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To move or not to move?
Semaphorin signalling in cell migration
Luca Tamagnone+ & Paolo M. Comoglio
University of Torino Medical School–IRCC, Candiolo, Italy

Semaphorins were discovered 11 years ago as molecular cues for
axon guidance that are conserved from invertebrates to humans.
More than 20 semaphorin genes have been identified in mammals
and their protein products are now known to be involved in a
range of processes from the guidance of cell migration to the regu-
lation of the immune response, angiogenesis and cancer. Plexins,
either alone or in association with neuropilins, constitute high-
affinity semaphorin receptors. However, other transmembrane
molecules have been implicated in semaphorin receptor complexes,
and interactions between plexins and a range of intracellular
effectors have been reported. These data indicate that sema-
phorins might be able to elicit responses through more than one
signalling pathway. Interestingly, according to recent findings, the
semaphorin-dependent control of cell migration crucially involves
integrin-based adhesive structures through which polarized cell-
membrane protrusion is coupled to cytoskeletal dynamics. This
review focuses on the mechanisms whereby semaphorins are
thought to regulate cell migration.
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Introduction
Semaphorins are members of a large, highly conserved family of
molecular signals that were identified initially through their role in
axon guidance (Kolodkin et al, 1993; Luo et al, 1993), and later
implicated in a range of functions from the guidance of cell migra-
tion and regulation of immune function, to angiogenesis and can-
cer (reviewed in Tamagnone & Comoglio, 2000). More than 20
mammalian semaphorin proteins are known and they are divided
into seven subclasses according to their structural features.
Vertebrate semaphorins in subclass 3 are secreted and are thought
to form steep tissue gradients. Several other semaphorins are associ-
ated with the cell surface, either as transmembrane proteins (sub-
classes 4, 5 and 6) or through glycosylphosphatidylinositol (GPI)
linkage (subclass 7). Therefore, semaphorins can mediate both

long- and short-range (or contact-mediated) signals (Fig 1).
Transmembrane semaphorins can also release a signalling-competent
extracellular domain (Wang et al, 2001) or trigger ‘reverse’ 
signalling by functioning as receptors (Hall et al, 1996;
Godenschwege et al, 2002). Moreover, some migrating cells and
axons express both receptors and ligands on the cell surface
(Winberg et al, 1998), or secrete semaphorins in an autocrine 
fashion (for example, see Serini et al, 2003; Catalano et al, 2004).

In vitro and in vivo experiments have implicated semaphorins in
the guidance of elongating axons and dendrites, as well as in axon
branching, axon pruning (Bagri et al, 2003) and axon degeneration
(for a review of neuronal functions, see He et al, 2002).
Furthermore, semaphorins act as guidance cues for a range of
migrating cells. For example, they control oligodendrocyte migra-
tion (Spassky et al, 2002) and are potentially involved in the glial
ensheathment of axons (Oster et al, 2003). The migration of neural
crest cells is regulated by semaphorins (Eickholt et al, 1999), and
defects in this process lead to the mispositioning of patterning cells
in the sclerotome and in the developing cardiovascular system
(Behar et al, 1996; Brown et al, 2001). Sema3A has a crucial role in
regulating endothelial cell migration and angiogenesis (Miao et al,
1999; Serini et al, 2003; Shoji et al, 2003), as well as in the topo-
graphic congruence of nerves and blood vessels (Bates et al, 2003).
Moreover, semaphorins regulate epithelial cell migration and mor-
phogenesis (Fujii et al, 2002; Ginzburg et al, 2002; Giordano et al,
2002), and leukocyte migration (Delaire et al, 2001).

Semaphorins have been mainly described as inhibitory signals
because they prevent cell migration and axon outgrowth, and
lead to the ‘collapse’ of both pseudopodia and axonal growth
cones. However, it has been shown that semaphorins can some-
times promote cell chemotaxis, and axon/dendrite outgrowth
and attraction (for example, see Polleux et al, 2000; Giordano 
et al, 2002; Moreno-Flores et al, 2003; Pasterkamp et al, 2003).
These opposing functional responses might entail signalling
pathways that are mediated by different semaphorin receptor
complexes, as discussed below. Furthermore, there is evidence
that semaphorin function can be modulated by the intracellular
levels of cyclic nucleotides, which convert a repellent into an
attractive cue (Song et al, 1998; Castellani et al, 2002). This indi-
cates that semaphorin signalling can be steered in different direc-
tions depending on the cross-talk between their receptors and
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other pathways. In fact, functional antagonism between sema-
phorins and neurotrophic/mitogenic factors, such as nerve
growth factor (NGF; Atwal et al, 2003), heregulin (HRG; Barberis
et al, 2004) and stromal-cell-derived factor 1 (SDF1; Chalasani 
et al, 2003), has been reported.

Semaphorin receptors and receptor complexes
High-affinity receptors for semaphorins have been identified. They
include the plexins, which are a family of large transmembrane mol-
ecules that are conserved from invertebrates to humans, and the
neuropilins (NP1 and NP2) that are found only in vertebrates
(Tamagnone & Comoglio, 2000). Membrane-bound vertebrate
semaphorins bind directly to plexins, whereas secreted semaphorins
(class 3) also require neuropilins as obligate co-receptors. Several
lines of evidence indicate that the cytoplasmic domain of plexins is
required for semaphorin signalling, whereas the small cytosolic tail
of neuropilins is dispensable. A recent study, however, revealed an
independent functional role for the cytoplasmic tail of NP1, which is
probably mediated through its PDZ (for PSD95, Discs-large and
ZO1)-domain binding sequence (Wang et al, 2003).

Recently, two molecules that are unrelated to plexins or neuro-
pilins, CD72 and Tim2, were found to interact functionally (although
at low affinity) with transmembrane semaphorins in the immune sys-
tem (Kumanogoh et al, 2000, 2002). Moreover, although GPI-linked
Sema7A is known to bind to plexin-C1 (Tamagnone et al, 1999), it
also has plexin-independent activity that is mediated by integrin-β1
(Pasterkamp et al, 2003).

Receptors on the plasma membrane often oligomerize in com-
plexes, which allows for cross-talk between different signalling
pathways. Semaphorin receptor complexes seem to be a good
example of these interaction centres (Fig 2). In fact, as well as
plexins and neuropilins, other transmembrane molecules are
functionally coupled to semaphorin receptors, including cell-
adhesion molecule L1 (Castellani et al, 2002), and the receptor-
type tyrosine kinases off-track kinase (OTK; Winberg et al, 2001)
and the hepatocyte growth-factor/scatter-factor receptor Met
(Giordano et al, 2002). For instance, in cells that express a com-
plex of plexin-B1 and Met, Sema4D can trigger Met activation
and intracellular signalling (Giordano et al, 2002). This leads to a
programme known as ‘invasive growth’, which is implicated in a
range of morphogenetic processes from neurite outgrowth to

branched tubulogenesis of epithelia, as well as in cancer invasion
and metastasis (Trusolino & Comoglio, 2002). Furthermore,
recent data show that other plexins of the B subfamily specifically
associate with the scatter-factor receptors Met and Ron (Conrotto
et al, 2004). Importantly, evidence indicates that semaphorins can
induce different functional responses, depending on the sig-
nalling molecules that are found in the receptor complex. For
example, Sema4D can mediate attraction through Met activation,
whereas it inhibits cell adhesion and cell migration through
plexin-specific and Met-independent signalling (Barberis et al,
2004). By analogy, Kikutani and co-workers have recently shown
that, in response to its newly identified ligand Sema6D, plexin-A1
can alternatively mediate attractive or repellent cues in different
cell populations, depending on its association with tyrosine
kinase receptors of vascular endothelial growth factors (VEGFs) or
with OTK (Toshihiko et al, 2004).

Neuropilins, in addition to binding secreted semaphorins, are
also VEGF co-receptors (Soker et al, 1998; Gluzman-Poltorak et al,
2001) and are crucially required for vascular development
(Kawasaki et al, 1999; Takashima et al, 2002). However, the mecha-
nisms by which neuropilins switch between semaphorin and VEGF
signalling are unclear. It has been shown that Sema3A competes
with VEGF165 for binding to NP1 and that it inhibits VEGF-mediated
function in endothelial cells (Miao et al, 1999), although recent data
challenge the relevance of this regulation in vivo (Gu et al, 2003).
Conversely, several experiments indicate that plexins have an impor-
tant role in the functional response to secreted semaphorins in
endothelial, epithelial and mesothelial cells (Bachelder et al, 2003;
Serini et al, 2003; Catalano et al, 2004), which suggests that secreted
semaphorins are more likely to regulate cell migration and 
angiogenesis through plexin-specific signalling than by inhibiting
VEGF-receptor activation.

Mechanisms of semaphorin-mediated cell guidance
Semaphorins guide both axonal extension and cell migration.
There are notable similarities (and some peculiarities) between
the leading edge of a migrating cell and that of an extending axon,
or the ‘growth cone’ (Dent & Gertler, 2003). We focus on the mol-
ecular mechanisms that are thought to mediate plexin function in
cell migration. This is a complex process that is regulated at many
levels (Ridley et al, 2003). To migrate, a cell must free its tethers to

Secreted semaphorins GPI-linked semaphorins Transmembrane semaphorins

Semaphorins Semaphorins receptors (plexins) Domain mediating reverse signallingDomain mediating forward signalling

Fig 1 | Semaphorin signalling modes. Semaphorins and their receptors might be expressed on distinct cell populations (shown in red and blue, respectively) or be 

coexpressed (pink). Secreted semaphorins mediate either paracrine or autocrine signals. Apart from classical forward signals, transmembrane semaphorins could also

trigger reverse signalling (mediated by their cytoplasmic domain) or be released into the extracellular space by proteolytic cleavage and so behave as secreted ligands.
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the extracellular matrix and sometimes to neighbouring cells
(such as in epithelia). It must then form polarized cellular protru-
sions (filopodia and lamellipodia), which requires actin polymer-
ization and new transient adhesive structures on the leading edge.
According to the prevailing view, these focal complexes are privi-
leged sites for Rac signalling and the polymerization of an actin
meshwork, which pushes forward the leading edge so that it
invades the surrounding tissue (Fig 3). Conversely, rear-edge
retraction and cell-body translocation require myosin-mediated
pulling on F-actin cables, which are anchored to stabilized focal
adhesions behind the leading edge. This mechanism is triggered
by Rho and Rho-dependent kinase (ROCK). Importantly, during
cell migration, leading protrusions might retract owing to
repelling signals or to the absence of permissive adhesive sub-
strates and chemoattractant cues. Moreover, the absence of sur-
vival factors can abort cell migration via apoptosis. Intriguingly,
semaphorins have been shown to mediate cell-to-cell repulsion,
regulate cell–substrate adhesion and actin polymerization,
induce retraction of cellular processes (a process often termed
‘cellular collapse’) and elicit cell apoptosis.

Although plexins must have a role in mediating these effects, the
signalling mechanisms that are triggered by the large conserved
cytoplasmic domain of these receptors are poorly understood. In
fact, this sequence is not notably related to any other found in the
databases and, although it bears limited similarity to GTPase-activating
proteins (Rohm et al, 2000), there has been no report of any catalytic
activity that is intrinsic to plexins. During the past two years, several
potential semaphorin signal transducers have been identified on the
basis of their association with plexins (for a review, see Pasterkamp
& Kolodkin, 2003). However, the specific role of these molecules in
semaphorin-mediated functions is still unclear.

The small GTPases of the Rho family are well-known regulators of
cytoskeletal dynamics, cell migration and axon guidance, and several
reports indicate that they have a role in semaphorin function. For
example, plexins of the B subfamily can associate with GTP/GDP

exchange molecules or Rho-GEFs, and induce Rho activation (for
example, see Perrot et al, 2002; Swiercz et al, 2002). However, the
functional role of the effector molecule ROCK in semaphorin sig-
nalling is debated (for example, see Jin & Strittmatter, 1997; Swiercz
et al, 2002; Oinuma et al, 2003; Barberis et al, 2004).

Moreover, human plexin-B1 and fly plexin B, but not other family
members, interact with activated Rac (Vikis et al, 2000; Driessens 
et al, 2001). It was suggested that these plexins sequester activated
Rac and antagonize its signalling pathway (Hu et al, 2001; Vikis 
et al, 2002). However, other evidence indicates that Rac activity is
required for semaphorin function, and possibly mediates actin
rearrangement, membrane transport and endocytosis (Jin &
Strittmatter, 1997; Fournier et al, 2000; Jurney et al, 2002; Vikis 
et al, 2002). Taken together, it seems that the available evidence
does not reach a consensus on the mechanisms whereby Rho
GTPases could mediate plexin signalling, and further experiments
are required to more fully determine their role as regulators of 
semaphorin functions.

Two recent reports have shown that semaphorins and plexins reg-
ulate integrin function in cell–substrate adhesion and cell migration
(Serini et al, 2003; Barberis et al, 2004). Serini and colleagues
showed that Sema3A inhibits the adhesion of endothelial cells to the
extracellular matrix (ECM) and impedes their directional motility,
which could explain the aberrant vascularization that is observed in
Sema3A-deficient mice. Moreover, we have shown that plexin sig-
nalling negatively regulates integrin-based adhesive complexes,
which leads to the inhibition of substrate adhesion, lamellipodia
extension and cell migration (Barberis et al, 2004). This study also
indicates that the plexin-mediated disassembly of adhesive struc-
tures is responsible for the typical collapsing response that is
observed in vitro.

Semaphorins, plexins and scatter-factor receptors all contain a
sema domain, which is a conserved sequence of approximately
500 amino acids. Intriguingly, this domain and the extracel-
lular domain of α-integrins have a similar structural motif, the 
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Fig 2 | Semaphorin receptor complexes. Plexins bind semaphorins (SEMAs) and can form receptor complexes with neuropilins 1 and 2 (NP1/2), with cell-

adhesion molecule L1 (L1-CAM) and with receptor tyrosine kinases, such as off-track kinase (OTK), scatter-factor receptors (SFRs) and vascular endothelial

growth factor receptors (VEGFRs). Neuropilins act as co-receptors for both secreted semaphorins and VEGFs. Integrins are receptors of extracellular matrix

components, but integrin-β1 also mediates Sema7A activity. CD72 is a low affinity receptor for Sema4D. GPI, glycosylphosphatidylinositol; TM, transmembrane.
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β-propeller module, which is thought to act as a homo- and 
heterodimerization motif (Antipenko et al, 2003; Gherardi et al,
2003; Love et al, 2003). In addition, all sema domains are flanked
by short, conserved cysteine-rich motifs (the Met-related
sequence (MRS), also known as the plexin–semaphorin–integrin
(PSI) domain) that are similar to sequences found in the extracel-
lular domain of β-integrins (Bork et al, 1999). Until now, a direct
interaction between integrins and plexins has not been reported,
although their structural similarity could reflect the phylogenetic
conservation of functional domains. For example, the extracellu-
lar domain of integrins is flexed in the inhibited conformation and
straight in the active conformation. By analogy, it is proposed that
the sema domain of plexins acts as an inhibitory moiety by steric
hindrance, which is displaced on ligand binding (Takahashi &
Strittmatter, 2001; Antipenko et al, 2003).

Furthermore, as mentioned earlier, the GPI-anchored sema-
phorin Sema7A activates integrin-β1 and mitogen-activated protein
kinase (MAPK) signalling in a plexin-independent manner
(Pasterkamp et al, 2003). This indicates that semaphorins can regu-
late integrin-mediated adhesion by at least two distinct mechanisms.

It is known that cell migration is inhibited by both lack of adhe-
sion and the presence of stiff non-dynamic adhesive structures
(Webb et al, 2002). In fact, signals that release cell-substrate adhe-
sion are normally required to start cell migration, whereas sustained
inhibition of integrin function blocks cell motility and eventually
leads to the passive retraction of pseudopodia. By impinging on this
delicate balance, semaphorins could potentially act both as permis-
sive and as inhibitory cues for lamellipodia extension and cell
migration. Moreover, as integrin signalling is required for cell sur-
vival and proliferation (Stupack & Cheresh, 2002), its sustained inhi-
bition might account for the reduced growth and apoptotic events
that are observed in semaphorin-treated cells (for example, see
Tomizawa et al, 2001).

Semaphorins and cancer
The involvement of semaphorins in cancer progression is suggested
by several reports. For example, the overexpression of secreted
semaphorins Sema3E and Sema3C is associated with the invasive
and metastatic behaviour of tumour cells (Yamada et al, 1997;
Christensen et al, 1998). However, Sema3B and Sema3F are putative
oncosuppressor genes that undergo gene deletion or promoter
hypermethylation in human tumours (Tomizawa et al, 2001; Xiang
et al, 2002; Kuroki et al, 2003). The mechanisms that mediate these
opposing effects are largely unknown at present. They could depend
on both cell-autonomous effects on tumour cell motility and cell
survival, and on the paracrine regulation of the tumour environment,
for example, neo-angiogenesis and leukocyte chemotaxis. As dis-
cussed above, secreted semaphorins might negatively regulate
VEGF-receptor-mediated signalling by sequestering the shared 
neuropilin co-receptors or they could trigger plexin signalling to reg-
ulate cell adhesion and cell migration, and potentially induce apop-
tosis. For example, Sema3A inhibits endothelial cell migration and
tumour cell growth in vitro in a neuropilin- and plexin-dependent
manner (Serini et al, 2003; Catalano et al, 2004). In addition, recent
studies have shown that VEGF can act as a survival and chemotactic
factor for cancer cells in a VEGF-receptor-independent manner,
probably by antagonizing the activity of semaphorins that is mediated
by neuropilin/plexin complexes (Bachelder et al, 2003).

Conversely, membrane-bound semaphorin Sema4D (which is
unable to bind neuropilins) can trigger the activation of the onco-
genic receptor Met, which is associated with plexin-B1 on the cell
surface. This confirms that semaphorins can regulate cancer progres-
sion both positively and negatively through distinctive pathways.
Future studies will be required to elucidate the network of these
molecular mechanisms, and to define whether specific semaphorins
and semaphorin receptors should be regarded as promoters or 
suppressors of cancer progression.

I.
Adherent spread cell

II.
Actin polymerisation
and cell protrusion
at a leading edge
(lamellipodium).
New adhesive 
structures.
Rho inactivation,
Rac activation.

III.
New stabilized 
focal adhesions. 
Rho activation. 
Connection with 
F-Actin cables. 
Advancement of 
the leading edge.

IV.
Rho-kinase depen-
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Cell contraction.
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Fig 3 | Actin cytoskeleton and focal adhesive structures in lamellipodia extension and cell locomotion. F-actin cables are shown in black. Stabilized focal adhesions are

indicated by red bars. The patterned areas at the leading edge indicate the membrane-pushing actin meshwork. Blue bars indicate newly formed transient focal

complexes. The advancement of the leading edge correlates with the maturation of focal complexes into stabilized structures that are connected to F-actin cables.
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Conclusions and future perspectives
Our understanding of the signalling pathways that are elicited by
semaphorins is still incomplete. GTPases of the Rho family are candi-
date signal transducers of the plexins; however, evidence of the direct
mechanisms through which they are involved is lacking. Recent find-
ings indicate that plexin signalling regulates integrin-based adhesion,
although the molecular mechanisms still need to be defined.

A few years ago, we proposed that semaphorins could guide cell
migration through ‘stop or go’ signals in addition to their role in axon
guidance. So far, we know that, by modulating integrin function and
cytoskeletal dynamics in a site-specific manner, plexins can guide
directional lamellipodia extension and cell motility. Moreover,
recent evidence shows that plexins can couple to many other cell-
surface signalling molecules. A better understanding of the mecha-
nisms that regulate these interactions could be key to explaining the
spectrum of functional responses that are mediated by semaphorins
in different cells and tissues, including the control of such complex
processes as tubular morphogenesis, angiogenesis, the immune
response and the invasive growth of cancers.
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