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A major focus of genome research has been to decipher the
cis-regulatory code that governs complex transcriptional regula-
tion. We report a computational approach for identifying con-
served regulatory motifs of an organism directly from whole
genome sequences of several related species without reliance on
additional information. We first construct phylogenetic profiles for
each promoter, then use a BLAST-like algorithm to efficiently search
through the entire profile space of all of the promoters in the
genome to identify conserved motifs and the promoters that
contain them. Statistical significance is estimated by modified
Karlin–Altschul statistics. We applied this approach to the analysis
of 3,524 Saccharomyces cerevisiae promoters and identified a
highly organized regulatory network involving 3,315 promoters
and 296 motifs. This network includes nearly all of the currently
known motifs and covers >90% of known transcription factor
binding sites. Most of the predicted coregulated gene clusters in
the network have additional supporting evidence. Theoretical
analysis suggests that our algorithm should be applicable to much
larger genomes, such as the human genome, without reaching its
statistical limitation.

comparative genomics � motif discovery � regulatory network

Deciphering the cis-regulatory network of an organism is a
major challenge in molecular and computational biology

because regulatory elements are usually short, degenerate, and
hidden in very long sequences. For over 15 years, many computa-
tional algorithms have been developed to identify sequence motifs
that constitute regulatory sites. Most earlier algorithms explore a
small sequence space representing a set of coregulated promoters
to identify overrepresented sequence elements (1–4). A more
recent complementary approach explores phylogenetic footprints
in orthologous sequences to identify sequence elements under
selective pressure (5). Most recently, algorithms that integrate
phylogenetic and coregulation data have significantly improved the
ability to discern regulatory sites from genomic sequences (6–9).
These algorithms, along with experimental data culled from ge-
nome sequencing, gene ontology, expression profiling, and in vivo
and in vitro protein–DNA binding assays, have become the driving
force to identify key sequence motifs in the transcriptional regula-
tory networks of several organisms (10–12). Such a strategy of
studying regulatory networks relies on finding regulatory elements
for a small group of functionally related genes before assembling
the entire network, with experimental evidence providing the gene
sets and computational algorithms inferring with the regulatory
sites. That strategy depends highly on the experiments, so limita-
tions in experiments are propagated to the computational methods
that infer motifs from the data. This limitation can be overcome by
systematically analyzing sequences from multiple species at the
whole-genome level without preassumption of gene coregulation
(13–16). However, conventional motif-finding algorithms reach
their statistical limitation for problems of such complexity. Only the
most significant patterns are identified, with weak signals lost
because they cannot be distinguished from random patterns (17).

We present a highly sensitive computational approach, PHYLO-
NET, that systematically identifies phylogenetically conserved motifs
by analyzing all of the promoter sequences of several related

genomes and defines a network of regulatory sites for the organism.
By comparing promoters using phylogenetic profiles (multiple
sequence alignments of orthologous promoters) rather than indi-
vidual sequences, together with the application of modified Karlin–
Altschul statistics, we can readily distinguish biologically relevant
motifs from background noise and have greatly improved the
theoretical limitation for motif discovery. When applied to Sac-
charomyces cerevisiae promoters with Saccharomyces mikatae, Sac-
charomyces kudriavzevii, and Saccharomyces bayanus sequences as
references (13), PHYLONET identified 296 statistically significant
motifs with a sensitivity of �90% for known transcription factor
(TF) binding sites. The specificity of the predictions appears very
high because most predicted gene clusters have additional support-
ing evidence, such as enrichment for a specific function, in vivo
binding by a known TF, and�or similar expression patterns. The
predicted regulatory network overlaps significantly with our current
understanding of gene regulation in yeast and predicts the existence
of additional regulatory modules that await experimental tests.

Software for academic users is available from the authors upon
request.

Methods
We developed a framework to identify conserved regulatory motifs
and their networks from genome sequences of related species. The
architecture and theoretical developments are described here,
whereas some details of the algorithm components are provided in
Supporting Appendix, which is published as supporting information
on the PNAS web site. Briefly, the algorithm enables ‘‘motif-BLAST’’
by integrating comparative genomics information and regulatory
network topology and exploring a phylogenetic profile space. Each
promoter is represented by its phylogenetic profiles and queried
against a database of phylogenetic profiles of all promoters in a
genome. Statistical significance of motifs is determined by Karlin–
Alschul statistics that are modified for profile searches. The motifs
and regulatory networks discovered are evaluated with experimen-
tal evidence of gene regulation.

PHYLONET Algorithm. The goal of a motif-finding algorithm is to
discover subtle similarities among sequences and align them with
defined boundaries. In principle, this similarity search is no
different from BLAST (18) but in practice is much harder because
motifs are short and the signal is much weaker than the homol-
ogy sought for by BLAST. PHYLONET takes advantage of two key
properties of regulatory systems to increase the signal: phylo-
genetic conservation and network topology. The architecture of
PHYLONET is similar to BLAST (Fig. 1) with sequence data divided
into query (promoter of interest) and database (all promoters of
a genome). Each promoter has several orthologous sequences as
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reference. Phylogenetic footprinting for each promoter gener-
ates multiple sequence alignments that are encoded as profiles.
The choice of algorithm for phylogenetic footprinting is f lexible;
we use WCONSENSUS (2) because it generates multiple ungapped
suboptimal alignments from which we can extensively explore
the space of phylogenetic profiles. Local alignments between the
query profiles and database profiles represent potential con-
served elements that are common between the query and
database promoters. Because a regulatory network is predicted
to have a high level topology in which each TF regulates multiple
downstream targets, a functional element in the query should be
found in multiple database promoters, and alignments between
query profiles and different database profiles should overlap or
cluster within the query promoter. Conversely, alignments that
occur by chance should be sparse and not cluster. Moreover, a
functional motif shared by several promoters should be identi-
fied when any of the promoters is queried, providing additional
confidence for the prediction. Overlapping profile alignments
are assembled into multiple profile alignments and reported as
putative motifs. The cluster of promoters that contribute to the
motif assembly is reported as coregulated genes. We expand the
Karlin–Altschul statistics for BLAST to address the statistical
significance of the phylogenetic profile alignments and align-
ment clusters.

Profile Space Modeling. Whereas DNA sequences are composed of
A, C, G, and T, individual positions are under functional constraints
that can be captured by representing them as profiles, distributions
of sequences from multiple sequence alignments. For a single
position, a profile is the distribution of four nucleotides represented
by frequency vectors ( fA, fC, fG, and fT) or a count vector (nA, nC,
nG, and nT). Much information about evolutionary conservation
and nucleotide selectivity of a TF binding site can be incorporated
into profiles (19). Moreover, profile search and comparison almost
always guarantees better performance than sequence comparison
(20). Under this framework, the alphabet of DNA becomes single
position profiles: in principle, a continuous space. The difference
between this alphabet and the four-letter alphabet can be concep-
tually viewed in Fig. 2 A and B. Fig. 2A depicts a ‘‘sequence space’’
that contains the four disjointed points for each base. Fig. 2B
depicts a ‘‘profile space’’ of length 1, where each point represents
a profile position observed in some matrices in TRANSFAC (21). Just

as two sequences can be optimally aligned by using a scoring
function for aligned bases, we can optimally align two profiles by
using a scoring function for aligned profile positions. We use an
average log-likelihood ratio (ALLR) with a negative expected value
so that we can obtain optimal alignments with a Smith–Waterman
algorithm (7).

Because PHYLONET performs pairwise comparisons of all pro-
moters, an efficient search algorithm is needed. We established a
partition of the profile space and developed a BLAST-like algorithm
that has linear time and memory complexity. A proper partition of
the profile space can greatly reduce the complexity of the search

Fig. 1. PHYLONET architecture. Promoter sequences are represented as green lines, and promoters of related species are shown as gray lines. Multiple suboptimal
alignments of orthologous sequences are generated and encoded as phylogenetic profiles, represented as alignments in green parentheses. The red, aligned,
short bars in the query promoter alignments indicate conserved motifs. Query profiles and database profiles are compared to generate HSPs that are represented
by blue bars. The HSPs are ranked by ALLR scores and clustered according to their locations relative to the query. Clustered HSPs are assembled into profile
alignments, which are reported as the final motifs, and promoters form a gene cluster that contains the motif.

Fig. 2. Profile space partition. A DNA profile space can be considered a
four-dimensional space, with A, C, G, and T as the four axes. Here we depict
such a space in three dimensions by using a hollowed tetrahedron. The four
axes go from the center of the tetrahedron, which has coordinates (0, 0, 0, 0)
to the four vertices of the tetrahedron, which has one of the four coordinates
being 1 and the rest being 0. A profile that describes the base frequency
distribution ( fA, fC, fG, and fT) can be mapped to a point within the tetrahe-
dron, with restriction �i�A. . .T fi � 1. (A) A, C, G, and T are mapped to the four
vertices of the profile space, representing the alphabet that describes DNA
sequence. (B) PWMs are obtained from the TRANSFAC database, and all posi-
tions are converted to profiles of 1 bp and mapped to the profile space. Each
gray spot in the tetrahedron represents a unique profile. This space is in
principle continuous, with different density at different regions. Those points
represent the alphabet that describes DNA profiles. (C) The profile space is
partitioned into 15 subprofile spaces according to the text. Each subprofile
space is labeled with a different color. The partitions represent the reduced
alphabet that describes DNA profiles.
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while maintaining the expressive power of a profile, resulting in
optimal performance in motif discovery (22). Based on the simi-
larities among all profiles, we partitioned the profile space into 15
subspaces by supervised learning (Supporting Appendix). For each
subspace we elect a deputy profile and a consensus letter based on
the weighted sum of all profiles in the subspace. This partition
coincides with common degenerate DNA representations, but the
actual boundaries are optimized based on all pairwise profile
comparisons (Supporting Appendix). Two close profiles on two sides
of a boundary will have a slightly reduced approximate ALLR
score, but the loss in sensitivity is very small (see Results). Fig. 2C
color-codes the partition of the profile space and defines the
consensus letter of each subspace. The new alphabet of 15 letters
(A, C, G, T, a, c, g, t, W, S, R, Y, M, K, and N) replaces the original
DNA sequences with additional conservation information. Based
on the weighted similarity measurements by the ALLR statistic
among profiles of any two subspaces, we constructed a substitution
scoring matrix (Table 1, which is published as supporting informa-
tion on the PNAS web site). The ALLR matrix is a log-odds scoring
system that satisfies the restrictions needed to apply Karlin–
Altschul statistics (23). Therefore, we can provide precise numer-
ical formulae for assessing the statistical significance of scores of
local profile alignments.

Here we reveal two additional properties of the ALLR scoring
matrix as a log-odds matrix. First, we back-calculated the target
profile frequencies and estimated the optimal application range
(Supporting Appendix). For primary DNA sequence, this range
corresponds to �70–90% conservation (i.e., �70–90% identity in
an alignment column), which coincides with the degenerate level of
a typical TF motif. Second, we calculated the entropy of the matrix,
which is 3.26 bits of information per aligned position (Supporting
Appendix). In contrast, the BLAST default scoring matrix (match �5,
mismatch �4) corresponds to 0.52 bits per base pair. Obtaining the
30 bits of information that are needed for a significant match among
all yeast promoters requires a DNA alignment 56 bp on average,
whereas it requires a profile alignment of 9 bp, making ‘‘motif
BLAST’’ effective and efficient (Supporting Appendix).

Expansion of Karlin–Altschul Statistics. The distribution of ungapped
local alignment scores of random profiles can be described by an
extreme-value distribution (2, 24). For the comparison of random
profiles of sufficient lengths M and N, the number of local align-
ments with score of at least S is approximately Poisson-distributed,
with mean (23, 25)

E�S� � KMNe��S. [1]

� and K can be easily calculated (Supporting Appendix). An
optimal alignment score S	 approximately follows an extreme-
value distribution, with

P�S	 � S� � 1 � exp��KMNe��S� . [2]

Eqs. 1 and 2 follow the Karlin–Altschul method for assessing the
statistical significance of molecular sequence features, except
expanded for profile sequence features. This framework allows
us to estimate significance of profile alignments and calculate a
P value for the final motif (Supporting Appendix) (W. Gish,
personal communication).

Motif BLAST, Clustering, and Assembly. Replacing DNA sequences
with deputy profiles allows us to develop an efficient BLAST-like
search engine. Subprofiles of a given length of the query profile
serve as seeds of a designed format (Supporting Appendix). Neigh-
borhood profiles, defined as any profile with an alignment score
greater than a threshold when compared with any seed, are
generated by using a branch and bound algorithm (Supporting
Appendix). Seed profiles and neighborhood profiles are hashed, and

the database profiles are scanned linearly to obtain word hits, i.e.,
subprofiles that are identical to any seed or neighborhood profile.
A word hit is extended to a high-scoring pair (HSP), which is a pair
of aligned subprofiles of the query and a database promoter and
indicates a putative motif. A P value is calculated for each HSP
based on its ALLR score. Although deputy profiles are used in the
BLAST-like search to locate regions with a high promise of gener-
ating an HSP, the final ALLR scores are based on realigned real
sequences. This design allows a profile comparison to be 1,000 times
faster than a pairwise comparison of all profiles by dynamic
programming, with a minimum loss of sensitivity.

A network topology predicts that most motifs regulate a number
of promoters. Therefore, multiple HSPs should be identified clus-
tering around a true regulatory element, whereas spurious HSPs
should have a much lower chance of overlapping. Clustering of
HSPs further increases the statistical power to distinguish a real
motif from system noise. Based on the positional relationship
among distinct HSPs, we identified mutually overlapping HSPs by
employing a maximum clique-finding algorithm from graph theory
(26). Each HSP cluster is converted to a motif whose boundaries are
determined by a greedy algorithm that maximizes the total ALLR
scores, obtaining the motif length automatically. The P value of the
motif is estimated based on the Poisson approximation of observing
a fixed number of independent events that have an upper bound P
value (Supporting Appendix). Each predicted motif inherently links
a group of promoters (presumably coregulated) that share this
motif.

To provide an empirical estimate of statistical significance and to
further validate our theory, we shuffled the profiles of the query
and the database and maintained the primary sequence identity
levels, lengths, and conservation blocks. This shuffling process
approximates a random profile model and estimates background
parameters.

Biological Function Enrichment of Predicted Gene Clusters. To deter-
mine functional enrichment, we obtained yeast gene annotation
from the Gene Ontology Database. We calculated the probability
of enrichment of a function within a predicted cluster by using the
cumulative hypergeometric distribution (27). To determine enrich-
ment for targets of certain TFs, we obtained genome-wide location
data from Harbison et al. (10) and calculated P values for overlap-
ping clusters. To determine the enrichment of coexpressed genes,
we obtained expression data for the following conditions: cell cycle
(28), meiosis (29), methyl methanesulfonate-induced damage (30),
sporulation (31), stress response (32), DNA damage (33), phero-
mone response (34), and mitochondrial dysfunction (35). For each
cluster, we calculated the expression coherence and the P value
according to Cliften et al. (13). The P values are not corrected for
multiple hypothesis testing.

Results
Predicting Yeast Motifs at the Whole-Genome Level. To determine
the sensitivity and power of PHYLONET to identify regulatory motifs
and build regulatory networks, we ran it on yeast sequence data. We
obtained 3,524 S. cerevisiae intergenic sequences with orthologous
counterparts in S. mikatae, S. kudriavzevii, and S. bayanus (13) to
construct a database. Each sequence group was queried, and up to
the 10 most significant motifs were further analyzed.

The Met-14 promoter provides an example of the advantage of
using phylogenetic profiles in combination with our statistical
framework. Met-14 (YKL001C) encodes adenylylsulfate kinase
involved in sulfate assimilation and sulfur amino acid biosynthesis
and is regulated by a protein complex of Cbf1, Met-4, and Met-28.
Cbf1, a basic helix–loop–helix TF, has a documented site (NRT-
CACRTGA, TRANSFAC). Met-2, which encodes L-homoserine-O-
acetyltransferase, is also involved in sulfur amino acid biosynthesis
and is coregulated by the same complex. Met-14 and Met-2
promoters should share a regulatory motif, but no such element is
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immediately visible in the two sequences, as illustrated by a dot plot,
with stretches of similarity between them appearing as diagonal
strings of dots (Fig. 3A). Given a proper scoring scheme for match
and mismatch, such diagonals or ungapped local alignments can be
identified. We show local alignments of the forward strands that are
�6 bp as red lines in Fig. 3B, most of which clearly occur by chance.
The sheer number of alignments highlights the difficulty in distin-
guishing a functional motif from the background. The longest
alignment of 37 bp merely represents two AT-rich regions and does
not contain the correct site. Thus, ranking alignments by their
length�score can be misleading, which is true even if we apply
common phylogenetic shadowing procedures. In Fig. 3B, the blue
dotted lines define conserved regions identified by comparing
orthologous promoters from four species. The search space is
reduced; but the number of alignments is still too large to accurately
identify the motif.

Our approach gains its power by comparison of phylogenetic
profiles that greatly reduces background noise and enables us to
identify real signals. Fig. 3C shows the local alignments from a
PHYLONET analysis of the profiles of Met-14 and Met-2, with P 

0.1 as red lines. Only five alignments satisfy this criterion; the best
(P � 1.75 � 10�5) represents site TTTCACGTGA of the Met-14
promoter. This site agrees with Cbf1’s motif and is statistically
significant.

PHYLONET compares the Met-14 promoter to other promoters in
a similar fashion, and HSPs of profile alignments are clustered and
assembled. As expected, these HSPs show a clustering pattern (Fig.
5A, which is published as supporting information on the PNAS web
site), indicating a highly organized network topology, unlike scat-
tered HSPs resulting from comparing shuffled profiles (Fig. 5B).
The best motif in Met-14 exhibits the consensus CACGTGAtca,
with a P value of 6.76 � 10�49 and is similar to the Cbf1 motif.
PHYLONET identifies 124 promoters sharing this element. This gene
cluster overlaps known targets of Cbf1 (10) with a P value of 5.95 �
10�23. The functional annotations of these genes are enriched for
sulfate assimilation (P 
 1.87 � 10�9) and methionine metabolism
(P 
 8.85 � 10�6). In contrast, the best motif identified by a
shuffled run has a P value of 0.06, and the target genes display no
significant overlap with genome-wide location data or enrichment
for any specific function. Thus, using only promoter sequences
PHYLONET can pinpoint known TF binding sites and identify a large
cohort of putatively coregulated genes, many with similar functional
properties.

Next we summarize the result of applying PHYLONET to 3,524
promoters. For each query, we also ran shuffling three times to

provide a background control. With the cut-off P value set at 1.0 �
10�5, we were able to predict at least one motif for 3,315 (94%) of
the 3,524 queries. The log-transformed P value of the best motif of
each promoter is plotted against the log-transformed P value of the
best motif among three shuffled runs (Fig. 4A). With very few
exceptions, real promoters generate many more statistically signif-
icant motifs than shuffled promoters. In addition, motifs from
shuffled promoters nearly always have P values close to 1. These
data directly validate our statistical framework, because in random
profile space without a network structure we find only what is
expected by chance.

Our algorithm is naturally reciprocal, because querying any
promoter from a cluster of coregulated promoters usually recovers
the same motif and gene cluster. Thus, we use this information to
consolidate predictions and require that the same motif be pre-
dicted using every promoter from its final regulated cluster. Pre-
dicted motifs identify 296 nonredundant motifs�clusters and define
a total of 32,026 motif–target relationships (Table 2, which is
published as supporting information on the PNAS web site).
Interestingly, the sizes of these 296 clusters closely fit the power-law
distribution, which reveals the scale-free nature of the regulatory
network we discovered without prior knowledge of gene coregu-
lation (Fig. 6, which is published as supporting information on the
PNAS web site) and suggests that, at least based on size distribution,
the predicted network is nearly complete.

Validation of Predicted Motifs and Gene Clusters. We first deter-
mined the number of known TF motifs we had identified. We
combined position-specific weight matrices (PWMs) of yeast TFs
from TRANSFAC and carefully trained matrices from Harbison et al.
(10) and obtained a total of 167 PWMs for 136 TFs (some TFs have
multiple sources). Among the 167 PWMs, 153 (corresponding to
125 TFs) show significant similarity to one of 111 of the 296 motifs
predicted by PHYLONET (Table 3, which is published as supporting
information on the PNAS web site). Thus, we identified �90% of
the known TF PWMs.

The 185 PHYLONET motifs that do not identify known motifs may
represent TFs whose specificities have not been determined or
previously uncharacterized regulatory motifs. To evaluate the bi-
ological significance of previously uncharacterized motifs, we ran
the gene clusters defined by each through the following three tests.
First, we asked whether the gene cluster is enriched for a biological
function. Second, we determined whether our gene clusters exhibit
significant overlap with targets of TFs identified by genome-wide
location analysis. Third, we asked whether genes in a predicted

Fig. 3. Power of profile comparison. Compared with sequence comparisons, profile comparison greatly reduces system noise when phylogenetic data are
incorporated, which is especially helpful for finding weak similarities. (A) A dot plot between the Met-14 promoter and Met-2 promoter. A gray dot indicates
an identical base. (B) Short sequence similarities between the Met-14 promoter and Met-2 promoter. Each red line in the diagonal represents a local alignment
between the two that is �6 bp. The region between the blue dotted lines in Met-14 and Met-2 promoters are conserved across four yeast species. (C) Comparison
between phylogenetic profiles of the Met-14 promoter and Met-2 promoter. Each red line in the diagonal represents a local alignment between the two profiles
that has a P value of 
0.1. For the most statistically significant alignment, the corresponding site in the Met-14 promoter is shown.
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cluster exhibit similar expression patterns. Using a P value of

1.0 � 10�4 as a stringency cutoff, we determined that of the 185
previously uncharacterized clusters 45 are enriched for at least one
biological function, 22 display significant overlap with targets of
individual TFs, and 35 exhibit similar expression patterns in at least
one experimental condition (Table 4, which is published as sup-
porting information on the PNAS web site).

Taken together, this evidence supports the functional signifi-
cance of 87 of the 185 motif–gene cluster relationships. We believe
that this is an underestimation of the specificity, because the
experimental data are limited. We calculated the specificity value
by using different P value cutoffs for each type of biological
information (Fig. 7A, which is published as supporting information

on the PNAS web site). We also calculated similar statistics for the
296 motif–gene clusters (Fig. 7B). Interestingly, the specificities
calculated with or without known motifs are very similar: �50%
(47% for predictions and 54% for known motifs at P 
 1.0 � 10�4)
of the motif–gene clusters have at least one type of support (Fig.
7C), indicating that the predicted motifs have levels of experimental
support similar to the known ones (Table 4).

Although identification of the motif of a TF is difficult, the
identification of physiological targets of the TF is equally challeng-
ing. The power of PHYLONET derives from its ability to identify
motifs and from its ability to identify the most likely targets of these
motifs. The following example illustrates the quality of the PHYLO-
NET motif–targets prediction and its relationship to conventional
computational and experimental approaches. Motif YDR097C.1
has consensus ACGCGTC, and PHYLONET identifies 142 promoters
with this element. This motif matches the MCB box used by TF
Mbp1 to regulate cell cycle. Simply taking the PWM and scanning
the genome reveals 262 promoters that contain high-scoring sites.
Harbison et al. (10) identified 85 promoters bound by Mbp1 in rich
media. So we have three sets of potential Mbp1 targets: PHYLONET
prediction (set A); genome-wide scan prediction, which represents
a conventional computational approach (set B); and genome-wide
location assay prediction, which represents an experimental ap-
proach (set C). To obtain a measure of the relative accuracy of the
three approaches, we first asked how well each approach enriched
for genes involved in cell cycle and DNA processing, the known
function of Mbp1. In this test, all three sets are enriched for this
function but to different degrees. Set A enrichment (P 
 4.56
�10�12) is much more statistically significant than set B (P 
 4.14 �
10�9) or set C (P 
 8.07 � 10�6) (Fig. 8A, which is published as
supporting information on the PNAS web site). Analysis of the
expression coherence of genes in each group through the cell cycle
also identified set A as the most robust prediction with an expres-
sion coherence value of 0.2311 and a P value of 3.92 � 10�5 relative
to set B (expression coherence 0.1579, P 
 0.0077) and set C
(expression coherence 0.1414, P 
 0.022) (Fig. 8 B–D).

Another example is discussed in Supporting Appendix (see also
Fig. 9, which is published as supporting information on the PNAS
web site). PHYLONET’s superior performance over the computa-
tional scan and genome-wide location analysis in finding targets of
regulatory motifs holds the potential of associating functions and
TFs to predicted motifs when experimental data are integrated.

Improvement Over Previous Efforts. As a final test we asked how
much improvement we have achieved compared with two previous
studies that identified regulatory motifs for yeast at the whole-
genome level by using comparative analyses. From the analysis of
four to six yeast genomes Kellis et al. (14) and Cliften et al. (13)
predicted 71 and 92 regulatory motifs, respectively. Both collections
identified many known TF motifs as well as many predicted motifs.
However, the two collections overlap by 
50%, demonstrating that
neither collection reached saturation: 30 (42%) motifs in the Kellis
set match a motif in the Cliften set, whereas 43 (47%) in the Cliften
set match the Kellis prediction. Despite using the sequences from
only four yeast species from Cliften et al., PHYLONET not only
identified over twice as many predictions as either previous study,
it also identified 86% (n � 61) of the Kellis motifs and 92% (n �
85) of the Cliften motifs, including all motifs supported by both
studies. These comparisons highlight PHYLONET’s ability to extract
substantially more information from comparative analysis than
previous methods (Table 5, which is published as supporting
information on the PNAS web site).

Discussion
We have developed an algorithm for identifying conserved regu-
latory motifs of an organism based on genome sequences of related
species, without additional knowledge of coregulation. When ap-
plied to yeast genomes, our algorithm predicted 296 regulatory

Fig. 4. Statistical power of PHYLONET. (A) Comparing motifs predicted based
on real promoters versus shuffled promoters. For 3,524 yeast promoters,
PHYLONET was run once with default parameters and three times with the
‘‘shuffling’’ mode. The P values of the best motifs predicted based on real
promoters are plotted against P values of the best motif of three independent
shuffling runs. All P values are converted to �log10(p). The smallest number in
our programming system is 1.0 � 10�308; therefore, any P value smaller than
that is recorded as 1.0 � 10�308. (B) A motif contains an arbitrary amount of
information, such as the degeneracy level, length, and number of copies in a
genome. The probability of finding a motif with a particular amount of
information varies when the search space changes. The bigger the search
space is, the less statistically significant a motif is. We estimated for yeast
(6,000 genes, 1-kb promoter), worm (19,000 genes, 2-kb promoter), and
human (30,000 genes, 10-kb promoter) the significance level of discovering a
motif of 10 or 12 bp with various numbers of copies in the genome. The x axis
is the number of copies, and the y axis is the significance level. The assumptions
are (i) that the motifs have on average 20–30% degeneracy and (ii) that it is
possible to obtain reference genomes for the genome of interest with phy-
logenetic branch lengths similar to the yeast genomes in this study.
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motifs and 32,026 motif–target relationships. Our predicted motifs
cover �90% of known yeast TF binding motifs and motifs predicted
by other means using similar data. In addition, our data also include
a large number of predicted regulatory relationships supported by
experimental data to essentially the same degree as the known
relationships.

Our validation tests provide strong support that the PHYLONET
predictions contain a wealth of biologically significant information
that can be used in a multitude of ways to explore distinct issues of
gene regulation. First, �100 predicted motifs can be confidently
assigned to known TFs, allowing us to assemble a regulatory
network. Second, previously uncharacterized motifs identify gene
clusters enriched for specific biological functions, providing a
powerful tool to associate functions and TFs to the predicted motifs.
Third, motifs and gene clusters that do not link to known functions
hold the promise to provide insight into gene regulation: predicted
motifs likely identify the binding sites of poorly characterized TFs,
and previously unknown gene clusters may control poorly studied
cellular functions or respond to poorly studied environmental
perturbation. Finally, interaction between TFs is an important
mode of regulation. Such data can be readily deduced from our
predictions: among 43,660 possible pairs between our predicted 296
gene clusters, 2,185 pairs overlap significantly (P 
 1.0 � 10�4),
each of which likely identifies a set of genes controlled by two TFs
acting in concert. In support of this conclusion, gene annotation
data indicate that 454 of these clusters are enriched for a specific
function, whereas chromatin immunoprecipitation data identify
248 enriched for specific TF targets. In addition, expression pro-
filing data reveal 398 clusters with coherent expression pattern.

Although the predictions clearly require experimental tests, they
highlight the utility of PHYLONET to synergize with traditional
experimental approaches to decipher gene regulatory networks on
a genome-wide level. In the future, it will be exciting to see the

extent to which experimental approaches use computational-based
whole-genome predictions of regulatory interactions to provide
definitive links into the known regulatory cascade and insight into
the integration of distinct regulatory modules.

Our study also has a profound effect on the statistical limitation
on solving motif-finding problems. The presented data reveal that,
by exploring phylogenetic data and network topology, we can
greatly reduce the system noise and strengthen the biological signals
in a large sequence space. It is important to ask whether the
resolving power will transfer from yeast to genomes of worm, fly,
and human with their significantly greater size and regulatory
complexity. Because the motif-finding process is not limited by
preassumptions of gene regulation, our statistical framework allows
us to estimate the power as it relates to increasing genome size.
Assuming the presence of reference genomes with a similar phy-
logenetic relationship as the yeast genomes here (36), we estimated
the amount of information a motif must contain (e.g., width,
degeneracy, or number of occurrences in the genome) to be
discovered at a certain statistical stringency. In Fig. 4B, we plotted
such estimations for discovering motifs of 10 and 12 bp, with typical
levels of degeneracy, in genomes of yeast, worm, and human. The
analysis suggests that we should be able to identify a human motif
of 12 bp at a significance level of P 
1.0 � 10�10 if the motif has
at least eight conserved copies in the genome. Therefore, we expect
that our algorithm should be applicable to much larger genomes
without encountering the statistical limitations of current methods.
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