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Budding yeast Sgt1 is required for kinetochore assembly, and its
homologues have a role in cAMP signalling in fungi and pathogen
resistance in plants. The function of mammalian Sgt1 is unknown.
We report that RNA interference-mediated depletion of Sgt1
from HeLa cells causes dramatic alterations of the mitotic spindle
and problems in chromosome alignment. Cells lacking Sgt1
undergo a mitotic delay due to activation of the spindle
checkpoint. The checkpoint response, however, is significantly
weakened in Sgt1-depleted cells, and this correlates with a
dramatic reduction in kinetochore levels of Mad1, Mad2 and
BubR1. These effects are explained by a problem in kinetochore
assembly that prevents the localization of Hec1, CENP-E, CENP-F,
CENP-I, but not CENP-C, to mitotic kinetochores. Our studies
implicate Sgt1 as an essential protein and a critical assembly
factor for the mammalian kinetochore, and lend credit to the
hypothesis of a kinetochore assembly pathway that is conserved
from yeast to man.
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INTRODUCTION
Kinetochores assemble on centromeric DNA to mediate the
interaction of chromosomes with the mitotic spindle (Cleveland
et al, 2003). Mammalian kinetochores exist during interphase as
pre-kinetochores, poorly characterized structures containing a
subset of the mitotic kinetochore markers (Pluta et al, 1995).
CENP-A, -B, -C, -G, -H and -I reside at kinetochores throughout
the cell cycle, whereas CENP-E, CENP-F, Hec1 (homologue of
budding yeast Ndc80p) and the components of the spindle

checkpoint are only present on mitotic kinetochores (Cleveland
et al, 2003). The mechanisms of pre-kinetochore and mitotic
kinetochore assembly in mammals are largely uncharacterized.
We report that assembly of human kinetochores critically requires
Sgt1 (also known as Sugt1; Kitagawa et al, 1999). Budding yeast
Sgt1p binds Skp1p to assemble the Cbf3p complex, the core
component of the kinetochore in this organism (Kitagawa et al,
1999). Sgt1 is also required for pathogen resistance in plants
(Gray, 2002). These functions probably derive from Sgt1 binding
to Hsp90, of which Sgt1 may be a co-chaperone (Garcia-Ranea
et al, 2002; Hubert et al, 2003; Liu et al, 2003b; Lu et al, 2003;
Takahashi et al, 2003; Lee et al, 2004). Sgt1 has not been
characterized in mammals. We report here that the phenotype of
RNA interference (RNAi)-mediated Sgt1 depletion in HeLa cells
defines an essential role in kinetochore assembly.

RESULTS AND DISCUSSION
HsSgt1 exists in two isoforms due to alternative splicing (Niikura &
Kitagawa, 2003). We designed short interfering RNA (siRNA)
duplexes (Elbashir et al, 2001) that silenced both isoforms in HeLa
cells. Sgt1 levels were greatly reduced between 48 and 72 h after
siRNAs transfection (Fig 1A and supplementary Fig 1 online).
Concomitantly, there was an accumulation of 4N cells becoming
predominant at 72 h (Fig 1B). At 96 h, there was a large sub-G1
population, indicative of cell death. Time-lapse microscopy
showed that HeLa cells lacking Sgt1 round up and are
subsequently delayed in mitosis for several hours, finally exiting
mitosis aberrantly without dividing and becoming multinucleated
(Fig 1C). We applied a trivariate flow cytometry protocol to cor-
relate DNA content with cyclin B1 (high during the entire G2–M)
and H3-P (M-phase marker). Accumulation of H3-P-positive 4N
cells between 48 and 72 h was observed, indicative of mitotic
arrest (Fig 1D). In addition, a large fraction of 4N cells was
negative for G2 or M markers, indicative of tetraploid G1 cells.
Time-lapse microscopy suggests that these cells result from
aberrant mitotic exit caused by loss of Sgt1. Thus, cells lacking
Sgt1 are temporarily delayed in mitosis and eventually become
tetraploid G1 cells after failing to divide.

To investigate the cause of mitotic delay, we visualized mitotic
spindle and kinetochores. This revealed severe chromosome
congression and alignment problems (Fig 2, panels A4–A9). Cells
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presented a disordered mass of often hyper-condensed chromo-
somes, most of which had failed to align. Rare metaphase
configurations were observed, but one or more unaligned
chromosomes were always detected. Multipolar spindles and
fragmented spindle poles were also frequent (see also Fig 2, panels
B2 and B3), and many cells contained micronuclei, indicative of
G1 cells that had aborted mitosis.

Problems in chromosome alignment activate the mitotic
spindle checkpoint (MSC) (Musacchio & Hardwick, 2002). We
asked whether the MSC was responsible for mitotic delay caused
by Sgt1 depletion. MSC proteins Mad1 and Mad2 are recruited to
kinetochores before microtubule–chromosome attachment or if
microtubule–kinetochore interactions are disrupted with spindle
poisons (Musacchio & Hardwick, 2002). Within the detection
limits of our experiment, the kinetochores of Sgt1-depleted cells
appeared to be devoid of Mad1 even after addition of nocodazole
(Fig 3A,B). The same was true for Mad2 (not shown). At times, a
faint signal was observed near a small number of kinetochores
(1–3) in nocodazole-treated cells, but at markedly reduced levels
relative to control cells (not shown). Of note, BubR1 was also
unable to localize to the kinetochores of Sgt1-depleted cells
(Fig 3C).

Thus, depletion of Sgt1 causes a severe reduction of the
kinetochore levels of three MSC components. It has been shown,
however, that the MSC is maintained under conditions that cause
a substantial decrease of kinetochore Mad1 and Mad2 (Martin-
Lluesma et al, 2002; DeLuca et al, 2003). To test if Mad2 was
required to maintain the mitotic arrest caused by loss of Sgt1, we
silenced Sgt1 and Mad2 by RNAi (Fig 3D,E). The accumulation of
mitotic cells caused by Sgt1 loss was relieved by Mad2 depletion,
indicating that the MSC is activated after loss of Sgt1 despite
substantial kinetochore depletion of Mad1, Mad2 and BubR1
(Fig 3E). Sgt1-depleted cells, however, remain arrested in mitosis
for 11 h on average, significantly shorter than the average 24-h
arrest on addition of nocodazole (Fig 3F). In principle, this may
indicate that sister chromatids slowly achieve bipolar attachment,
a condition that satisfies the MSC allowing transit through mitosis.
In this case, cells would be expected to arrest longer (24 h or more
as in control cells) if the process of kinetochore–microtubule
attachment was reverted. Addition of nocodazole to cells lacking
Sgt1, however, did not restore a normal duration of the MSC
(Fig 3F), which remained limited to 11 h. The proportion of mitotic
cells was also the same with or without nocodazole (compare
Fig 3E with Fig 3G) or taxol (not shown). This shows that cells do
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Fig 1 | Silencing of Sgt1 affects progression through mitosis. (A) Western blot of HeLa cell lysates harvested at the indicated time points after transfection

with siRNA duplexes against Sgt1. Control injections of anti-luciferase (Luc) siRNAs are also shown. Both splicing isoforms of Sgt1 are silenced. (B) DNA
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not exit mitosis because the MSC has been satisfied, and we
conclude that depletion of Sgt1 reduces the potency of MSC
response.

Alterations of the mitotic spindle and decreased levels of
kinetochore Mad1 and Mad2 have been observed after depletion
of kinetochore proteins such as Hec1, Nuf2, CENP-C, CENP-E or
CENP-I (Wood et al, 1997; Fukagawa et al, 1999; McEwen et al,
2001; Martin-Lluesma et al, 2002; Nishihashi et al, 2002; DeLuca
et al, 2003; Liu et al, 2003a), suggesting the possibility that Sgt1
depletion causes damage to kinetochores. We probed a subset of
kinetochore markers by confocal immunofluorescence analysis
of Sgt1-depleted HeLa cells. Hec1 did not localize to mitotic
kinetochores (Fig 4A). The same was true for CENP-E and CENP-F
(Fig 4B,C). Next, we addressed constitutive kinetochore residents.
CENP-I, an inner kinetochore protein, was missing from kineto-
chores of Sgt1-depleted cells (Fig 4D). CENP-C, conversely,

localized normally (Fig 4E). Because CENP-C requires CENP-A for
kinetochore localization in HeLa and other cell types (Howman
et al, 2000; Van Hooser et al, 2001; Goshima et al, 2003), we
assume that CENP-A localization is not affected. Consistently,
CENP-I is not required for CENP-A or CENP-C localization in
HeLa cells (Goshima et al, 2003; Liu et al, 2003a).

Depletion of Sgt1 results in a marked alteration of kineto-
chores. All mitotic kinetochore markers and one pre-kinetochore
marker tested (Mad1, Mad2, BubR1, Hec1, CENP-E, and CENP-F,
CENP-I) were mislocalized. Loss of kinetochore integrity activates
an MSC response of reduced potency, with cells exiting mitosis
aberrantly (presumably because they cannot complete attach-
ment), becoming tetraploid G1 cells and eventually dying
(supplementary Fig 2 online). Reduced potency of the MSC
correlates with extensive kinetochore damage caused by Sgt1
depletion, and the residual MSC response may be due to traces of
Mad1 and Mad2 at kinetochores of Sgt1-depleted cells. A clear
understanding of the mechanisms of MSC signal amplification is
required to address this issue rigorously. Our phenotype is similar
to the one caused by loss of CENP-I: chromosome misalignments,
scrambled spindles, mislocalization of CENP-F, a failure to
complete cytokinesis, a dramatic reduction of kinetochore
Mad1 or Mad2, and a mitotic delay of reduced potency relative
to control cells (Nishihashi et al, 2002; Goshima et al, 2003;
Liu et al, 2003a). Cells lacking CENP-I, however, retain
kinetochore BubR1, which is lost from kinetochores of cells
lacking Sgt1 (Liu et al, 2003a).

What are the parallels between Sgt1 function in yeast and
human cells? Budding yeast SGT1 is a dosage suppressor of SKP1.
In this organism, Skp1 is a component of the Cbf3p kinetochore
complex and of the SCF ubiquitin–ligase (Kitagawa & Hieter,
2001), and its binding to Bub1 is required for mitotic delay
induced by kinetochore tension defects (Kitagawa et al, 2003).
Sgt1p does not incorporate into Cbf3p and may be required to
activate the Ctf13p subunit, a step also involving Skp1p and
Hsp90 (Kaplan et al, 1997; Kitagawa et al, 1999; Stemmann et al,
2002). Our discovery that the function of Sgt1 in kinetochore
assembly is conserved in humans suggests the intriguing
possibility that the budding yeast and mammalian kinetochores
share their assembly pathway. With the exception of SKP1, the
vertebrate homologue of which has not been linked to kineto-
chore assembly and does not seem to localize to kinetochores of
animal cells (Freed et al, 1999; Gstaiger et al, 1999), the
homologues of genes encoding the Cbf3p complex have not been
identified in other species. Human Sgt1 is a highly soluble protein
with nuclear and cytoplasmic localization that is not visible at
kinetochores (SF 1). Sgt1 is devoid of catalytic domains, but
contains protein interaction motifs such as TPR and p23 repeats.
The latter identify Sgt1 as Hsp90 co-chaperone (Garcia-Ranea
et al, 2002; Hubert et al, 2003; Liu et al, 2003b; Lu et al, 2003;
Takahashi et al, 2003; Lee et al, 2004). Co-chaperones are
specificity factors that direct chaperones to specific classes of
substrates in localized functional contexts (Young et al, 2003).
In view of these findings, we speculate that Sgt1 may act as a
kinetochore assembly factor controlling kinetochore incorporation
of CENP-I and/or other unknown kinetochore components.
Alternatively, cells lacking Sgt1 may be unable to retain CENP-I
and other proteins to the centromere region. The fundamental
role of Sgt1 in kinetochore assembly suggests that Sgt1 may be the
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vehicle leading us to the identification of the core constituents of
the mammalian kinetochore.

METHODS
Cell culture and RNA interference. HeLa cells were cultured in
high-glucose Dulbecco’s modified Eagle’s medium with 10% fetal
bovine serum (Life Technologies) in a humidified 37 1C incubator
with 5% CO2. Sgt1 siRNA (50-AAGGCUUUGGAACAGAAACCA-
30, top strand) was from Dharmacon, Inc. (USA). siRNAs targeting
Mad2 (50-AAGAGUCGGGACCACAGUUUA-30, top strand) and
GL2 luciferase have been described (Martin-Lluesma et al, 2002).
We transfected annealed double-stranded siRNAs into HeLa cells

using oligofectamine reagent (Invitrogen). 5-Bromodeoxyuridine
(BrdU) and nocodazole (Sigma) were used at 33mM and 200 ng/ml,
respectively.
Antibodies. Human Sgt1 (NM_006704) was subcloned into
pRSET-B (Invitrogen) and expressed in a soluble form in
Escherichia coli BL21(DE3) (Invitrogen) after induction with
0.2 mM isopropyl-b-D-thiogalactoside at 37 1C for 3 h. The
purified protein was concentrated to 10 mg/ml and used for
immunization. Mad1 and Mad2 were expressed and purified as
described (Sironi et al, 2001) and used for immunization. Mouse
monoclonal antibodies (mAbs) against Sgt1 and Mad1 were
generated by fusing the splenocytes to NS-2 mouse myeloma cells
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3 days after the final boost. Single-cell cloning was used to
generate cell lines producing mouse mAbs against Sgt1 (An32
and Ci47) and Mad1 (A. De Antoni and A. Musacchio,
unpublished). A rabbit anti-Mad2 polyclonal antiserum was raised

by immunization with pure 6His-Mad2. We used mouse mAbs
against g-tubulin (Sigma) and Sgt1 (BD Biosciences), and rabbit
polyclonal antibodies against a-tubulin (Sigma) and CENP-F
(Novus-Biologicals). Mouse mAb against BubR1 was purchased
from Chemicon International. Anti-centromere autoimmune ser-
um (CREST) was from Antibodies Inc. Rabbit polyclonal anti-
bodies against CENP-I, Hec1 and CENP-C have been described
(Saitoh et al, 1992; Martin-Lluesma et al, 2002; Liu et al, 2003a).
Immunodetection. Cells grown on coverslips pretreated with
15mg/ml poly(D)lysine (Sigma) were fixed in 4% paraformaldehyde
in PIPES buffer (80 mM PIPES 5 mM EGTA, 2 mM MgCl2) for 5 min,
treated with phosphate-buffered saline (PBS) plus 0.1% Triton X-
100 for 10 min, and washed three times in PBS for 5 min. In the
case of Hec1, the cells were incubated for 5 min in extraction
buffer (0.1% Triton X-100, 100 mM PIPES, 300 mM sucrose, 1 mM
EGTA, 1 mM MgCl2) before fixation in 4% paraformaldehyde.
Primary antibodies diluted in PBS were applied to the coverslips
and incubated for 60 min before PBS washing. Secondary
antibodies against mouse, rabbit and human conjugated to Cy5,
or AlexaFluor 488 were typically diluted 1:150. DNA was stained
with 50mg/ml propidium iodide (PI) for 30 s.
Microscopy. Wide-field fluorescence microscopy images were
acquired using a BX61 (Olympus) motorized fluorescence
microscope equipped with a B/W cooled CCD camera (C5985
Hamamatsu). A Bio-Rad MRC 1024 confocal microscope
equipped with a 20 mW Kr–Ar laser was used for confocal
analysis. Time-lapse microscopy was performed with an IX70
inverted microscope (Olympus) equipped with an incubation
chamber (Solent Scientific). The system includes a digital camera
(Sensys, Roper Scientific) to acquire high-resolution images.
Microscope stage motorization, filter wheels and image acquisi-
tion and processing were controlled by Metamorph (Universal
Imaging).
Flow cytometry. To detect cyclin B1, phosphoH3 and DNA, cells
were washed with PBS, detached from tissue culture plates and
fixed in suspension at 2� 106 cells/ml in 1% formaldehyde in PBS
for 15 min at different time points after siRNA transfection. After
PBS washing, the pellet was resuspended in ice-cold 70% ethanol
and stored at 4 1C. For immunodetection, cells were washed twice
in PBS and permeabilized in 0.1% Triton X-100 in PBS for 10 min.
After blocking in 5% normal goat serum (NGS) in PBS for 20 min,
cells were incubated with 2.5 mg/ml anti-cyclin B1 mouse mAb
(Pharmingen) and anti-P-H3 rabbit polyclonal antibody (Upstate)
1:100 in PBS plus 1% NGS for 3 h at 37 1C. Cells were rinsed in
PBS and incubated for 1 h with FITC-conjugated goat anti-mouse
(1:50, Sigma) and Cy5-conjugated goat anti-rabbit (1:50, Jackson
Immunoresearch) antibodies. Cells were washed again and

Lu
c 

si
R

N
A

S
gt

1 
si

R
N

A

CREST DNA Hec1 Merge

Lu
c 

si
R

N
A

S
gt

1 
si

R
N

A

CREST DNA CENP-F Merge

Lu
c 

si
R

N
A

S
gt

1 
si

R
N

A

CREST DNA CENP-I Merge

Lu
c 

si
R

N
A

S
gt

1 
si

R
N

A

CREST DNA CENP-C Merge

D

E

A

C

S
gt

1 
si

R
N

A
Lu

c 
si

R
N

A

CREST DNA CENP-E Merge

B

Fig 4 | A kinetochore defect in Sgt1-depleted HeLa cells. (A) Localization of

Hec1 to kinetochores was compared in control and Sgt1-depleted cells in

the absence of spindle poisons. The CREST antiserum stains the inner

kinetochore. In control cells, Hec1 is localized at the periphery of CREST

staining. There was no kinetochore localization of Hec1 after Sgt1

depletion. (B) Localization of CENP-E to the outer kinetochore is affected

by loss of Sgt1. (C) Localization of CENP-F is also affected, whereas there is

substantial residual cytoplasmic staining. (D) CENP-I is absent from the

inner kinetochore of cells lacking Sgt1. (E) Localization of CENP-C is

unaffected.

b

Function of human Sgt1 in kinetochore assembly

P. Steensgaard et al

EMBO reports VOL 5 | NO 6 | 2004 &2004 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

630



resuspended in 1 ml of a solution containing 1 mg/ml PI (Sigma) in
PBS and 12.5 ml RNase 1 mg/ml in PBS and stained overnight at
4 1C before acquisition. To detect BrdU and DNA, exponentially
growing cells were incubated with 30mM BrdU (Calbiochem
Corp.) for 16 h at 37 1C, fixed in 70% ethanol and kept at 4 1C.
After DNA denaturation, the cells were washed in 0.1 M sodium
tetraborate (pH 8.5). Cells were permeabilized with 0.1% Triton
X-100 in PBS (Sigma), and incubated with 200 ml of anti-BrdU
mAb (Becton Dickinson) diluted 1:5 in PBS plus 1% NGS for 1 h
at 20 1C in the dark. After three PBS washings, the pellet was
incubated with 200 ml of FITC-conjugated goat anti-mouse anti-
body (Sigma) diluted 1:50 in PBS plus 1% NGS. For DNA
quantification, cells were finally resuspended in 2 ml of PI solution
containing 2 mg/ml PI in PBS and 25ml of RNase 1 mg/ml in water,
and stained overnight at 4 1C in the dark. Samples were acquired
on a FACSCalibur (Becton Dickinson) flow cytometer. At least
10,000 events were acquired. Analysis was performed using
CellQuest 3.3 (Becton Dickinson).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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