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The integration of data from multiple global assays is essential to
understanding dynamic spatiotemporal interactions within cells. In
a companion paper, we reported a data integration methodology,
designated Pointillist, that can handle multiple data types from
technologies with different noise characteristics. Here we demon-
strate its application to the integration of 18 data sets relating to
galactose utilization in yeast. These data include global changes in
mRNA and protein abundance, genome-wide protein–DNA inter-
action data, database information, and computational predictions
of protein–DNA and protein–protein interactions. We divided the
integration task to determine three network components: key
system elements (genes and proteins), protein–protein interac-
tions, and protein–DNA interactions. Results indicate that the
reconstructed network efficiently focuses on and recapitulates the
known biology of galactose utilization. It also provided new
insights, some of which were verified experimentally. The meth-
odology described here, addresses a critical need across all do-
mains of molecular and cell biology, to effectively integrate large
and disparate data sets.
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Systems biology aims to understand the dynamic behavior of
molecular networks in the context of the global cell, organ

and organism state by exploiting (i) high-throughput interroga-
tion technologies; (ii) increasingly comprehensive databases of
biomolecules and their interactions; and (iii) computational
predictions of molecular function and interaction (Fig. 1). Use
of each of these sources of information has its own drawbacks
(1). For example, many current global assays of mRNA and
protein abundance�state are systematically biased toward more
abundant species and measure only the average content of many
thousands of cells. Global assays are also inherently noisy and
include significant numbers of false positives and false negatives.
Databases tend to combine data from different cell types,
different strains of an organism, and different experimental
conditions. Moreover, well studied molecules and pathways are
systematically overrepresented in databases. As a result, inte-
gration of database information with a particular set of exper-
imental data can introduce systematic biases into the model-
building process. Likewise, computer predictions tend to be
more accurate for members of well characterized molecular
families. Therefore, there is a pressing need for data integration
methodologies that effectively address both random noise and
systematic bias in data.

In a companion paper (2), we present a data integration
methodology and its software implementation to address these
challenges. To present the methodology clearly, we used only
simulated data in that paper. Here, we present the application of
our methodology (named Pointillist) to 18 types of biological
data, which we integrate to arrive at a detailed and comprehen-
sive picture of galactose utilization in yeast. The data we
integrate include information from several high-throughput
assays, public databases, and computational predictions. They
pertain to gene expression, protein abundance, protein–protein

(PP) interactions, and protein–DNA (PD) interactions. As such,
our data sources provide a comprehensive test of the efficacy of
Pointillist and our conclusions may be applicable to studies of
other molecular biological systems.

The yeast galactose utilization pathway has been studied
extensively and intensively for �40 years, and is one of the best
understood eukaryotic molecular systems (3). As such, it pro-
vides us with an ideal opportunity to evaluate the extent to which
the network model we arrive at captures all aspects of the system
of interest. We show that Pointillist not only captures many
known features of the system, but it also provides additional
insights, some of which we confirmed experimentally.

Materials and Methods
Supporting Information. For further details, see Supporting Text,
Figs. 5–11, and Tables 1–6, which are published as supporting
information on the PNAS web site.

Network Analysis. Using a subnetwork extraction algorithm (see
Supporting Text for details), we constructed a parsimonious
subnetwork, which includes only those PP and PD interactions
relevant to the affected genes, rather than the whole PP and PD
interactome. This algorithm selects only the nodes�edges that
provide closed connection paths to the nodes for the affected
genes (Fig. 9 A and B). The number of intermediate nodes is
selected with an iterative algorithm that searches for the least
number of intermediate nodes that result in a maximally con-
nected network. However, the structure of this subnetwork is still
too complicated to allow visual exploration (Fig. 10A). To
facilitate exploration, we then clustered the nodes in the network
into a set of functional modules. To incorporate known func-
tional information into the network, we first inserted an addi-
tional edge between any two proteins sharing the same GO
Biological Process category (Fig. 10B). We then used the Cyto-
scape BioModules tool (4) to identify modules in the network
(Fig. 11). In this study, BioModules generated 20 functional
modules (Table 4). To focus on galactose-mediated interactions
between metabolic pathways, our network kept only nine mod-
ules (Table 5) that have metabolism-related functions (see Fig.
3 for the resulting network).

Yeast Strains. Yeast strains were derived from BY4741 (MATA
his3�1 leu2�0 met15�0 ura3�0) or BY4742 (MAT� his3�1
leu2�0 lys2�0 ura3�0). Genes were genomically tagged with the
sequence encoding the IgG binding domains of Staphylococcus
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aureus protein A, or 13 copies of the c-myc epitope (from
pFA6–13MYC (5) by homologous recombination using a pre-
viously described PCR-based integrative transformation proce-
dure into BY4741 or BY4742 (6). Strains with no apparent
growth defects and containing appropriately sized fusion pro-
teins were used. HXT7-TAP and MTH1-TAP strains were ob-
tained from the yeast TAP-fusion library (Open Biosystems,
Huntsville, AL). GAL4-MYC has been described (7).

Microarray Experiments. For the time course study of galactose
induction, wild-type cells (see Yeast Strains) were grown in
YEPR (1% yeast extract�2% peptone�2% raffinose) to an
OD600 of 0.6. Cells were collected for ‘‘time 0’’ immediately
before the addition of prewarmed YEP containing sufficient
galactose for a final concentration of 2%. Cells were then
collected at 5, 10, and 30 min and 1, 2, 4, 6, and 9 h. For all
microarray expression studies, total RNA was first isolated by
using the hot acid phenol method (8), followed by the extraction
of poly(A)� RNA using the Poly(A) Pure kits (Ambion). Cy3-
and Cy5-labeled cDNAs were generated by a reverse transcrip-
tion reaction as described (3). Microarray hybridization was
performed exactly as described (9) with only one modification:
the images were processed by using the microarray spotfinding
and quantitation software ANALYZER DG (MolecularWare, Cam-
bridge, MA).

Chromatin Immunoprecipitation (IP). Conventional chromatin IP
experiments were performed as described (7) except that PCRs
were of 15 �l and contained 0.2 �l of either IP-enriched DNA
or unenriched DNA; 5 pmol of each primer; 0.1 mM each of
dATP, dGTP, dCTP, and dTTP; and 0.7 unit of TaqDNA
polymerase (Fermentas, Hanover, MD). Reactions were 26
cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 30 s. PCR
products were separated on 7% polyacrylamide gels and visu-
alized with ethidium bromide.

Hxt7p-TAP and Gal2p-pA Abundance Assay. Tagged strains were
grown to an OD600 of �0.6 in YEPR. The cells were harvested
and transferred to YEP containing 0.5% glucose, 5% glucose,
3% glycerol, 3% ethanol, or 2% galactose and grown for the
indicated times. Cells were harvested, and whole cell protein
lysates were prepared. Equal amounts of protein from each of
the resulting lysates were separated by SDS�PAGE, transferred

to nitrocellulose membranes, and blocked with TBS containing
5% dried skim milk and 0.1% Tween 20. The protein A and TAP
moieties or Gsp1p were detected with affinity-purified rabbit
IgG (Cappel, Irvine, CA) or anti-Gsp1p, respectively, and
visualized with horseradish peroxidase-conjugated secondary
antibodies (anti-rabbit-HRP) and enhanced chemiluminescence
(ECL).

Results and Discussion
Application to the Galactose Utilization System in Yeast. The goal of
Pointillist is to integrate a variety of data sets, such as those
illustrated in Fig. 1, into a unified biochemical network. A
network is represented as a graph whose nodes are biomolecular
species (e.g., genes, mRNA, proteins, lipids, and metabolites),
and the edges connecting these nodes are the interactions among
the biomolecules. These edges can be directed (e.g., PD inter-
actions) or undirected (e.g., protein complex formation). A
cellular process such as cell fate specification or the cell cycle can
then be modeled and visualized as a series of interactions that
change the graph topology over time and include positive and
negative feedbacks. To demonstrate the utility and efficacy of
our methodology (Pointillist) (2), we integrated 18 types of
evidence, derived from 15 data sources, to reconstruct the well
studied galactose utilization network in Saccharomyces cerevisiae
(3). The data sources included four sets of galactose-specific
high-throughput experiments, seven computational interaction
prediction tools, and information culled from four curated
general-purpose databases, as described below. We grouped
these data into five distinct classes (see Fig. 1 for an overview)
and integrated each class of data separately using Pointillist.

Identification of Affected Genes by System Perturbations. We first
identified genes and proteins affected by two types of pertur-
bations, one environmental and one genetic: (i) carbon source
change from raffinose to galactose and (ii) deletion of known
galactose pathway genes. The available data included time-
course gene expression profiles from 5 min to 9 h after induction
(10), relative protein abundances 9 h after galactose addition (3),
and steady-state gene expression change in galactose after the
deletion of eight known galactose metabolism related genes [the
three regulatory genes GAL3, 4, and 80, and the structural genes
GAL1, 2, 6 (Lap3), 10, and 7].

Pointillist identified 69 affected genes from the integration of

Fig. 1. Data integration framework for network modeling. Five data integration problems are shown: Identification of genes affected by environmental and
genetic perturbations (A); PP interactions (B); PD interactions (C); domain-domain interactions (E); and TFBS predictions (F). The data sets used for network
modeling to study galactose utilization in yeast are presented for illustration purposes. The label for each box indicates the type of data used. The italic note
below the label indicates the statistical measure we used to calculate empirical P values (or significances) for each data set. GE, gene expression; PA, protein
abundance; KO, (gene) knockout; PP, protein–protein (interaction); PD, protein–DNA (interaction); TF, transcription factor; TFBS, transcription factor binding
site; w, wild type; gal, galactose; raf, raffinose; IP, immunopurification enriched; WCL, whole cell lysate enriched. (D) A set of network analysis tools that helps
us explore a complex network systematically. These tools allow us to build a subnetwork that includes PP and PD interactions (edges) pertinent to affected
genes�proteins (nodes) and given perturbations, and to identify clusters of proteins in the network (see text).
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these three types of evidence. Fig. 2A shows expression changes
of these 69 genes in response to galactose exposure and in
response to deletions of galactose pathway genes above (red,
decrease; green, increase; yellow, no change). Note that the
selected set is not limited to the simple case where all three
sources of data support each other (e.g., GAL1, 2, 7, and 10), but
also includes cases where the data are incomplete (e.g., GAL3
and GAL80, for which no protein data were available in our data
set) and contradictory (e.g., LAP3, for which the knock out data
suggest a strong role not supported by the time-course data, and
for which no protein abundance data are available).

Gene Ontology (GO) biological processes (11, 12) for the 69
genes suggest that both environmental and genetic perturbations
affect mostly metabolic genes. Fig. 3 shows metabolic reactions
whose activities are increased (green) and decreased (red) by
genes encoding proteins with metabolic roles. This network
suggests that cells exploit galactose availability by directing some
of the metabolic f lux from the Leloir pathway (3) to alcohol
synthesis (ADH6) via glycolysis, and to glycerol (GPP1�RHR2
and GPP2�HOR2), purine base (ADE4 and ADE5,7), and amino
acid syntheses (HIS1 and HIS4) via pentose phosphate pathways.
In contrast, several pathways seem to be down-regulated: gly-
cogen synthesis (GSY1 and GPH1), gluconeogenesis (GLK1),
the citrate cycle (PYC1 and SDH4), pyruvate metabolism
(ACH1), and fructose utilization (HXT3,4,6,7 and HXK1). These
results agree with those reported by Ostergaard et al. (13), who
measured metabolite amounts and performed Metabolic Flux
Analysis in galactose-limited conditions (Fig. 6B). The remain-
ing selected genes in our list perform general functions such as
transport (PHO84, AGP2, and DIP5), protein synthesis�
degradation (RPL34B and RPL31A; PRC1), protein folding

(SSE1 and HSP30), RNA processing�synthesis (NSR1), cell cycle
regulation (FAR1), and stress response (DDR48 and GCY1).

Using similar types of data, Ideker et al. (3) identified 997
genes by simply selecting genes altered in at least one experiment
(the union method). Our integration method has reduced the
number of candidate genes by an order of magnitude. All but
nine genes (LEU2, ECM2, RPA34, YOL084W, SHM1, YNL208W,
PRC1, YFL052W, and AGP2) in our list of 69 genes were
included among the 997 genes identified by Ideker et al. (3).
However, it is interesting to note that the significance values of
these nine genes are close to the cutoff threshold Ideker et al. (3)
used to select their 997 genes (see Supporting Text). Thus, our
methodology has selected an order of magnitude fewer genes.
Moreover, the nine genes selected by Pointillist on the basis of
all available evidence could not be identified on the basis of the
single significance measure used by Ideker et al. (3). Also, the
GO tree constructed by using our 69 genes is more focused on
metabolism than Ideker et al.’s 997 genes (see GO term fre-
quencies and P values for carbohydrate and galactose metabo-
lisms in Fig. 6C).

Determination of PP Interactome. PP interactions were identified
by integrating the following five types of data (Fig. 1B): (i) the
full set of PP interactions in DIP (14) and BIND (15), including
data from yeast two hybrid (16) and TAP-tag assays (17), as well
as paralog interaction analysis (18); (ii) the combined subcellular
localization data from SGD (GO cellular components) (11) and
GFP databases (19); (iii) gene expression correlations estimated
from �1,300 gene expression profiles from ExpressDB (http:��
salt2.med.harvard.edu�cgi-bin�ExpressDByeast�EXDStart)
with additions from our time-course and deletion gene expres-

Fig. 2. Integration results. (A) The final set of selected genes. The colors represent the increase (green), decrease (red), and no change (yellow) after two
perturbations (TC stands for time-course and see Fig. 1 legend for the other abbreviations). These selected genes show how metabolic fluxes are redistributed
to optimally use galactose from Leloir pathway mainly to alcohol synthesis via glycolysis (Figs. 3 and 6B). (B) Integration results for determination of PP
interactions. The detection methods used to identify PP interactions in DIP and the corresponding selection and removal rates by our integration method are
shown. Detection method abbreviations are S, small-scale experiments; M, multiple yeast two hybrid assays; R, paralog analysis. Our method selected 99.1%
(2,980) of 3,006 interactions detected by small-scale experiments (S), which are generally considered as true PP interactions in DIP (see text). (C) TFBS prediction
results for the upstream (putative regulatory) sequence of GAL2, which is reported to have five binding sites for Gal4p. The results for each search algorithm
are shown in a separate row. Green bars indicate the averaged score at each position, whereas magenta dots indicate P values from one-tailed t test. The
integrated overall P values are shown in the bottom row (magenta bars). The integration method predicted all reported Gal4p binding sites correctly (arrows),
and performed better than individual algorithms by effectively summarizing the supportive, complementary, or contradictory nature of the predictions (see
text).

17304 � www.pnas.org�cgi�doi�10.1073�pnas.0508649102 Hwang et al.



sion profiles; (iv) changes in gene expression levels due to gene
deletions, and (v) domain–domain (DD) interactions computa-
tionally predicted by MULTIPROSPECTOR (20) and INTERDOM
(21). MULTIPROSPECTOR computes the interfacial energy be-
tween two protein domains after determining the structures by
using threading. INTERDOM predicts DD interactions from or-
thologous and other known PP interactions stored in databases.
We used the Pfam database (22) to obtain the domains that each
yeast protein contains when mapping DD interactions to PP
interactions (see Supporting Text for the details of the estimation
of P values for each of the five data sets).

From these various sources, Pointillist identified 16,985 PP
interactions. Fig. 2B shows the numbers of PP interactions in
DIP that were selected or removed as false positives by our
integration method. It indicates several important points about
the integration method and its reliability. First, our method
selected 99.1% (2,980) of 3,006 interactions detected by small-
scale experiments (S), which are generally considered as true PP
interactions in DIP (18). Thus, our integration method indeed
identifies virtually all known PP interactions. Second, our
method rejected 92.9% of PP interactions detected by any single
yeast two-hybrid assay, 24% of PP interactions predicted by
paralog analysis (R), and 28.1% of PP interactions detected by
multiple yeast two-hybrid assays (M). Deane et al. (18) reported
a false positive rate of 22% for paralog analysis, which is close
to our rejection rate of 24%. On the other hand, our 28%
rejection rate for the intersection of multiple yeast two-hybrid
experiments is twice the previously described false positive rate
(18). In contrast, Pointillist selected 99.8% of PP interactions
detected by more than two different detection methods (MR,
SR, SM, and SMR; Fig. 2B). This finding suggests that inter-
section-based approaches to data integration, although having
an inherently high false negative rate, can produce data sets
virtually free of false positives when they integrate different
detection technologies, but not when integrating multiple data
sets from the same technology.

Determination of PD Interactome. We determined PD interactions
by integrating the following five types of data (Fig. 1C): (i)
chromatin IP-chip data for 113 transcription factors (TFs) in YPD
media (23), supplemented with Gal4p chromatin IP-chip in galac-
tose media (10); (ii) subcellular localization data from SGD (11)
and GFP databases (19); (iii) gene expression (ExpressDB) corre-
lation between TFs and their target genes; (iv) expression changes
resulting from deletion of 23 galactose-metabolism related genes
(3); (v) the overall P values of five computational TF-binding site
(TFBS) prediction tools (Fig. 1F). FUZZNUC (24) scans a given
sequence for known TFBS motifs (Table 6). ALIGNACE (25), MEME
(26), MOTSA (27), and MOTIFSAMPLER (28) search for statistically
overrepresented patterns in putative cis-regulatory DNA. For each
gene, we searched the entire upstream sequence from the tran-
scription start site to the end of the coding region of the preceding
gene. For an example case where the TFBSs are already known
(Gal4p binding within the upstream region of GAL2), Fig. 2C shows
the individual predictions of these algorithms (green bar, top five
graphs), the computed P values for the individual algorithms
(magenta dots, top five graphs), and the overall P values (magenta
bars, bottom graph) after integration by Pointillist. All five reported
Gal4p-binding sites (29, 30) were correctly identified, as marked by
arrows in the bottom row (Fig. 2C). For the computational com-
ponent of the overall PD data interaction process, we used the
lowest of the overall P values of all predicted TFBS for each TF on
each gene (see Supporting Text for details of how individual P values
for the other four types of data were estimated).

We identified 8,555 PD interactions by integrating the five types
of data. A total of 3,982 of these PD interactions are in common
with the 3,985 PD interactions selected in Lee et al. (23) using a P
value cutoff of 0.001. Thus, our integration method captures
virtually every interaction identified by Lee et al. (23). Importantly,
our integration method found that the Lee et al. cutoff was stringent
and included additional predicted interactions that would be missed
on the basis of chromatin IP-chip data alone. This finding is
consistent with earlier results by Bar-Joseph et al. (31), who showed
that they could identify false negatives in chromatin IP-chip data by

Fig. 3. The final network resulting from applications of our integration method to the 18 types of evidence for yeast galactose utilization and a set of network
analysis tools. This network model recapitulates many known features of galactose metabolism (e.g., GAL regulon induction; see text). Also, it provides a number
of insights into regulatory interactions between different metabolic modules. For example, we note a possible mechanistic explanation of how fructose
metabolism (BM12) is down-regulated in galactose: Gal4p contributes to a decrease in fructose uptake by repressing the fructose transporter Hxt7p via Mth1p
(see text). The legends for nodes and edges in the network are as follows: (i) TFs in nucleus are represented by yellow diamonds; (ii) all other proteins (circles)
are located according to their subcellular localizations (plasma membrane, cytosol, and nucleus); (iii) circle colors represent increase (green), decrease (red), and
no significant change (yellow) in expression when the carbon source is changed from raffinose to galactose; (iv) the three numbered squares shown at the right
represent complexes; and (v) blue edges represent PP interactions and multicolored edges in the nucleus represent PD interactions. Short colored arrows in the
cytosol represent the increase (green) and decrease (red) in pathway fluxes. Biomodules are labeled with BM, and the short black arrows represent
communication between the 9 modules selected for this subnetwork and the remaining 11 modules (Fig. 11).
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additionally considering gene expression correlations. The final
trustworthiness weights (2) were 0.534 (chromatin IP-chip), 0.019
(cellular components), 0.014 (gene expression correlation), 0.123
(deletion effects), and 0.31 (TFBS predictions), respectively. Thus,
computational TFBS predictions, although they are not condition
specific, provide the second most useful contribution to identifying
PD interactions.

Network Predictions. To demonstrate the usefulness of Pointillist in
generating specific, testable hypotheses, we built a network model
for the selected 69 genes by combining the identified network nodes
and edges (affected genes�proteins, and PP and PD interactions).
The nodes in the network were then clustered into distinct func-
tional groups by using Cytoscape BioModules (see Materials and
Methods). Fig. 3 shows the nine metabolic modules identified and
their interactions (see Materials and Methods). This network cap-
tures the known genetic regulatory interactions involved in galac-
tose utilization. For example, Gal4p is a transcriptional driver of
four structural GAL genes (GAL1, 2, 7, and 10) and two regulatory
GAL genes (GAL3 and 80). The network also recapitulates the
known redistribution of metabolic fluxes in the presence of galac-
tose: (i) metabolic fluxes in galactose (green arrows) flow from the
Leloir pathway mainly to alcohol synthesis (via glycolysis) and also
to glycerol and purine-base�amino acid syntheses (via pentose
phosphate pathways); (ii) metabolic fluxes active in raffinose me-
tabolism (fructose metabolism, the citrate cycle, and glycogen
synthesis) are down-regulated (red arrows). Thus, both intra- and
intermodule interactions are correctly delineated with Pointillist.

In addition to revealing many previously studied features of
galactose utilization, our network model leads to insights into
information paths connecting galactose metabolism with other
metabolic processes. For example, our model suggests that galac-
tose results in down-regulation of the fructose metabolism BioMod-

ule (Fig. 3, BM12). By following information paths in the model, we
predict that the galactose-responsive transcriptional activator,
Gal4p (a nuclear component of the primarily cytoplasmic galactose
metabolism BioModule; BM8), contributes to this effect by acti-
vating the expression of MTH1 encoding the transcriptional repres-
sor Mth1p, which interacts with and reduces the expression of target
genes including hexose transporter, Hxt7p. To test this possibility,
we grew strains containing Hxt7p-TAP or Gal2p-pA fusion pro-
teins in raffinose and monitored protein levels at various times after
a shift to glucose (high and low), galactose, or ethanol. As predicted,
the levels of Hxt7p-TAP were reduced in galactose (Fig. 4C). The
reduction rate under these conditions was slower than that observed
when cells were transferred to media containing high concentra-
tions of glucose (5%). Hxt7p-TAP remained relatively stable when
these cells were transferred to media containing either low levels of
glucose (0.5%), or high levels of ethanol.

To further test this hypothesis, we determined whether MTH1
and HXT7 are galactose-specific targets of myc-tagged versions of
Gal4p and Mth1p, respectively, by chromatin IP (Fig. 4B). As
predicted, Gal4p-myc bound to MTH1 in the presence of galactose
(7), but not in the presence of glucose. Gal4p-myc also bound to its
known target GAL10, as expected, but not to HXT7 or POT1, genes
not implicated as targets. As predicted, Mth1p-myc bound the
target HXT7 in galactose and not in glucose. Interactions were not
detected with other genes tested. To further characterize the effect
of galactose on the expression of MTH1, we analyzed Mth1p-TAP
levels in wild-type and �GAL4 strains containing TAP-tagged
versions of Mth1p, after growth in the presence or absence of
galactose (Fig. 4D). Levels of Mth1p-TAP increased in response to
galactose in a GAL4-dependent manner. Together, these data
support our predicted Gal4p-, Mth1p-mediated effect of galactose
on fructose utilization. Interestingly, Gal4p-myc also has a galac-
tose-specific interaction with CIN5, which, like MTH1, encodes a

Fig. 4. Theoretical prediction and experimental verification. (A) A subnetwork of proteins related to the galactose-mediated endocytosis and degradation of Hxt6p
and Hxt7p. This network provides a detailed view of processes related to vesicle-mediated protein degradation including: (i) endocytosis (SlaI�2p, Myo3�5p, Lsb3�5p,
Las17p, Rvs167p, End3p, Ark1p, Prk1p, etc.); (ii) actin cortical patch assembly (Ent1p, Arc15�19p, Hua1p, BspI, etc.); (iii) vesicle movement along actin filament (Act1p);
(iv) protein–vacuole transport (Arp6p). Thus, this network not only captures existing models for endocytosis (33), but also hypothesizes additional proteins and their
interactions. (B) Chromatin IP showing galactose-specific binding of Gal4p-myc to MTH1, CIN5, and GAL10 (Left) and of Mth1p-myc to HXT7 (Right). Strains with
myc-tagged versions of Gal4p or Mth1p were grown in glucose or galactose, cells were lysed, and chromatin was sheered and immunoprecipitated with antibodies to
the myc epitope. DNA fragments in IP and whole cell extract (WCE) fractions were amplified by PCR and resolved on acrylamide gels. (C) Western blots assaying the
abundances of Hxt7p-TAP, Gal2p-pA, and Gsp1p (loading control) after shifting cells from growth in raffinose to growth in glucose, galactose, or ethanol. Strains with
TAP- or pA-tagged versions of Hxt7p or Gal2p, respectively, were grown to mid-logarithmic in rich medium containing 2% raffinose. The cells were harvested and
incubated for 9 h in rich medium containing different carbon sources at the indicated concentrations. Whole cell lysates from these cultures were probed with
affinity-purified rabbit IgG or anti-Gsp1p, and visualized with anti-rabbit-HRP secondary antibodies and ECL. (D) Wild-type and �GAL4 strains containing MTH1-TAP
were grown overnight in YEP containing 2% glucose, and then transferred to YEP containing either 2% glucose or 2% galactose and grown for 14 h to mid-log phase.
Equal amounts of protein from each culture were separated by SDS�PAGE and analyzed by immunoblotting with antibodies to the TAP tag (Open Biosystems) or to
Gsp1p (to monitor protein loads). Levels of Mth1p-TAP increase in the presence of galactose, whereas the levels of Gsp1p remain unchanged. Robust Mth1p-TAP
induction depends on GAL4, suggesting that Gal4p is a positive regulator of MTH1.
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transcriptional repressor. Our network predicts that CIN5 is regu-
lated by Gal4p and targets HXT3 and HXT6, thus suggesting that
CIN5 is also a candidate mediator of the fructose module repres-
sion. Thus, a hypothesis derived from the experimental network
arising from the Pointillist-integrated data was formulated, tested,
and verified.

Our model also provides a hypothesis for how glycogen synthesis
(Fig. 3; BM6) is decreased in galactose. Mth1p, induced by Gal4p,
binds the promoter region of GAC1 (Fig. 3; ref. 23). Moreover,
GAC1 expression is decreased in galactose, potentially because of
inhibition by Mth1p. Gac1p is an important regulator of protein
phosphatase I (Glc7p), which is involved in the synthesis of glycogen
(32). Interestingly, our network predicts that Cin5p (induced by
Gal4p) also binds the promoter region of GAC1, which suggests the
presence of an alternate path for the decrease of glycogen synthesis
involving Gal4p and Cin5p. Our network also captures a partial
view of Hxt6�7p endocytosis and degradation in galactose
(Hxt6�7p interactions with Las17p-Rvs167p and Sla1p-End3p in
Fig. 3). For a more detailed picture, we built a subnetwork (Fig. 4A)
around these proteins (enclosed by purple squares) as well as Sla2p,
Pan1p, Abp1p, and Arp2�3p (circled in bold), which are reported
to be involved in degradation of hexose transporters (33). This
network provides an extensive view of vesicle-mediated protein
degradation: (i) endocytosis (SlaI�2p, Myo3�5p, Lsb3�5p, Las17p,
Rvs167p, End3p, Ark1p, Prk1p, etc.); (ii) actin cortical patch
assembly (Ent1p, Arc15�19p, Hua1p, BspI, etc.); (iii) vesicle move-
ment along actin filaments (Act1p); and (iv) protein–vacuole trans-
port (Arp6p). It can be seen that this network not only captures
Gourlay et al.’s model (33) (thick blue lines in Fig. 4A), but also
hypothesizes additional proteins and their interactions.

Finally, our network model suggests the following mechanisms
whereby the various modules interact with each other to coordinate
metabolic and cellular activities. (i) The glycogen synthesis module
(BM6, 19) interacts with the pseudohyphal growth (BM17) and cell
cycle regulation (BM10) modules. This finding implies that de-
creased glycogen synthesis may result in cell cycle arrest by increas-

ing the expression of FAR1 (one of the 69 affected genes; BM10).
(ii) Gcy1p (BM20) is up-regulated in galactose and interacts with
mRNA�rRNA processing via Prp6p. Therefore, Gcy1p may be
involved in the regulation of RNA processing (e.g., degradation) in
addition to response to stress and arabinose metabolism. (iii) A
cluster of proteins, including the up-regulated Lap3p (Gal6p),
interact with the protein degradation module (middle right of Fig.
3). Thus, Lap3p, which is known to act as a negative regulator of
Gal4p (34), may be involved in protein degradation.

Conclusions
We reported integration of 18 different types of data for the
galactose pathway, demonstrating the efficacy of our data inte-
gration approach. The application of our methodology to these
data also generated a number of insights and hypotheses. For
most of our reconstructed network, we found supportive evi-
dence in the literature. Our network model also resulted in a
number of unique hypotheses. For the example case of fructose
metabolism down-regulation in galactose-rich media, we exper-
imentally verified the predictions of our network model. Point-
illist is a useful tool for model building in systems biology and for
enormously reducing the dimensionality of the large integrated
data sets. It can also be applied to entirely different scenarios
(e.g., mass spectrometry) without the need for the costly and
time-consuming process of collecting training sets. This feature
is particularly useful considering the rapid rate of progress in
high-throughput technologies, where, by the time curated train-
ing data are available, improved technologies supercede them.
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