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Abstract
Currently, patients with neuroblastoma are classified into risk groups (e.g., according to the
Children’s Oncology Group risk-stratification) to guide physicians in the choice of the most
appropriate therapy. Despite this careful stratification, the survival rate for patients with high-risk
neuroblastoma remains <30%, and it is not possible to predict which of these high-risk patients will
survive or succumb to the disease. Therefore, we have performed gene expression profiling using
cDNA microarrays containing 42,578 clones and used artificial neural networks to develop an
accurate predictor of survival for each individual patient with neuroblastoma. Using principal
component analysis we found that neuroblastoma tumors exhibited inherent prognostic specific gene
expression profiles. Subsequent artificial neural network-based prognosis prediction using
expression levels of all 37,920 good-quality clones achieved 88% accuracy. Moreover, using an
artificial neural network-based gene minimization strategy in a separate analysis we identified 19
genes, including 2 prognostic markers reported previously, MYCN and CD44, which correctly
predicted outcome for 98% of these patients. In addition, these 19 predictor genes were able to
additionally partition Children’s Oncology Group-stratified high-risk patients into two subgroups
according to their survival status (P = 0.0005). Our findings provide evidence of a gene expression
signature that can predict prognosis independent of currently known risk factors and could assist
physicians in the individual management of patients with high-risk neuroblastoma.

INTRODUCTION
Neuroblastoma is the most common solid extracranial tumor of childhood and is derived from
the sympathetic nervous system. Patients in North America are currently stratified by the
Children’s Oncology Group into high, intermediate, and low risk based on age, tumor staging,
Shimada histology, MYCN amplification, and DNA ploidy (1). Patients < 1 year of age or with
lower stage diseases (International Neuroblastoma Staging System stages 1 and 2) usually have
better outcome than older patients or those with advanced stage diseases (International

Requests for reprints: Javed Khan, Pediatric Oncology Branch, Oncogenomics Section, National Cancer Institute, 8717 Government
Circle, Gaithersburg, MD 20877. Phone: 301-435-2937; Fax: 301-480-0314 or 301-402-3134; E-mail:khanjav@mail.nih.gov..
Note: J. S. Wei, B. T. Greer, and F. Westermann contributed equally to this work.

NIH Public Access
Author Manuscript
Cancer Res. Author manuscript; available in PMC 2005 December 1.

Published in final edited form as:
Cancer Res. 2004 October 1; 64(19): 6883–6891.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Neuroblastoma Staging System stages 3 and 4). Certain consistent cytogenetic changes,
including gain of 2p24 and 17q and loss of heterozygosity at 1p36 have been associated with
a more aggressive phenotype (2,3). The MYCN gene, located on 2p24, is amplified in ~22%
of all neuroblastoma patients (4) and is an independent predictor for poor prognosis, especially
for patients >1 year of age. Although other genes, such as TRKA, TRKB, hTERT, BCL-2,
caspases, and FYN (4,5) have been associated with neuroblastoma prognosis, they all lack the
predictive power of MYCN and are not used currently in clinical practice. High-risk patients
compose ~50% of all neuroblastoma cases; however, despite significant improvement in the
therapy of neuroblastoma using neoadjuvant chemotherapy, surgery, and radiation, the death
rate for these patients remains at 70% (6). Although the Children’s Oncology Group risk
stratification has been carefully developed to take into account the above risk factors, it is
primarily used to guide therapy and does not predict which individual patients will be cured
from the disease.

DNA microarray technology has been proven to be an efficacious tool to molecularly classify
cancers, to predict prognosis, and to identify genes that are potential therapeutic molecular
targets (7–12). We have demonstrated previously that the combination of gene expression
profiling and artificial neural networks is a powerful method that can accurately diagnose
certain pediatric cancers including neuroblastoma (7). In this current study, we used gene
expression profiles from cDNA microarrays to predict the outcome and identify an optimal
gene set in patients with neuroblastoma using artificial neural networks.

MATERIALS AND METHODS
Tumor Samples

Fifty-six pretreatment primary neuroblastoma tumor samples from 49 neuroblastoma patients
with outcome information were obtained retrospectively from three sources presenting
between 1992 and 2000 (Table 1). All of the patients were treated according to local or national
guidelines that followed similar protocols, which included “wait-and-see” after surgery or
combinations of vincristine, doxorubicin, carboplatin, cisplatin, cyclophosphamide,
melphalan, and etoposide, depending on the risk factors. All of the samples were anonymized,
and our protocol was deemed exempt from the NIH Multiple Project Assurance. Pretreatment
tumor samples were snap-frozen in liquid nitrogen after removal. Tumors were diagnosed as
neuroblastoma by local centers experienced in the management of these cancers. Patients were
divided into two outcome groups: the “good-outcome” group had event-free survival (i.e.,
neither relapse nor neuroblastoma progression) for at least 3 years (n = 30), and “poor-outcome”
died due to neuroblastoma disease (n = 19). The median age for the good-outcome group was
0.9 years (range from 0.1 to 4.6 years) and for the poor-outcome group was 2.8 years (range
from 0.8 to 10.5 years; Table 1).

RNA Extraction
Total RNA was extracted according to the published protocols (13). We used an Agilent
BioAnalyzer 2100 (Agilent, Palo Alto, CA) to assess the integrity of total RNA from tumors.
Total RNA from seven human cancer cell lines (CHP212, RD, HeLa, A204, K562, RDES, and
CA46) was pooled in equal portions to constitute a reference RNA, which was used in all of
the cDNA microarrray experiments.

RNA Amplification and Labeling of cDNA
mRNA was amplified one round using a modified Eberwine RNA amplification procedure
(14). Next, an indirect fluorescent-labeling method was used to label cDNA as described by
Hegde et al. (15). In brief, aminoallyl-dUTP (Sigma-Aldrich, St. Louis, MO) was first
incorporated into cDNA in a reverse transcription reaction in which amplified antisense RNA
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was converted into cDNA by Superscript II reverse transcriptase enzyme (Invitrogen, Grand
Island, NY) according to the manufacturer’s instructions. Second, unincorporated aminoallyl-
dUTP was removed with Qiagen PCR purification kits (Qiagen, Valencia, CA) according to
the manufacturer’s instructions. Third, monoreactive-Cye5 or Cye3 dyes
(AmershamPharmacia, Piscataway, NJ) were conjugated with the aminoallyl-dUTP on the
cDNA. Fluorescent-labeled cDNA was purified with Qiagen PCR purification kits.

Fabrication of cDNA Microarrays, Hybridization, Image Acquisition, and Image Analysis
Sequence-verified cDNA libraries were purchased from Research Genetics (Huntsville, AL),
and a total of 42,578 cDNA clones, representing 25,933 unique genes (UniGene clusters;
13,606 known genes and 12,327 unknown expressed sequence tags), were printed on
microarrays using a BioRobotics MicroGrid II spotter (Harvard Bioscience, Holliston, MA).
Fabrication, hybridization, and washing of microarrays were performed as described by Hegde
et al. (15). Images were acquired by an Agilent DNA microarray scanner (Agilent, Palo Alto,
CA) and analyzed using the Microarray Suite program as described (16), coded in IPLab
(Scanalytics, Fair-fax, VA).

Data Normalization and Filtering
Gene expression ratios between tumor RNA and reference RNA on each microarray were
normalized using a pin-based normalization method modified from Chen et al. (16). To include
only high-quality data in the analysis, the quality of each individual cDNA spot was calculated
according to Chen et al. (17). Next, spots with an average quality across all of the samples <
0.95 were excluded from all of the analyses. There were 37,920 (90.3%) clones that passed
this quality filter.

Architecture of Artificial Neural Networks
First, we used principal component analysis and reduced the dimensionality of the data to the
top 10 principal components as inputs for artificial neural networks. This procedure reduced
the number of variables from 37,920 to 10 to avoid over-fitting the data, which occurs when
the number of variables exceeds the number of samples. We used feed-forward resilient back-
propagation multilayer perceptron artificial neural networks (coded in Matlab, The Mathworks,
Natick, MA) with three layers: an input layer of the top 10 principal components of the data
(Fig. 1, A and B) or the gene expression ratios of each cDNA spot (for the minimized gene set,
see Fig. 1B); a hidden layer with 3 nodes; and an output layer generating a committee vote that
discriminates two classes (i.e., good-and poor-outcome groups). Average artificial neural
network committee votes were used to classify samples, and 0.5 was used as the decision
boundary for artificial neural network prediction throughout the study. The ideal vote was 0
for the good-outcome group (alive) and 1 for the poor-outcome group (dead). We trained the
artificial neural networks using an 8-fold cross-validation scheme in all of the analyses similar
to those described previously (7).

Prediction Using a Leave-One-Out Strategy
To test the generalizibility of the artificial neural network approach, we first performed a leave-
one-out prediction strategy (Fig. 1A), where we left out each sample (of the 49 unique samples)
one time during the training of artificial neural networks and tested it as an independent sample
to predict the outcomes with all of the quality-filtered clones (n = 37,920) without additional
clone selection.

Identification of Prognostic Signature Using Training and Test Sets
To identify the prognostic genes, we performed a separate artificial neural network analysis
using a gene minimization procedure as described by Khan et al. (7). In brief, the 7 replicate
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samples were placed in the training set, and the remaining samples were then randomly
partitioned into training (n = 35) and testing (n = 21) sets. None of the replicate samples were
included in the test set to ensure that the selected genes did not bias the prediction outputs of
the trained artificial neural networks. The minimal number of clones for outcome prediction
was identified using only the training set. Quality-filtered clones were first ranked by
determining the sensitivity of prediction of the 35 training samples with respect to a change in
the gene expression level of each clone. Then, using increasing numbers of the top artificial
neural network-ranked clones, we identified the minimum number of clones that generated
minimum prediction errors (Fig. 1B). Where multiple clones represented one gene, we selected
the top-ranked clone to obtain a minimal predictor gene set. We recalibrated the artificial neural
networks using the expression ratios of these genes with only the training samples (without
performing principal component analysis). Finally, we predicted the survival status of the test
samples using the trained artificial neural networks (Fig. 1B).

Statistical Analysis for Survival
Survival length was calculated for the 49 unique neuroblastoma patients from date of diagnosis
until date of death or last follow-up as appropriate. The probability of survival and significance
was calculated using the Kaplan-Meier and Mantel-Haenszel methods, respectively (18,19).
The Cox proportional hazards model (20) was used to determine the hazard ratios and
confidence intervals (21) for survival between the dichotomized groups of patients and was
used to assess which factors were jointly significant in the association with survival for the 24
high-risk patients (20). The Cox model parameters (bi) were converted to hazard ratios by
computing exp(bi), where exp(a) = 2.7183a. The 95% confidence interval for the hazard ratio
was computed as [exp-1.96 (biL), exp(biH)] where biL = bi-1.96 [estimated SE (bi)] and biH =
bi = [estimated SE (bi)] (21). In this study, the hazard ratio indicates the risk associated with
neuroblastoma-caused death while being in a greater-risk category compared with that of being
in the lower-risk category. Using the procedure described by Simon and Altman (22), a
likelihood ratio test was used to assess for importance of the microarray prediction after
adjusting for standard prognostic factors such as MYCN amplification, age, or stage.

RESULTS
Prediction of Outcome Using the Global Expression Profiles of All of the Clones

Visualization of all 56 of the neuroblastoma samples using principal component analysis of all
of the quality-filtered 37,920 clones revealed neuroblastoma samples generally grouped
according to their clinical outcomes (Fig. 2A), clearly indicating a pre-existent prognostic
signature. To demonstrate the generalizability of the artificial neural network approach, we
next tested the ability of artificial neural networks to predict prognosis of the 49 unique
individuals (excluding 7 replicated samples) with all 37,920 clones using a conservative
unbiased leave-one-out prediction strategy (Fig. 1A). We found that the artificial neural
networks correctly predicted 16 of 19 poor-outcome and 27 of 30 good-outcome cases (Fig.
2B). This corresponds to a sensitivity of 84% and specificity of 90% for the poor-outcome
patients, with a positive predictive value of 84% for the poor- and 90% for the good-outcome
patients (Table 2). The Kaplan-Meier curves demonstrated that patients with poor and good
gene expression signatures as identified by the artificial neural networks had significantly
different survival probabilities (P < 0.0001, see Fig. 2C). The Cox proportional hazard ratio
for the risk of death associated with the poor signature was 16.1 (95% confidence interval, 4.6
to 56.9, P < 0.0001), which was higher than those of all of the other risk factors we examined
(stage, MYCN amplification, and age) except Shimada histology and was comparable with the
Children’s Oncology Group risk stratification (Table 3; Fig. 2D).
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Identifying Prognostic Gene Expression Signature
To identify the optimal set of genes that results in the minimum classification errors, we
performed a gene minimization procedure in a separate artificial neural network analysis using
training and test sets as described previously (7). We first randomly partitioned all 56 of the
samples into training (n = 35) and testing sets (n = 21) and used only the training set for the
gene selection algorithm. We observed that the top 24 artificial neural network-ranked clones
resulted in the minimal classification error (Fig. 3A). These 24 clones represented 19 unique
genes, and we took the top-ranked clone for each gene and used this as our minimal gene set.
When we visualized the overall variance of these genes using principal component analysis on
all 56 of the samples we found a clearer separation of the poor- from the good-outcome samples
when compared with the principal component analysis for all 37,920 clones (Fig. 3B).

We next recalibrated the artificial neural networks with the 35 training samples using the
expression ratios for the 19 genes and correctly predicted the outcomes for 5 of 5 poor-outcome
and 15 of 16 good-outcome patients in the independent test set, corresponding to a sensitivity
of 100% and a specificity of 94% for predicting poor outcome (Fig. 3C; Table 2). The positive
predictive values were 83% and 100% for the poor- and good-outcome groups, respectively,
for the test samples and 95% and 100% for all of the patients (Table 2). The Kaplan-Meier
curves demonstrated that patients with good and poor signatures based on the expression ratios
of the 19 genes had significantly different survival probabilities (P < 0.0001, see Fig. 3D).
Furthermore, no patients died in the good signature group; thus, the hazard ratio for death risk
was infinite (Table 3).

The top 24 artificial neural network-ranked clones represent 19 unique genes including 12
known genes and 7 expressed sequence tags. Four of the known genes, DLK1, ARHI, PRSS3,
and SLIT3, were represented by two or more independent cDNA clones (Fig. 4A) and, hence,
acted as internal validation for these genes. We also validated all 12 of the known genes by
quantified reverse transcription-PCR (data not shown). Nine of the genes were up-regulated
and 10 down-regulated in the poor- compared with the good-outcome group (Fig. 4, A and
B). To our knowledge, all of the genes, except MYCN and CD44 (23–25), have not been
associated previously with neuroblastoma prognosis.

Outcome Prediction for High-Risk Patients
We next investigated whether the gene expression signatures could predict the survival status
of those patients in our study that are currently stratified as high risk (see Table 1). From our
49 patients, 24 were high risk (Table 1). The Kaplan-Meier curves demonstrated that artificial
neural networks were able to additionally partition these high-risk patients according to their
clinical outcomes using all 37,920 of the quality-filtered clones (P = 0.0067), as well as the
top 19 artificial neural network-ranked genes (P = 0.0005; Fig. 5, A and B). As shown in Fig.
5B, the top 19 artificial neural network-ranked genes were able to correctly predict all 5 with
good signature as surviving and 18 of 19 with poor signature as dying, suggesting a potential
benefit for predicting outcome in these high-risk patients. The hazard ratio was again infinite,
because all of the patients that we predicted to have a good outcome survived (Table 3).

To determine whether the gene expression signatures provide additional predictive power over
the conventional risk factors, we first created a Cox model using age, stage, and MYCN
amplification excluding the artificial neural network prediction results. The model showed that
MYCN amplification (P = 0.0064) was the only significant factor (i.e., P < 0.05, see Fig. 5C).
Therefore, we built another multivariate model using MYCN amplification and the prediction
results based on all 37,920 clones (Fig. 5D). (We used the artificial neural network results
based on the 37,920 clones, because there were no deaths in the good signature group using
the 19 genes, and in these circumstances it is not possible to create models where the hazard
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ratios are infinite). Applying the likelihood ratio test, we found that prediction by all of the
clones added predictive ability to the model (P = 0.012). Additionally, the Kaplan-Meier curves
(Fig. 5, E and F) illustrate that artificial neural network prediction can additionally separate
the MYCN nonamplified patients according to their survival status based on either all of the
clones (P = 0.047) or in particular the 19 genes (P = 0.0076, see Fig. 5F).

DISCUSSION
We have developed an artificial neural network-based method for predicting the outcome of
patients with neuroblastoma using the expression profiles of only 19 genes that provides a
significant improvement in prediction over the current known risk factors. Moreover, we found
that the most important advantage of our approach was the ability to additionally partition
Children’s Oncology Group stratified high-risk patients, in particular those without MYCN
amplification, into two subgroups according to their survival status. The ability to predict the
outcome of individual patients with high-risk neuroblastoma at initial diagnosis using gene
expression signatures has major clinical implications, because ~70% of the patients in this
group (~50% of all neuroblastoma patients) succumb to the disease (1). Firstly, patients that
are identified to have a poor signature, i.e., predicted to die if given conventional therapy, may
directly benefit from the newer therapeutic strategy trials that are currently under investigation
by the cooperative study groups such as Children’s Oncology Group. Secondly, because
treatment-related death rates have been reported to be as high as 23% (26), it may be possible
to design future dose intensity reduction trials to minimize therapy-related morbidity and
mortality for the high-risk patients who have a good signature. An example of such a patient
in the latter category is NB14 (stage 4, MYCN-amplified) who, despite his high-risk status,
experienced event-free survival for >3 years as was predicted by our artificial neural networks.
Although the survival rate for patients with Children’s Oncology Group-stratified low-risk
disease is 95%, our approach may identify the few patients predicted to have a poor outcome
by the artificial neural networks who may benefit from more aggressive therapy. For instance,
although case NB18 was classified as low-risk (based on stage 2 and MYCN not amplified),
our artificial neural networks predicted this sample as poor-outcome, and this patient died
within 1.5 years after diagnosis. These results indicate the potential utility of using our approach
for individualized management of patients with cancer. However, they need to be interpreted
with some caution in view of the limited number of subjects in our study and some
heterogeneity of their treatments, and confirmation is required in larger, prospective trials
before these predictor genes are used in the clinic.

Because there was some overlap in the expression levels of the top 19 artificial neural network-
ranked genes between the prognostic groups, the prospect of identifying a single gene that can
accurately predict outcome is unlikely. Thus, a combinatorial approach using several genes
and artificial machine learning algorithms was necessary for accurate outcome prediction.
Among these 19 genes, 2 (MYCN and CD44) have been reported to correlate with
neuroblastoma prognosis (23–25), thus validating our ability to identify prognostic-specific
genes. MYCN amplification is an established marker for high stage and poor outcome (23) and
plays a critical role in the aggressive phenotype of neuroblastoma tumors (27,28). Our analysis
confirmed MYCN as an important prognostic marker (ranked 16 of 19); however, the median
expression level of this gene was similar in the two groups, in agreement with previous reports
that MYCN expression levels are not consistently correlated with survival in patients with
nonamplified tumors (29–31). MYCN amplification is currently the only molecular marker
used for risk stratification; however, it cannot be used as the sole risk predictor, because only
22% of neuroblastoma patients have this molecular trait.

Of the 19 predictor genes, 8 of the 12 known genes have been reported previously to be
expressed in neural tissue. Of these, 5 were up-regulated in the poor-outcome group (DLK1,
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PRSS3, ARC, SLIT3, and MYCN), and 3 were down-regulated (CNR1, ROBO2, and BTBD3).
DLK1 (ranked number 1) is the human homologue of the Drosophila Delta gene and is
expressed by neuroblasts in the developing nervous system (32) as well as in neuroblastoma
(33,34). It is a transmembrane protein that activates the Notch signaling pathway, which has
been shown to inhibit neuronal differentiation (35). Additionally, ARC (36), MYCN (37), and
SLIT3 (38) are also expressed during neural development. The higher expression levels of these
genes in the poor-outcome tumors suggest a more aggressive phenotype characterized by a less
differentiated state, reminiscent of proliferating and migrating neural crest progenitors.
Intriguingly, we observed the up-regulation of the neuron axon repellant gene, SLIT3, with the
down-regulation of one of its receptors, ROBO2, in the poor-outcome group suggesting the
possibility that these neuroblastoma cells secrete a substrate to repel connecting axons and
potentially prevent differentiation. The exact roles and how the interactions of these genes
confer an aggressive phenotype in neuroblastoma require more detailed biological studies.

Of additional interest, the ARHI gene, which maps to 1p31, is a maternally imprinted tumor
suppressor gene implicated in ovarian and breast cancer (39), possibly through methylation
silencing (40), and is among the down-regulated genes for the poor-outcome group. An
additional study of its role in tumorigenesis as a potential tumor suppressor gene in
neuroblastoma is warranted particularly because of its proximity to the 1p36 region, which is
frequently deleted in poor-outcome neuroblastoma patients.

We noted the absence of three prognostic related genes reported previously TRKA, TRKB, and
FYN (5,41,42), among our 19 genes. Unfortunately, TRKA was not on our microarrays, and
TRKB and FYN were not ranked within the top 500 clones by artificial neural networks. At this
point, the predictive role of TRKA, TRKB, or FYN is not conclusive, and none are currently
used to guide therapy.

In this study we have identified a small subset of 19 predictor genes from a pool of 25,933
unique genes with the majority of these 19 genes showing a >2-fold average differential
expression between good- and poor-outcome tumors. This small number of genes can be
developed into cost-effective clinical assays for outcome prediction. In addition, the products
of 3 genes (DLK1, SLIT3, and PRSS3) are secreted proteins, raising the possibility of using
these as serum markers for prognosis.

In this data set, our artificial neural network-based method provided a significant improvement
in prediction over the current risk factors in patients with neuroblastoma. Moreover, the most
important advantage of our approach was the ability to additionally partition Children’s
Oncology Group-stratified high-risk patients, in particular those without MYCN amplification,
into two subgroups according to their survival status. These findings merit confirmation on
larger, prospective trials. We believe that our approach would allow physicians to tailor therapy
for each individual patient according to their molecular profile, with the prospect of improving
clinical outcome and survival rates in patients with neuroblastoma.
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Fig. 1.
Workflow diagrams. A, workflow for a complete leave-one-out artificial neural network
(ANN) analysis using all 37,920 clones. Gene expression profiling was performed on tumors
from 49 neuroblastoma (NB) patients (Alive, n = 30; Deceased, n = 19) using cDNA
microarrays containing 42,578 clones. After a quality filter, 37,920 clones were used as a data
matrix of high quality cDNA measurements for further data analysis. Principal component
analysis was used to reduce the dimensionality of the data and reduce noise. The top 10 principal
components were used for input to the ANN. One sample was left out as an independent test
sample, and the ANNs were trained using the remaining 48 NB samples. ANN training scheme
(gray box). 1. All remaining neuroblastoma samples were randomly partitioned into eight
groups. 2. One of the eight groups (containing 6 samples) was selected as a validation set,
whereas the remaining 7 groups (42 samples) were used to train the network. 3 and 4. The
training weights were iteratively adjusted for 100 cycles (epochs). 5. The ANN output (0–1,
where 0 = ideal good-outcome and 1 = ideal poor-outcome) was calculated for each sample in
the validation set. 6. A different validation set was selected from the same partitioning in 1,
and the remaining seven groups were used for training. Steps 2–6 were repeated until each of
the eight groups from 1 had been used as a validation set exactly one time. 7. The samples were
randomly repartitioned into eight new groups, and steps 2–6 were repeated. Sample partitioning
was performed 100 times in total. Thus, steps 1–6 were repeated 100 times. Eight hundred
ANN models were, thus, trained and were used to predict the left out test sample. This scheme
was repeated for each left out test sample. B, identifying prognostic gene expression signature
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and outcome prediction. Fifty-six neuroblastoma samples (7 replicates were added to the
training group to examine the reproducibility of the results) were partitioned into a training
(n = 35) and an independent test (n = 21) set. Principal component analysis was again
performed, and ANNs were retrained using the 35 training samples based on the ANN training
scheme detailed in the gray box in A. Gene minimization. Each of the input clones was ranked
according to its importance to the prediction of ANNs (7). Increasing numbers of the top-ranked
clones were used to train ANNs, and the resulting classification error was monitored. The
minimal number of clones that yielded the minimal classification error (Fig. 3A) was identified,
and the top-ranked clones for each gene were used to retrain the ANNs and predict the 21 test
samples without performing a principal component analysis.
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Fig. 2.
Predicting the outcomes of neuroblastoma without gene selection. A, plot of the top three
principal components (PC) of the 56 neuroblastoma samples using all quality-filtered 37,920
clones demonstrates some separation according to the clinical outcome. Red spheres represent
poor-outcome patients, whereas blue spheres represent good-outcome patients. B, artificial
neural network voting results for outcome prediction of the 49 unique neuroblastoma patients
using 37,920 clones without any additional clone selection in a leave-one-out prediction
scheme. (Samples labels: St, stage; NA, MYCN nonamplified; A, MYCN amplified, followed
by sample name). Seven replicated samples (NB1, NB2, NB3, NB4, NB207, NB209, and
NB210) were excluded for this analysis. Symbols, ANN average committee votes for each
sample, whereas the length of the horizontal lines represents the SE. Red triangles, poor-
outcome, and blue circles, good-outcome neuroblastomas. Vertical line at 0.5 is the decision
boundary for outcome prediction (i.e., good signature < 0.5, poor signature >0.5). C, Kaplan-
Meier curves of survival probability for the 49 neuroblastoma patients derived from the results
in B. D, Kaplan-Meier curves of survival probability for the 49 neuroblastoma patients using
the current Children’s Oncology Group risk stratification.
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Fig. 3.
Outcome prediction using top artificial neural network (ANN)-ranked genes. A, clone
minimization plot for ANN prediction. ANNs were first trained using the 35 training samples,
and all 37,920 clones were ranked according to their importance to the ANN prediction (7).
Then ANNs were trained with increasing numbers of the top ANN-ranked clones, and average
prediction errors were calculated for the 35 training samples. The minimal number of clones
that generated the minimal error rate was 24 (arrow), representing 19 unique genes. Bars, ±SE
of number of misclassifications for the validation group during ANN training. B, plot of the
top 3 principal components of the 56 neuroblastoma samples using the top 19 genes (duplicated
clones of the same gene were removed, and the top-ranked clone for each gene was used in the
ANN prediction) demonstrates a clear separation according to the clinical outcome. Red
spheres, poor-outcome patients, whereas blue spheres, good-outcome patients. C, ANN
committee vote results of the 56 samples using the top 19 ANN-ranked genes. ANNs were
retrained using the 35 training samples (including all of the replicated samples) with the top
19 ANN-ranked genes directly without PCA, and these trained models were used to predict
the 21 independent test samples. Horizontal dotted line divides the test (above the line) from
the training samples. D. Kaplan-Meier curves for survival probability of the 49 patients were
derived from the ANN prediction using the 19 genes in C.
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Fig. 4.
Expression levels of the top 19 ANN-ranked genes in the 56 neuroblastoma samples. A,
expression level of each gene was logged (base 2) and mean-centered, and represented by
pseudo-colors according to the scale shown on the bottom right. A red color corresponds to
up-regulation, and a green color corresponds to down-regulation as compared with the mean.
On the right are the artificial neural network (ANN)-ranked order, chromosomal location,
IMAGE Ids, gene symbols, and the hierarchical clustering dendrogram. Red bars below the
sample labels mark poor-outcome patients, and blue bars below the sample labels mark good-
outcome patients. *, genes that have been reported previously to be associated with
neuroblastoma prognosis. B, differentially expressed genes in good- and poor-prognostic
groups. Box and whisker plots of the mean centered expression levels of the 12 known genes
identified in this study. Boxes represent the upper and lower quartiles of the data. The black
horizontal line within the box denotes the median. The whiskers extending above and below
the box are fixed at 1.5 times the inter-quartile range. Outliers that fall outside the whiskers of
the box are plotted as circles with a dot inside.
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Fig. 5.
Artificial neural network (ANN)-based outcome prediction for the high-risk group. A, Kaplan-
Meier curves of survival probability demonstrated that gene expression profiles without gene
selection using all 37,920 clones could additionally separate the high-risk group (n = 24) into
two statistically different subgroups according to their outcomes (P = 0.0067). B, Kaplan-Meier
curves showed that the top 19 ANN-ranked genes produced statistically significant groupings
(P = 0.0005) and were more accurate in predicting the prognosis than all 37,920 clones. C.
Multivariate Cox proportional hazards model excluding the ANN prediction showed MYCN
is the only statistically significant conventional risk factor in the high-risk patients in our data
set (n = 24). (H.R., hazard ratio; C.I., confidence interval). D, multivariate Cox proportional
hazards model based on MYCN status and all 37,920 clones ANN prediction. E, Kaplan-Meier
curves for survival probability of the high-risk patients (n = 24) based on both MYCN status
and the 37,920 clones ANN prediction. ANN-based prediction additionally separates patients
without MYCN amplification (P = 0.047). F. Kaplan-Meier curves for survival probability of
the MYCN nonamplified high-risk patients (n = 13) using the predictions based on the top 19
genes were statistically significant (P = 0.0076). The 19 genes predicted outcome more
accurately than the 37,920 clones. MYCN amplified patients were not considered here, because
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there was only one amplified patient predicted to have a good-outcome, and, therefore, it was
not possible to construct a Kaplan-Meier curve.
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Table 2
Performance of ANN prediction

ANN prediction Sensitivity (%) poor-
outcome

Specificity (%) poor-
outcome

Positive
predictive value

(%) poor-
outcome

Positive
predictive value

(%) good-
outcome

Leave-one-out with all clones
(n = 49)

84 90 84 90

19 genes (test samples: n =
21)

100 94 83 100

19 genes (n = 49) 100 97 95 100
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Table 3
Univariate proportional hazard analysis for the risk of NB-related death

Variable HR 95% CI Log-rank P

All NB samples (n = 49)
  All 37920 Clones (poor signature versus good signature) 16.1 4.6 to 56.9 <0.0001
  Top 19 ANN-ranked genes (poor signature versus good
signature)

∞* <0.0001

  COG risk stratification (high risk versus low and intermediate
risk)

29.7 4.0 to 222.9 <0.0001

  COG risk stratification (high and intermediate risk versus low
risk)

13.6 1.8 to 101.7 0.0009

  COG risk stratification (high risk versus low risk) 23.2 3.1 to 175.9 <0.0001
  INSS stage (stage 4 versus stages 1–3) 7.1 2.1 to 24.2 0.0003
  INSS stage (stage 3 and 4 versus stage 1 and 2) 13.6 1.8 to 101.7 0.0009
  MYCN status (amplified versus not amplified) 9.8 3.6 to 26.7 <0.0001
  Age (>1 year versus <1 year) 12.3 1.6 to 92.5 0.0017
  Shimada histology (unfavorable versus favorable) (n = 27) 19.9 2.4 to 166.1 0.0001
High-risk samples (n = 24)
  MYCN status (amplified versus not amplified) 3.5 1.2 to 10.0 0.01
  Top 19 ANN-ranked genes (poor signature versus good
signature)

∞* 0.0005

  All 37920 clones (poor signature versus good signature) 5.3 1.4 to 19.4 0.0067

NOTE. The Cox proportional hazards model was used to calculate all HRs and CIs. P values were calculated using the Mantel-Haenszel method.

Abbreviations: NB, neuroblastoma; COG, Children’s Oncology Group; INSS, International Neuroblastoma Staging System; HR, hazard ratio; CI,
confidence interval.

*
These hazard ratios are infinite, because none of the patients predicted to have good-outcome experienced an event (i.e., death).
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