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In human diseases related to tumor-suppressor genes, it is sug-
gested that only the complete loss of the protein results in specific
symptoms such as tumor formation, whereas simple reduction of
protein quantity to 50%, called haploinsufficiency, essentially does
not affect cellular behavior. Using a model of gene expression, it
was presumed that haploinsufficiency is related to an increased
noise in gene expression also in vivo [Cook, D. L., Gerber, A. N. &
Tapscott, S. J. (1998) Proc. Natl. Acad. Sci. USA 95, 15641–15646].
Here, we demonstrate that haploinsufficiency of the tumor-
suppressor gene neurofibromatosis type 1 (NF1) results in an
increased variation of dendrite formation in cultured NF1 melano-
cytes. These morphological differences between NF1 and control
melanocytes can be described by a mathematical model in which
the cell is considered to be a self-organized automaton. The model
describes the adjustment of the cells to a set point and includes a
noise term that allows for stochastic processes. It describes the
experimental data of control and NF1 melanocytes. In the cells
haploinsufficient for NF1 we found an altered signal-to-noise ratio
detectable as increased variation in dendrite formation in two of
three investigated morphological parameters. We also suggest
that in vivo NF1 haploinsufficiency results in an increased noise in
cellular regulation and that this effect of haploinsufficiency may be
found also in other tumor suppressors.

Noise makes an important contribution to biological systems
(for a review, see ref. 1). Examples include the mutational

input to evolution (2), the intracellular fluctuation of regulatory
molecules (3, 4), gene networks (5, 6), the signal processing in
organisms (7), and specific abilities of cells such as directed migra-
tion (8, 9). The expression of a single gene also is a stochastic process
(10, 11) that can be simulated in mathematical models (1, 4, 12). In
such a model the consequences of gene copy number and gene
expression deactivation rates on the reliability of the levels of gene
products were investigated (13). There, the gene copy (allele)
number proves to be a critical variable in achieving a predictable
outcome of gene products. Somatic human cells contain two alleles
of autosomal genes. In the mathematical model of ref. 13 one of the
consequences of the reduction of this gene dose to one allele
(haploinsufficiency) is an increased noise shown as increased
susceptibility to stochastic interruptions of gene expression. As-
suming a biological effect to occur below a threshold of 10% of the
normal amount of a gene product, this study shows an increased
occurrence of this stochastic effect in the haploid system. In vivo in
humans, this postulated biological effect of haploinsufficiency has
not yet been demonstrated.

A dose reduction of a functional gene can occur by an inactivating
mutation. A group of autosomal genes with biological effects
related to a reduced gene dose are the tumor-suppressor genes. An
inactivating mutation in one allele of such a gene in the germ cells
predisposes to formation of tumors in somatic cells. An additional
somatic mutation inactivating the other allele (second hit) induces
the tumor (for a review, see ref. 14). Often the general interest in
the function of tumor-suppressor genes is focused on this effect of
complete loss of the tumor-suppressor protein, as seen in the
discussion about a classical tumor suppressor, the neurofibroma-

tosis type 1 gene (NF1) (for a review, see ref. 15). In patients with
this inherited tumor disease, the NF1 mutation in germ cells
inactivates one allele, resulting in NF1 haploinsufficiency (16, 17).
The most obvious symptoms of NF1 are the numerous benign
tumors of the peripheral nervous system (neurofibromas) and an
increased incidence of malignant tumors. Both are suggested to be
the biological consequence of the complete loss of the NF1 protein
in tumor progenitor cells (18, 19). But there are also biological
effects of NF1 haploinsufficiency (20, 21). In NF1 skin NF1
haploinsufficiency is related to an increased density of melanocytes
(22) resulting in a generalized hyperpigmentation and the addi-
tional occurrence of stochastically distributed, sharply bordered
congenital hyperpigmentations, the café-au-lait macules (23–25).
The underlying mechanism for this pattern of pigmentation is
unknown (26). In Nf1 knock-out mice Nf1 haploinsufficiency
modulates melanocyte and mast cell fates (27). Neurofibromin
shows a Ras GTPase-activating activity (28, 29) and is involved by
means of Ras signal transduction in the regulation of growth (21,
30). In addition, it is found to be associated with the cytoskeleton
(31). NF1-deficient cells exhibit morphological changes, as demon-
strated for Nf1�/� Schwann cells (30) or cells from Drosophila
homozygous for null mutations of an NF1 homologue (32). Also,
neurofibromin reduction can result in morphological changes as
shown in cultured human NF1 keratinocytes, in which it is colo-
calized with intermediate filaments (33).

Here, we examined consequences of NF1 haploinsufficiency in
cultured melanocytes of NF1 patients. In vivo, these cells are
directly involved in the formation of NF1 symptoms such as the
café-au-lait macules. Some morphological parameters of the
cells can easily and precisely be measured in a single melanocyte
in vitro. Our experimental findings can be quantified by a simple
mathematical model. The important point of the model is that
the cellular signal chain is modified by stochastic processes. The
equations representing the model describe the adjustment of the
examined morphological parameters to a set point and include
a noise term that allows for stochastic processes. The self-
adjustment to a set point is the mechanism that prevents the cell
from becoming disordered, and therefore this mechanism is also
called self-regulation (34). This concept has been successfully
applied to describe the directed migration of granulocytes as
related to various input signals (35–37), the orientation of
fibroblasts (8) or keratinocytes (38), and the self-organized
alignment of interacting melanocytes in vitro (39, 40). The ratios
of the parameters of the mathematical model, represented by
signal-to-noise ratios, were determined from the experimental
data, and we checked how well the model describes the measured
data by using a fitting algorithm. A comparison of these results
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in control cells with those obtained in cells haploinsufficient for
NF1 demonstrated that haploinsuffiency introduces increased
noise rather than altering the set point of the system. This
observation supports the hypothesis predicting an altered signal-
to-noise ratio in haploinsufficient cells (13). Concerning den-
drite formation, NF1 haploinsufficiency is associated with an
increased noise in two of three investigated cell biological
parameters in cultured NF1 melanocytes.

Methods
Morphological Parameter. The preparation of melanocytes from
biopsies from skin of healthy donors and from skin and café-au-lait
macules of NF1 patients was performed as described (24). The
germ-line mutations in the patients inactivate one NF1 allele (17).
In both kinds of NF1 melanocytes one NF1 wild-type allele is
present and the cells show a reduction of neurofibromin to approx-
imately 50% (24, 25). The melanocytes of five controls and five NF1
patients (skin and café-au-lait macule) were cultured in parallel
(Fig. 1). The patients were matched for age and gender, the cells for
passage and density. At day 7, 20 pictures at different randomly
chosen positions of the cultures each were digitized (450–600 cells
per culture). The angle between the dendrites, their length, and
their number were used as morphological parameters (Fig. 2).
Based on NIH IMAGE (available at http:��rsb.info.nih.gov�nih-
image�), an image-processing algorithm was developed to deter-
mine the values of these morphological parameters for each cell.
These data were stored in a database after normalization of the
observed distributions: (i) The angle, �, between the dendrites was
measured and converted to a normalized angle density function:
f*2(�) for two dendrites per cell (taking the smaller of the two

possible angles), f*3(�) for three dendrites per cell (taking the
smaller two of the three possible angles), etc. (ii) The length, l, of
a dendrite was collected in normalized length density functions:
f*2(l) for two dendrites per cell, f*3(l) for three dendrites per cell, etc.
(iii) The number of dendrites per cell was collected in a normalized
histogram, f*(n) � N(n)�NA, with NA being the total number of
dendrites.

Mathematical Description of Morphology of Melanocytes. According to
our hypothesis, cellular morphology of cultured melanocytes can be
modeled as an automaton similar to that previously shown for other
cells (8, 38). Because the morphology of melanocytes is not entirely
disordered, we assume that there exists some kind of equilibrium or
set point. This set point can be seen similar to an order parameter
according to Haken’s concept of synergistics (34). For example, the
angle between two dendrites is not entirely random. The density
distribution of the angle has a maximum that may correspond to the
set point of the automaton and is assumed to correspond to the
equilibrium of the model. If there occurs a deviation from the
assumed set point in any of the cells, there has to be a mechanism
(or force) that directs the cell back to the set point. In consequence,
the changes in the angle between the dendrites, �, can be described
by the following differential equation

d�

dt
� �k��sin�n�� � �0�� � ���t� [1]

with 0° � � � 360° and n dendrites per cell. The first term on
the right side describes the automaton for the orientation of the
dendrites. The characteristics by which the cell returns to the set
point

�0 �
360�

n
[2]

is determined by k�. Because there is always some variation in
the orientation of dendrites in melanocyte cultures, a second
assumption has to be made for the model. We introduced some
stochastic disturbance to the model which describes the devia-
tion of some cells from the set point. In consequence, an
additional term, ��(t), was added to Eq. 1 to account in the
model for the stochastic input. A similar equation holds for the
length l of the dendrites:

dl
dt

� �kl��l � l0� � �l�t�. [3]

These stochastic equations are similar to equations describing an
disturbed automatic controller (8). Because of the term for
stochastic disturbance, Eqs. 1 and 3 cannot be solved analytically
and thus cannot be used directly to predict the density function
for the angle between the dendrites or their length. However, it
is possible, for example, to predict the probability by which the
angle between two dendrites falls between � and � 	 
�. This
probability is given by the stochastic angular density distribution
function f(�). Such density functions can be obtained by trans-
forming the stochastic differential equations (Eqs. 1 and 3) into
partial differential equations for the density functions of � and
l. If one assumes that the stochastic input can be approximated
by white noise with the strength q(��(t)� � 0 and ��(t)�(t)� �
q�(t � t); see also refs. 37, 38, and 41), the partial differential
equation describing the density distribution for the angle is

�f��, t�
�t

�
�

��
�k�sin�n�� � �0�� �

q�

2
�

��
�f��, t�. [4]

A similar partial differential equation is obtained for the length
of the dendrites.

Fig. 1. Melanocytes derived from skin of a control (A), from normal skin of
a NF1 patient (B), and from a NF1 café-au-lait macule (C). (�75.) Melanocytes
of five controls and NF1 patients (skin and café-au-lait macule) were cultured
in parallel. At day 7, 20 randomly taken pictures were digitized (450–600 cells
per culture). The different morphology of NF1 cells compared with the normal
melanocytes is obvious.

Fig. 2. Definition of morphological parameters of a melanocyte. The length
of the dendrites is ln. The angle between the two dendrites is �. It was
measured with no direction so that � � 180° for n � 2.
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�f�l , t�
�t

�
�

�l�kl�l � l0� �
q1

2
�

�l� f�l , t�. [5]

It is experimentally difficult to get the density distribution for
the angle between the two dendrites or the lengths of dendrites
for single cells over time. This would require one to observe the
cells over a long time interval (several days or weeks). Therefore,
we assume that the system is (quasi) ergodic, and that the
variation of single cell morphology in time corresponds to the
morphological variation of many cells in the culture at one
defined time point. For another cellular system, the granulo-
cytes, it was demonstrated that intracellular variability can be
approximated by intercellular variability. In the directed migra-
tion of these cells with its changes in direction and morphology
the characteristic time is much shorter (seconds). The measured
angle distribution density of a single granulocyte over a long
period (1 hr) is almost identical with the steady-state density
distribution of an ensemble of cells (35). Thus, we consider the
steady-state distribution of the angle between the dendrites and
their lengths of an ensemble of cells. The nonstationary solutions
are not considered here. The steady-state solutions for the
density functions are

fn��� � f0exp�2k�

nq�
cos n�� � �0�� � f0exp�cos n�� � �0�

2��
2 �

[6]

and

f�l� � f0exp��
kl

ql
�l � l0�2� � f0exp��

�l � l0�2

2�l
2 �, [7]

where f0 is a constant, which is determined by the normalization
(� f(�)d� � 1, � f(l)dl � 1, l � 0). Each equation provides two
parameters (�0 and ��, l0 and �l) which can be estimated from
the observed data (see also Note in legend for Fig. 6). These
parameters can be used to define signal-to-noise ratios charac-
terizing the entire system. They can be written as

� S
N��

�

�
�cos�n�0�

��
� �4k�

nq�
[8]

and

� S
N�� l

�
l0
�l

� l0 �2kl

ql
. [9]

The third observed morphological parameter, the number of
dendrites, is a discrete number and cannot be described by a
continuous differential equation like Eq. 1 or Eq. 3. We suggest
that the assumptions of a set point and noise are, however, still
valid for the underlying continuous process resulting in the
observed discrete number of dendrites of a single cell. Because
the density distribution of the number of dendrites is always
positive, the density distribution can be described by a generating
function ( f(n) � f0exp(V(n))) without loss of information (34).
We propose the following generating function and obtain the
following expression in analogy to Eq. 7:

f�n� � f0exp� �
�n � n0�

2

2�n
2 � [10]

with n � 1, 2, 3,. . . , f0 determined by the normalization (� f(n)
� 1), and �n describing the width of the distribution. A quadratic
dependence is assumed because the distribution has a maximum
at the set point n0 and an assumed value for n � 1, estimated by
the measured anisotropy of the dendrite lengths (data not

shown). This determination of number of dendrites may be
understood on the basis of reaction–diffusion models (42–44).
These models result in different spatial modes of assumed
activator and inhibitor molecules. Each mode can be considered
as a self-organized automaton with special properties (45) and
represent some kind of equilibrium or set-point. The bipolar
mode (n � 2) can create an elongated morphology typical for our
cultured melanocytes, but other modes are possible. For exam-
ple, the polar mode (n � 1) can superpose to the bipolar mode
and result in an anisotropic dendrite length. In analogy to the
two form parameters � and l the signal-to-noise ratio for n can
be defined as

� S
N�� n

�
n0

�n
� n0 �2kn

qn
. [11]

The parameters of our theoretically derived density functions
were estimated from the measured histograms f*2(�), f*2(l),
and f*(n) by using a nonlinear least-square fitting algorithm
(Levenberg-Marquardt iteration) with statistical weighting. The
quality of this density estimation between the data from the cell
cultures and the theoretically derived curves can be measured as
�2. The S�N ratio determines the specific shape of the Gaussian
distribution. The ability of a Gaussian distribution to fit the
actual data can be used as a measure for the appropriateness of
the model because Gaussian distribution is the prediction of the
model. This mathematical model can be used in general to
describe stochastically influenced phenomena such as the phe-
notype of a cell, the resonance behavior of a laser (46), or the
regulation of gene expression (3).

Results
The Mathematical Model Can Describe the Morphology of Control
Melanocytes. First, we investigated three morphological param-
eters of control melanocytes. At a given time, the individual cells
vary in their angle between the dendrites, the dendrite length,
and the number of dendrites. This is illustrated in Fig. 3.
According to our experimental experience with these cells, we
assume that this variation corresponds to the morphological
variation of a single melanocyte observed over a period suggest-
ing a (quasi) ergodic system. Therefore, we analyzed the mor-
phology of melanocytes at one point in time by using automatic
digital processing of microscopy images, and we tested whether
the mathematical models can describe the morphology of control
melanocytes. The morphological parameters investigated were
the number of dendrites, n, the angle between two dendrites, �,
and the length of the dendrites, l. The observed histograms,
f*(n), f*2(�), and f*(l), were fitted by the theoretically derived
density functions f(n), f2(�), and f(l).

The angle between the dendrites and their length observed in
melanocyte cultures of five controls are described by the density

Fig. 3. The morphology of cultured melanocytes varies with time. The cell in
the given example was observed for a period of 258 min and changed its shape
several times. Shown are 0 min (A), 30 min (B), 95 min (C), 165 min (D), 190 min
(E), and 285 min (F). (�100.)

Kemkemer et al. PNAS � October 15, 2002 � vol. 99 � no. 21 � 13785

M
ED

IC
A

L
SC

IE
N

CE
S

PH
YS

IC
S



functions f2(�) and f(l) (Eqs. 6 and 7). The parameters of these
functions were estimated from the experimentally derived den-
sity functions f*(�) and f*(l). The density function for �
describes the experimental data [regression coefficient R � 0.97
(Fig. 4)]. It has its maximum at 180° representing the set point,
�0 � 180°. The mean deviation between the set point and the
actual angle as determined from the width of the density
functions is 3.17 � 0.19 when determined as S�N. The predicted
Gaussian density function of the length of the dendrites per cell
is estimated from f*(l) with �2 � 0.0002. However, a systematic
deviation occurs representing an asymmetry with respect to the
maximum. The maximum of the density function, l0, the set point
of the automaton for the dendrite length, is 35.15 � 2.72 with
S�N � 2.6 � 0.16. Interestingly, the density function f(l) does not
depend on the number of dendrites (Fig. 5). The set point, l0 �
27 	m, and width of the density function, and therefore the
signal-to-noise ratio, are the same for this control cell popula-

tion regardless of the number of dendrites. These data demon-
strate that this model of an automaton with a deterministic
and a stochastic component of the signal is able to describe
the observed morphological behavior in cultured control
melanocytes.

The number of dendrites observed in these melanocyte cul-
tures is described by the Gaussian density function with �2 �
0.014 (Fig. 6). The maximum of the density function representing
the set point is at n � 2 and the average S�N for the number of
dendrites is 4.47 � 0.27 (SEM).

Differences in Morphology Between Control and NF1 Melanocytes as
Alteration of Set Point and Signal-to-Noise Ratio of the Self-Organized
Automaton. As a second step, we determined differences in
morphology between control and NF1 melanocytes derived from
normal skin (skin) or café-au-lait macules (calm) from five
patients each. The formation of dendrite number for NF1 cells
was described by the model with �2 � 0.012. The set point for the
number of dendrites in NF1 melanocytes is the same as in
controls (Fig. 7). In the majority of NF1 skin and NF1 calm cells,
two dendrites per cell are observed, n0 � 2, maximum of the
distribution. However, the distribution of the number of den-
drites is broader, which represents more noise than in controls.
In other words, the NF1 cells show a significantly increased
variation of the number of dendrites (controls to NF1 cells
Student’s t test: P � 0.025). S�N of NF1 cells is 2.70 � 0.63 (skin)
and 2.59�0.6 (calm) compared with 4.47 � 0.27 in controls.
Concerning the set point and the S�N there is no significant
difference between the two kinds of NF1 cells (P � 0.91). The
density function for the angle � (Fig. 4) shows that NF1
melanocytes form two dendrites in opposing directions, set point
�0 � 180°. Again, the NF1 cells show a broader distribution and
the intrinsic noise is increased (NF1: S�N � 2.49 � 0.13;
controls: S�N � 3.17 � 0.19, P � 0.024). In contrast, the length
distribution observed in NF1 and control melanocytes does not
differ significantly with respect to the signal-to-noise ratio (NF1:
S�N � 2.09 � 0.16; controls: 2.59 � 0.16, P � 0.055) (Fig. 5). In
this case, the set point is altered from 35.15 � 6.1 	m for the
control melanocytes to 24.65 � 4.5 	m for the NF1 melanocytes
(P � 0.004).

Fig. 4. The density function for the angle � between dendrites for mela-
nocytes with two dendrites. The data points represent the observed angle
between the dendrites and the lines, the estimated density function in a
logarithmic plot. All observed data could be fitted well by Eq. 6. Melanocytes
of controls show a set point of 180°. In addition, NF1 melanocytes with two
dendrites have the same set point, but reveal a broader density distribution
indicating increased noise.

Fig. 5. Density functions of dendrite length, f(l), for one control cell popu-
lation split with respect to the number of dendrites per cell. The observed data
for the dendrite length were separated in three groups: cells with two
dendrites (n � 2), cells with three dendrites (n � 3), and cells with four
dendrites (n � 4). The density distributions of the dendrite length are identical
for the three groups—i.e., that set point and stochastic part are independent
from the number of dendrites per cell. This finding is a strong indication that
the regulation of the dendrite length is independent of the regulation of the
number of dendrites.

Fig. 6. Density functions for the number of dendrites in control cultures. The
data points represent the observed numbers of dendrites and the lines, the
estimated density functions. All observed data could be fitted well by Eq. 5.
The least-square fit gives the width of the distribution; the set point n0 � 2 is
a fixed parameter determined by the observed maximum of the distribution.
The set point and the width are identical in all samples, which leads to a mean
signal-to-noise ratio of S�N � 4.47 for controls. Note: The model and the
equations were derived from theoretical considerations and parameterized
from the observed data.
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Discussion
Almost all biological systems are subject to complicated external or
internal influences that are not fully known and that are often
termed noise or fluctuations. Our approach to the intracellular
regulation of the cell shape-forming processes is a simple phenom-
enological one. It is based on chance and necessity, which leads to
the given stochastic equations 1 and 3 (41, 46). This approach stands
in contrast to a bottom-to-top model, which focuses on molecular
details and intends to describe all of the molecular steps in a
network to explain the cellular behavior (47). However, the details
of the relevant signal transduction and intracellular regulation are
mostly still unknown. This is also the case for regulations influenced
by NF1 reduction. Our analysis provides some insight into the
nature of the response mechanism to the neurofibromin reduction
without knowing the molecular steps involved. We demonstrate
that it is possible to quantify some basic features of melanocyte cell
shape as an automaton. If the parameters of the corresponding
equations are estimated from data measured in melanocyte cultures
the equations fit very well. Concerning the length of dendrites, a
systematic deviation was observed representing an asymmetry with
respect to the maximum. We assume that this asymmetry is due to
the use of white noise instead of colored noise. Use of a colored
noise term can lead to an asymmetric distribution (48) but can be
handled mathematically only with difficulty. Nevertheless, the
model used describes the data. The equations derived here are
composed of a deterministic part providing a set point and a
stochastic part that accounts for the observed variation. If mean
values of the examined shape parameters are compared between
normal and NF1 melanocytes, only the deterministic part of the
signal is observed and no difference is seen. The variation, however,
is much higher in the haploinsufficient NF1 cells, and it manifests
in the stochastic part of the equation and indicates more noise in the
haploinsufficient cells. On the other hand, we found always the
same dendrite length distribution independent of the number of
dendrites per cell. This observation indicates that the regulation of
dendrite length is independent of the regulation of the number
of dendrites. This is an example how a phenomenological model can
contribute to distinguishing different cellular processes.

We used a mathematical model to investigate cellular conse-
quences of NF1 haploinsufficiency. Because one function of
neurofibromin is the regulation of cytoskeleton (33), the effects

of NF1 reduction may result in an altered morphology of cells
that can easily be measured in single cells. On the one hand we
found that NF1 haploinsufficiency is related to a deterministic
alteration of the length of the dendrites—i.e., the set point is
altered. On the other hand, it is related to an increase in the
stochastic input concerning the angle of dendrites and their
number, although the deterministic part of these two morpho-
logical parameters is not altered. Increased noise is predicted to
be a consequence of haploid gene expression in a model of
stochastic gene expression (13). The morphological effects ob-
served here may directly be related to the increased noise in gene
expression predicted for haploid genes. Alternatively, the ob-
served morphological alterations may represent secondary bio-
logical effects predicted to occur when the variation of gene
expression temporarily falls below a threshold of 10% of the
normal amount of a gene product (13).

In the technical world the constructors intend to build ma-
chines without noise in the signal chain to get deterministic
machine functions for a special purpose and situation. If the
situation is altered the constructor has to build a new a machine.
Interacting physical and chemical systems require a certain
amount of noise to reach a state with optimal conditions
(equilibrium). In biological systems the ‘‘machines,’’ having not
only a deterministic signal but also a stochastic signal, have an
advantage in survival by finding a way to react to altered
situations by themselves (1). Two extreme cases can be consid-
ered: (i) Without noise (variation) a biological system cannot
react to altered situations. (ii) A biological system that varies at
random has lost its ability to perform any regular function.
Obviously there exists an optimal signal-to-noise ratio for bio-
logical ‘‘machines.’’ An example for an optimal signal-to-noise
ratio has been observed in migrating granulocytes (9, 37). Also,
in movement of pedestrians at a crossing an optimal signal-to-
noise ratio exists as simulated in a model (49). Back to mela-
nocytes and NF1: If control melanocytes have an optimal
signal-to-noise ratio in the respective system, this ratio could be
altered by mutation as indicated by our data. Neural crest-
derived cell precursors of melanocytes migrate during embryo-
genesis. This migration is mediated and directed by dendrite
formation. We suggest that an optimal signal-to-noise ratio in
dendrite formation is also important for correct migration
during this time. NF1 haploinsufficiency alters the signal-to-
noise ratio and, thus, influences dendrite formation, which may
result in a disturbance of the migration of melanocyte precur-
sors. One symptom found in NF1 patients, the formation of
café-au-lait macules, can directly be related to anomalies of
melanocyte precursor migration because these macules repre-
sent an unequal distribution of melanocytes. They are present at
birth and become visible in the first year of life, and external
noise has already been invoked to explain their origin (50). Small
localized hyperpigmentations (freckles) are quite common in
people with pale skin and red hair. They may be caused in a
similar way as the café-au-lait macules in NF1 by the reduced
activity of another gene relevant for melanocytes and, hence, by
increased noise in a signal transduction chain. Variants of the
melanocortin-1-receptor gene with a reduced gene activity were
found in persons with this skin type (51). Increased noise may
also explain the highly variable cell size of NF1 keratinocytes in
vitro (33). Haploinsuffiency of many tumor-suppressor genes has
various effects (52). These effects are not well understood but
may be explained, at least in part, by increased noise introduced
into signal transduction by haploinsuffiency of the tumor-
suppressor gene.

The excellent technical assistance and practical help of Eva Winkler,
Petra Kruse, and Ralf Mueller are gratefully acknowledged. Thanks are
also due to Britta Bartelt and Sybille Rehmet for corrections of this
manuscript.

Fig. 7. The density functions for the number of dendrites of NF1 melanocytes.
Data were observed from cells of five NF1 patients. The cells were taken either
from normal skin (skin 1–5) or from café-au-lait macules (calm 1–5). As for the
controls, the maximum of the density distribution and therefore the set point is
the same for all NF1 samples (n0 � 2). However, the dendrite density distribution
is broader compared with control melanocytes (Fig. 6), strongly indicating an
increased noise term in our model. The resulting signal-to-noise ratio of NF1 cells
(S�N � 2.6) is �40% less compared with the controls (S�N � 4.5).
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