles of Core Positions. In view of the
results presented above, it seemed reasonable to assume that the
differences between score distributions of designed and natural
sequences (Fig. 2) might be significantly reduced if only core
positions were considered.

To check this hypothesis we now analyze how individual se-
quences from different ensembles (designed, natural, random, and
random HP sequences, respectively) score against core profiles.
The latter are the position specific amino acid frequencies of buried
positions only. They tend to be noisier than profiles of the complete
polypeptide, because the number of scored positions is low, ranging
from 6 for the homeobox, to 14 for the SH3 domain. We therefore
computed them from the ensembles of designed sequences for each
domain, because those are larger than their natural counterparts
(comprising between 300 and 2,700 sequences, compared with
113–1,225 for the natural sequences), and should hence suffer less
from noise problems. The analysis could therefore be carried out
for all seven domains, including the three domains for which the
number of natural sequence was particularly low.

The results, shown in Fig. 3, lead to several very interesting
observations. For most domains, the scores of random and random
HP sequences are well separated from those of the designed
sequences, as in the profiles of the entire protein (Fig. 2), but the
separation between the scores of random and natural sequences is
narrower. Most strikingly still, we see that the overlap between the
scores of the designed and native sequences, computed here against
the core profile of designed sequences, is significantly better than
for the scores computed for the full protein (Fig. 2). With the
possible exception of the HTH domain, a surprisingly good overlap
is observed for all of the domains, including protein G and Ci2, for
which only a limited number of natural sequences is available.

This, together with the observations on the similarities between
the designed and natural core profiles, confirms that the resem-
blance between the designed and natural sequence ensembles is
clearly much greater in core positions than for the sequence over all.

Are Designed Sequence Profiles Effective in Recognizing the Native
Sequence? Having shown that that there is a significant overlap
between the designed and natural sequence ensembles, we tested
whether the profiles derived from the ensembles of designed
sequences, computed for the different templates of the seven
protein domains, can be used to retrieve the corresponding native
sequences from SWISS-PROT (30), using one iteration of the PSI-
BLAST sequence alignment procedures (31) with standard settings.

Results obtained show that the designed sequence profiles have
a quite good native recognition performance. Of the 45 tested
profiles, 33 (72%) were able to retrieve the native sequence of the
corresponding structural template with acceptable to good signif-
icance (see Table 5). For 18 of these profiles, the native sequence
was retrieved with E values between 2.10�8 and 0.1. For a further
10 profiles, it was retrieved with E values between 0.1 and 5, and for
the remaining 5, the native sequences had E values in the range of
5–9.4. We could, furthermore, verify that in the majority of the
cases, unrelated sequences scored much more poorly. It should be
mentioned, however, that the results obtained for proteins such as
the antifreeze and Ci2, which contain as many as six prolines might
be biased by the fact that these residues were not redesigned here,
although there is good indication that many of these prolines tend
to reappear when designed (unpublished results).

These rather encouraging results can therefore be taken to
indicate that sequences computed solely on the basis of structural
constraints and physical chemical principles more often than not
contain the necessary information to enable native sequence rec-

Fig. 2. Assessingthesimilaritybetweendesignedandnatural sequencesof four
small protein domains. Displayed are the histograms of the similarity scores s,
computed using the following formula: s � �i�y fiy S(xi, y), where fiy is the
frequency (on the scale of 0–1) of amino acid y at position i in the natural
sequences of each protein, xi is the amino acid at position i in the target sequence,
and S(xi, y) is the BLOSSUM62 matrix (23). The values of s are given on the horizontal
axis; the number of scored sequences is given on the vertical axis. The names of
the different protein domains are listed on the right. Brown, natural sequences;
green, designed sequences; blue, random sequences; red, random H�P se-
quences. Random H�P sequences are random sequences subject to the restriction
that buried positions harbor hydrophobic amino acids and solvent exposed
positions polar amino acids. The natural sequences, from which position specific
amino acid frequencies were derived, were taken from PFAM (21) after pruning
(see text). The number of sequences in each profile was: 534�2700 for SH3,
1225�1377 for the homeobox proteins, 184�887 for HTH, and 113�324 for the
cold-shock proteins. The smaller of the two numbers is that of the natural
sequences and the larger is of the designed sequences. The number of natural
sequences available for the remaining three domains analyzed in this study was
too small to permit a similar analysis (see text).
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ognition from amongst a very large number of possibilities. The fact
that this is obtained with standard sequence alignment procedures
and default parameters suggests that performance could probably
improve by using more sophisticated profile-based HMM methods
(32). But if fold recognition is the main goal, profiles derived from
designed sequences computed while constraining the amino acid
composition to be native-like, as done by other authors (5, 6),
should be even more effective than those designed here, because
such sequences display on average a 5–10% higher identity levels to
their native counterpart (see Tables 6 and 7, which are published as
supporting information on the PNAS web site).

Discussion
The main finding of this study is that there is significant overlap
between the ensembles of low free energy and natural sequences

for a set of small proteins. This overlap, furthermore, enables a
good level of native sequence recognition using the low free
energy sequence profiles and standard sequence alignment
methods without any attempt to optimize recognition perfor-
mance. Moreover, evidence is provided that this is essentially
due to a remarkable resemblance between the designed and
natural sequences in the protein core, whereas the resemblance
between the two sequence ensembles is particularly poor on the
protein surface.

Two recent studies in which protein sequences, designed using
analogous procedures, were compared with their natural counter-
parts (10, 15), also reported a higher similarity between the
designed and natural sequences in the core versus the surface
regions. However, just as all other design procedures to date, they
too were in one way or another fine-tuned to yield natural se-
quences. In particular, the scoring function of Kuhlman and Baker
(10) was ‘‘trained’’ to produce native-like sequences for a set of
reference proteins using as many as 26 adjustable parameters.

In contrast, our folding free energy comprises a widely used
classical molecular mechanics force field and an implicit hydration
term, previously optimized to yield experimental values for the
vacuum to water dissolution free energies of amino acids. It
contains only three adjustable parameters (see supporting infor-
mation for details), whose values were derived from physical
chemical considerations, and no constraints were imposed on the
amino acid composition, as done elsewhere (5, 6). Another key
difference is that we sampled sequence space more than 3 orders
of magnitude more extensively than in Kuhlman and Baker (10).
We run �350,000 iterations of our heuristic algorithm and use
several different backbones for each protein, whereas they use very
short Monte Carlo runs, equivalent in total to only �50 iterations
of our algorithm, clearly not enough for adequate sampling of
sequence space (12).

The results presented here are therefore particularly significant
because they were obtained without any ‘‘memory’’ of the expected
characteristics of the natural sequences. If we believe that our
folding free energy adequately embodies the basic physical chem-
ical principles that underlie protein stability, then our findings lead
to the important conclusion that stability requirements represent a
significant evolutionary selection pressure on the amino acid se-
quence of core residues, but probably not on that of surface
residues.

What are the selection pressures operating on surface residues?
It is of some significance that all of the proteins used in our
calculations have known interaction partners in vivo. The SH3
domains engage in interactions with cognate peptides. The ho-
meobox and HTH domains interact with DNA. The cold-shock
proteins interact with DNA and RNA, the protein G B1-domain
and Ci2 protein bind, respectively, to immunoglobulins and chymo-
trypsin, and the antifreeze protein binds to ice. Most of these
proteins also form dimers, trimers, or higher-order complexes. The
natural sequences at surface positions may thus have been selected,
at least in part, for mediating these different interactions, probably
at the expense of protein stability.

The fact that designed sequences are very different from their
natural counterparts on the protein surface may reflect just that.
Indeed, the designed sequences have an increased proportion of
Arg and Gln side chains, whereas the ratio of polar to nonpolar
amino acids remains native-like (data not shown). The total number
of H bonds is also increased by two to three per protein, but a
fraction of the additional (positive) charges remain unpaired and
pointing into the solvent.

One interpretation of these findings might be that our free energy
function is inadequate, and unable to handle the delicate balance
between electrostatics and solvent interactions in surface regions.
To address this issue, we tested the CHARMM implementation of a
recent continuum solvent model (ACE) of Schaeffer and colleagues
(33, 34). This model is believed to approximate very well (up to

Fig. 3. Similarity between designed and natural sequences in core residues of
seven small protein domains. Similarity scores were computed as in Fig. 2, but
using the positions specific amino acid frequency matrices computed from the
low energy sequences selected by DESIGNER, instead of those of natural sequences.
In addition, only core residues (burying �90% of their solvent-accessible surface
area) were scored. The names of the protein domains are indicated on the right
handside.Horizontalaxis, scorevalues; verticalaxis,numberof scoredsequences.
Green, scores of designed sequences; brown, scores of natural sequences; blue,
scores of random sequences; red, scores of random H�P sequences. (See legend of
Fig. 2 for the meaning of H�P sequences.) For protein G B1 domain, Ci2, and the
antifreeze protein, the number of sequences used in the analysis are 20�300,
35�889, and 23�723, respectively. The first of the two numbers is that of the
natural sequences; the second is of the designed sequences.
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94.6% for BPTI; ref. 33) the much more costly Poisson Boltzman
(PB) calculations (35), increasingly regarded as a standard for
evaluating free energies in protein conformational searches and
protein–ligand interactions (36).

Using a modified free energy, which incorporates ACE, to simply
re-rank the sequences computed by DESIGNER for several of the
folds analyzed here did, however, not result in a significant change
in the surface amino acid composition of the highest-ranking
sequences. Low energy sequences were still significantly non-native
(30% identity to the native sequence, on average) and had similar
proportions of Arg and Gln residues in surface positions. Moreover,
a typical result, obtained for the SH3 domain, was that with ACE, the
native sequence ranked even lower on the energy scale (160.7
kcal�mol above the minimum) than with the simple surface area-
dependent term (46.5 kcal�mol; see Table 8, which is published as
supporting information on the PNAS web site).

One cannot rule out that other approximations, such as the crude
model used for the unfolded or reference state, may be at fault. It
is difficult to ignore, however, that features of the designed
sequences—namely, the larger proportion of positively charged
residues (Arg in particular) and the increased number of H bonds—
exhibit interesting parallels with those of proteins from organisms
growing at very high temperatures (80–97°C; hyperthermophiles).

The amino acid composition of proteins from 7 complete hy-
perthermophile genomes was recently compared with that of 22
mesophiles (37). This study showed that the hyperthermophiles
display an excess of Lys, Arg, and Glu amino acids relative to their
mesophilic counterparts, suggesting an increased formation of
charge–charge interactions in their proteins. Interestingly, Gln and
Asn residues, whose proportion also increases in our designed
sequences, are much less frequent in hyperthermophiles. The latter
finding, however, seems to be due to a mechanism that these
organisms have evolved against the synthesis of these temperature-
sensitive amino acids (37).

In another recent study, the cold-shock protein from a mesophile
(Bacillus subtilis) was stabilized to a similar degree as a thermophilic
variant from Bacillus caldolyticus by mutating only two Glu residues
at positions 3 and 66 to Arg and Leu, respectively. The sequences
designed here, using templates from the corresponding organisms,
never contain Glu amino acids at the two positions, but often

contain Gln and sometimes Arg (in position 66), together with
numerous substitutions elsewhere.

Hence, a reasonable interpretation of our results may be that in
natural sequences, amino acids in surface positions have not been
optimized for protein stability, but selected primarily for functional
reasons. This interpretation is very much in line with the recent
proposal that amino acids directly involved in ligand recognition or
catalysis can often be identified in a protein 3D structure as surface
residues located in a particularly destabilizing environment (38).

This may imply that in general, evolution has compromised less
on stability in favor of other requirements in core residues, whereas
for surface residues the compromises that were made with regard
to stability may be more substantial than has hitherto been realized.

This might explain at least in part why proteins tend to be so large
in comparison with the size of their business portions. A large core
in proteins, whose sequence would be selected for optimizing the
folding free energy, would allow more flexibility in the functional
adaptation process in surface positions. In particular, it would allow
these positions to tolerate a few particularly destabilizing residue
constellations that may be required for function, or a larger number
of mildly destabilizing residue constellations.

Finally, our findings on the significant rate of native sequence
retrieval, using the designed sequence profiles, bodes well for the
application of these profiles to fold recognition. In addition, the
conclusions reached on the significant influence of functional
requirements on surface residues suggest that recognition of dis-
tantly related proteins with the same fold but different functions
might be improved by down-weighting the influence of these
residues in the scoring scheme.

Although, clearly, further analyses using both theoretical and
experimental approaches are needed to verify our findings, we
believe that that they offer new insights into the sequence–structure
relations in proteins.
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