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The plastid genome is transcribed by two distinct RNA
polymerases, the PEP encoded by the plastid genome and the
NEP encoded in the nucleus. Initial models of plastid transcrip-
tion held that the NEP is responsible for the transcription of
housekeeping genes needed early in development, and that the
PEP transcribes genes required for photosynthesis. Recently, this
model was challenged by the discovery that all plastid genes are
transcribed by NEP in PEP-deficient tobacco plastids, suggesting
that mRNA turnover may have a strong role in previously
observed transcription patterns. In this study, we provide
evidence that the NEP enzyme level decreases as plastids mature.
In contrast, production of mRNAs by NEP increases as plastids
mature, yet their accumulations remain constant. These results
suggest that as plastids mature NEP may become more active, and
that mRNA turnover varies between transcripts synthesized by
NEP and PEP.
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INTRODUCTION
The plastid genome is transcribed by two distinct RNA polymerases
(RNAPs). These are the plastid-encoded RNAP (PEP), which
resembles eubacterial RNAPs in terms of its multisubunit archi-
tecture and requirement for sigma factors, and the nucleus-encoded
polymerase (NEP), the core catalytic subunit of which resembles
those of T3/T7 phage RNAPs (Liere & Maliga, 2001). So far, studies
have shown that plastid T7-like RNAPs are nearly ubiquitous, with
direct evidence in Physcomitrella patens (Richter et al, 2002),
tobacco (Kobayashi et al, 2001; Hedtke et al, 2002), wheat (Ikeda &
Gray, 1999) and maize (Chang et al, 1999), but apparently lacking
in Chlamydomonas (Eberhard et al, 2002). Each RNAP recognizes
its own family of promoters (Liere & Maliga, 2001). The PEP

promoters generally have the bacterial s70 recognition sequences
composed of canonical �35 and �10 elements. NEP promoters
generally feature a YRTA consensus; however, a second class of
NEP promoters has been termed exceptional, due to their lack of a
recognizable consensus sequence (Weihe & Börner, 1999), and
may be transcribed by another form of NEP.

Accepted models of chloroplast transcription posit a devel-
opmentally regulated division of labour between the two
enzymes. In this scenario, NEP promoters are most active in
tissues with undifferentiated plastids, their usage declines as
chloroplasts mature, and ultimately some NEP promoters may be
silent in mature chloroplasts. In turn, PEP promoters become
increasingly active, corresponding to the elaboration of the
photosynthetic machinery. This model is supported by RNA gel
blot analysis of PEP-deficient plants and cell lines, where only a
few plastid transcripts are abundant, suggesting that PEP is
required for the majority of transcription. Furthermore, these
NEP-transcribed mRNAs were often more abundant in PEP-
deficient than in wild-type cells, suggesting that there might be
a developmental regulation of NEP, and/or a dynamic relationship
between the abundance and/or activities of PEP and NEP (Han
et al, 1993; Hess et al, 1994; Allison et al, 1996; Silhavy & Maliga,
1998a,b; Kapoor & Sugiura, 1999).

Recent re-examination of transcription in PEP-deficient tobac-
co using a genomic microarray approach (Krause et al, 2000;
Legen et al, 2002), however, demonstrated that all plastid genes
could still be transcribed by NEP to some degree. This is
inconsistent with a simple division of labour. Instead, it implies
that the abundance of NEP-derived transcripts seen in PEP-
deficient cells using RNA gel blot analysis might be due to a
combination of relaxed promoter specificity, increased transcrip-
tional readthrough and subsequent processing, and/or increased
RNA stability. Without direct knowledge of NEP activity, and by
using PEP-deficient mutants, it is difficult to reconcile models for
NEP/PEP dynamics in one of which NEP is a general enzyme and
in the other a specialized enzyme. Instability of some NEP-derived
transcripts in immature plastids would be consistent with the fact
that differential RNA stability related to plastid development is
well known, both in monocots and dicots (Klaff & Gruissem,
1991; Kim et al, 1993).
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Here, we have used maize to focus on how NEP is regulated
during plastid development, in a wild-type rather than mutant
context. Unlike dicot systems, maize has a single plastid NEP,
termed RpoTp (Chang et al, 1999), and maize leaves have a
developmental gradient of proplastids to chloroplasts from base to
tip (Leech et al, 1973), allowing comparisons within a single
organ. Our results show that the RpoTp protein level decreases
with plastid maturity, yet transcription of RNAs with NEP
promoters increases. These transcripts also accumulate relatively
equally regardless of the state of plastid development. This
suggests that these transcripts become increasingly less stable,
the opposite of that seen for RNAs transcribed from genes with PEP
promoters. In the light of these and other findings, we present a
revised model for the developmental regulation of plastid
transcription and RNA stability.

RESULTS
RpoTp becomes less abundant as plastids mature
Current models suggest that NEP is more active in proplastids,
implying that the catalytic subunit would be more abundant in
immature or nonphotosynthetic plant tissues. As this has not been
addressed experimentally, we examined the distribution of RpoTp
in developing plastids using immunoblot analysis. To do so, we
used an antibody raised against recombinant maize RpoTp (Chang
et al, 1999). Because RpoTp is homologous to the mitochondrial
enzyme RpoTm, we examined the specificity of the antibody using
recombinant RpoTm and RpoTp, as shown in Fig 1A. The
antibody readily recognized both proteins; however, no clear
signal was detectable in leaf total protein extracts, as previously
reported for RpoTm (Chang et al, 1999).

To examine the accumulation of the RpoT proteins, partially
emerged leaves were dissected from 6- to 8-week-old maize
plants and divided into nine equal parts. Section 1 represents the
base of the leaf (immature yellow plastids) and section 9 the tip of
the leaf (mature chloroplasts). Tissues from sections 1, 5, 7 and 9
were macerated, and fractions enriched in either plastids or
mitochondria were collected by differential centrifugation.
Equal amounts of protein were analysed from each sample, as
shown in Fig 1B.

The antibody detected immunoreactive species in both
plastid and mitochondrial fractions, as expected, with migration
in the 100–110 kDa range, again as previously reported for
RpoTm and as predicted by the RpoTp amino-acid sequence
(Chang et al, 1999). The results showed that RpoTp and RpoTm
both decreased as leaf cells mature, becoming barely detectable in
section 9. This observation agrees with the previous observation
of RpoTp and RpoTm transcript accumulation across a similar
developmental gradient (Chang et al, 1999). RpoTm apparently
accumulates in several forms; the significance of this observation
is unknown.

We tested the fidelity of our enriched fractions with anti-
bodies raised against organelle-specific proteins (Rubisco LS
and cytochrome f for plastids; MnSOD for mitochondria).
RbcL accumulation is light independent (Nelson et al, 1984),
and was thus detected in all of the plastid-enriched fractions.
Because LS was also detected in the mitochondria-enriched
fractions, these fractions were to some degree contaminated
with plastid material. This was confirmed by analysis of Cytf,
a developmentally regulated membrane subunit of the b6f

complex, the accumulation of which increased across the
developmental gradient and was also visible contamina-
ting mitochondrial fractions. Mitochondrial contamination of
plastids was assessed using anti-MnSOD, which recognizes the
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Fig 1 | RpoT protein levels decrease during plastid maturation. (A) Total

protein from uninduced (U) Escherichia coli and cells induced by

arabinose expressing recombinant RpoTm or RpoTp, or total leaf protein

(L), was separated for immunoblot analysis and probed with a maize

anti-RpoT antibody at 1:2,000 dilution. (B) Leaves from 6-week-old

maize plants were divided into nine equal sections, and plastid and

mitochondrially enriched fractions were extracted from the indicated

sections. A 20 mg portion of protein from each fraction was used for

immunoblot analysis using the antibodies shown on the right. Antibodies

are described in Methods and were used at dilutions of 1:2,000 (RpoT

and MnSOD) or 1:5,000 (RbcL and Cytf). Molecular mass standards are

shown on the left.
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constitutive mitochondrial manganese superoxide dismutase
encoded by Arabidopsis MSD1 (Kliebenstein et al, 1998). In our
samples, MnSOD was detected in all of the mitochondrially
enriched fractions but not in the plastid-enriched fractions from
sections 5–9, although a slight contamination was evident in
section 1, reflecting the difficulty of separating proplastids and
mitochondria. This suggests that the amount of RpoTp in section 1
is slightly over-represented, but is still at a maximum in this
section, decreasing thereafter.

Two mRNA patterns in developing chloroplasts
If the RpoTp levels detected in Fig 1B limit transcription activity, a
substantial decrease in the accumulation of mRNAs driven by NEP
promoters should occur during chloroplast maturation. Previously
published results have suggested that in maize some plastid genes
are preferentially transcribed by NEP (such as rpl2, rpl23, clpP and
rps15), others by PEP (e.g. rrn16, rbcL, psbA, psaI, as well as the
majority of remaining genes) and at least one by both (atpB)
(Silhavy & Maliga, 1998a). To test transcript accumulation, RNA
was analysed from sectioned leaves (as in Fig 1B), mature leaves
and 7-day-old green or etiolated coleoptiles.

Two patterns of mRNA abundance are apparent from the filter
hybridizations shown in Fig 2. Transcripts of rrn16, rbcL, psbA,
psaI and atpB, transcribed exclusively or mainly by PEP, increase
markedly as proplastids develop into chloroplasts, and in fact all
except rrn16 and atpB are undetectable in the first leaf section. In
contrast, accumulation of the NEP-transcribed RNAs rpl23, clpP
and rpl2 changed little during plastid development, although
rpl23 increased slightly in sections 4–8. Transcript levels in
etiolated coleoptiles closely matched those seen in the immature
leaf plastids. The stable NEP-derived transcript levels across the
plastid developmental gradient suggest that the decrease in RpoTp
seen in Fig 1B does not translate directly into reduced mRNA
abundance.

Transcription activity increases as plastids mature
As RNA gel blots cannot distinguish between changes in
transcription activity and RNA stability, an in vitro run-on assay
was used to assess the production of transcripts in leaf sections,
mature leaves and etiolated coleoptiles. As shown in Fig 3, as
plastids mature, the transcription activity increases (columns 1, 5
and 9). On reaching maturity (column L), transcription stabilizes,
with some genes remaining active (rrn16, rbcL and psbA) and
others decreasing modestly (psaI, atpB, rpl2, rpl23 and clpP).
Transcription in etiolated coleoptiles (column Cd) resembles that
in the base of the immature leaf (column 1).

Increased transcription during plastid development is not
surprising for the PEP-derived transcripts, as it closely parallels
the accumulation seen in Fig 2 and is consistent with measures of
total plastid transcription activity in greening spinach (Deng &
Gruissem, 1987). By this same logic, however, NEP transcripts
would be expected to have an even rate of production along the
leaf gradient. As this is clearly not the case, it can be concluded
that the two patterns of transcript accumulation seen in Fig 2 are
due to two RNA turnover classes. In one case (genes with NEP
promoters), transcription in immature plastids is relatively low, but
stability of the transcripts is relatively high. As the plastids
develop, transcription increases and stability decreases, keeping
overall abundance constant. Conversely, genes with PEP promo-

ters have relatively low transcription activities coupled with
perhaps relatively high turnover in immature plastids, whereas
transcription and stability increase as plastids mature.

DISCUSSION
In this study, we have provided evidence that plastid transcripts
fall into two categories of turnover during chloroplast biogenesis,
through analysis of transcription activity and RNA accumulation.
Earlier studies had focused on increased stability of photosynthetic
transcripts as plastids matured and did not take into account the
two-polymerase system that was discovered later.

The existing model of NEP–PEP dynamics has the logic of
transcribing housekeeping genes in undifferentiated plastids,
where metabolic activities do not include photosynthesis. Once
PEP became active, NEP was assumed to be a relatively minor
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Fig 2 | Two distinct patterns of plastid mRNA accumulation. RNA was

extracted from leaf sections, leaves or coleoptiles as described in

Methods. A 5 mg portion of each sample was analysed by filter

hybridization using the gene-specific probes shown on the left. rRNAs
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player required to maintain the levels of ribosomes, tRNAs and
PEP (Liere & Maliga, 2001). Our results show that in maize, NEP
abundance decreases; however, transcription of genes with NEP
promoters increases as chloroplasts mature, suggesting that NEP is
indeed under developmental regulation, perhaps mediated by
accessory transcription factors.

The current model of chloroplast transcription relies heavily on
analysis of PEP-deficient plants and cell lines and on devel-
opmentally regulated promoter recognition by the two different
RNAPs, primarily using RNA gel blots. However, measurements of
NEP itself and the use of a developmental series in wild-type
plants are missing from these analyses. Initial examinations of PEP-
deficient tobacco suggested a fairly strict division of labour
between NEP and PEP (Allison et al, 1996; Hajdukiewicz et al,
1997), but a careful re-examination of such plants has revealed a
more complex phenomenon (Krause et al, 2000; Legen et al,
2002). In particular, robust transcription but very low mRNA
abundance for some PEP-driven genes was observed. This
suggested that NEP was perfectly capable of transcribing genes
believed to have only PEP promoters, but that the transcripts
simply failed to accumulate, perhaps due to RNA processing
defects. This phenomenon has been observed in other PEP-
deficient mutants (Cahoon et al, 2003, and references therein) and
shows that whereas depleting PEP can elegantly demonstrate the
existence of several RNAPs, it may have limited application in the
study of plastid gene regulation in wild-type plants.

In this study, we observed two classes of mRNA accumulation
across the plastid developmental gradient. One class, corresponding
to genes with NEP promoters, varied little with developmental stage,
whereas the second class, corresponding to genes with PEP

promoters, increased as chloroplasts matured. Run-on transcription,
however, showed that the transcription of all the genes tested
increased as the chloroplasts matured. This suggests that the
accumulation of NEP promoter-derived mRNAs in immature plastids
may be due to increased stability rather than altered NEP activity.

SPECULATION
In the light of the data presented here, we propose a revised model
for NEP and PEP in the context of maize chloroplast biogenesis
(Fig 4). In this model, transcription activities of both NEP and PEP
increase with chloroplast development, but stability of transcripts
initiated from NEP promoters decreases to maintain constant
accumulation. In the case of transcripts from PEP promoters, we
cannot differentiate between unchanged stability, making their
increased abundance a function solely of increased transcription
rates, with concomitant increases in stability and transcription rate.

Changes in plastid mRNA stability during development have
been previously reported in several species (Monde et al, 2000).
However, the concept that two stability classes exist, correspond-
ing to polymerase type, is new. A perspective on this finding can
be gained if we make the following assumptions: (1) NEP and PEP
initiate transcription from different promoter sets in wild-type
plants, as previously postulated, and (2) accumulation of these two
transcript categories varies according to plastid developmental
stage. This implies that the polymerase type is not a fundamental
regulator, but instead that functional classes of mRNAs are
subjected to post-transcriptional regulation. Interestingly, gen-
ome-wide studies of mRNA stability in both yeast and Escherichia
coli showed a wide range of mRNA lifetimes, but also a
correlation between similar half-lives and functional relationship,
such as genes encoding subunits of a given protein complex
(Bernstein et al, 2002; Wang et al, 2002). Whereas the mechanism
governing such a relationship is still obscure, although it is likely
to involve the 50 and/or 30 untranslated regions, it is tempting to
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speculate that it has been conserved from prokaryotes to
eukaryotes, including organelles.

METHODS
Plant tissue and RNA analysis. Greenhouse-grown maize line
B73 was used for all experiments. RNA was extracted from tissues
frozen in liquid nitrogen and ground with a mortar and pestle,
using the standard protocol for TriReagent (Molecular Research
Center Inc., Cincinnati, OH, USA). Electrophoresis and filter
hybridizations were as previously described (Cahoon et al, 2003).
Organelle enrichment. Organelle enrichment was performed as
described by Gruissem et al (1986). Briefly, partially emerged
maize leaves from 6- to 8-week-old plants were cut into nine
equal sections. Sections were rinsed with water and macerated
using scissors and a Waring blender in GM-mix, filtered through
cheesecloth and Miracloth (Calbiochem, La Jolla, CA, USA), and
centrifuged briefly in a Sorvall RB-5 GSA rotor at 4,500 r.p.m.
followed by 5 min at 1,000 g to pellet plastids. The supernatant
was collected for mitochondrial isolation. Plastids were resus-
pended in 500 ml GM-mix with a paintbrush and transferred to a
microcentrifuge tube, pelleted and resuspended in an equal
volume of buffer A (10 mM Tris pH 7.9, 1 mM EDTA and 5 mM
dithiothreitol (DTT)), and stored at �80 1C. Mitochondria were
collected from the supernatant by centrifugation in a Sorvall GSA
rotor at 8,000 r.p.m. for 30 min. The pellet was treated as for
plastid fractions.
Protein analysis. Organelle-enriched fractions were mixed with
an equal volume of 2� protein extraction buffer (100 mM Tris pH
8.0, 18% (w/v) sucrose, 40 mM b-mercaptoethanol, 1 mM
phenylmethylsulphonyl fluoride and 4% sodium dodecyl sul-
phate) and heated to 95 1C. Insoluble debris was pelleted and the
supernatant was collected. Protein concentration was estimated
using the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA).
Proteins were separated in 10% polyacrylamide gels, blotted onto
nitrocellulose, blocked with Tris-buffered saline containing 5%
milk, incubated with primary and secondary antibodies, and
detected using the ECL chemiluminescence kit (Amersham,
Piscataway, NY, USA). Antibodies recognized RpoT (Chang et al,
1999), Rubisco LS (Agrisera; http://www.agrisera.se), cytochrome f
(Chen et al, 1995) and MnSOD (Kliebenstein et al, 1998).
Recombinant RpoTm and RpoTp were generated using the
pBAD-Thio-Topo vector system (Invitrogen, Carlsbad, CA, USA)
with induction by 0.02% arabinose.
Run-on transcription. Tissue was macerated in 1� TAN buffer
(Sakai et al, 1998) using a polytron grinder. Large debris was
filtered out using Miracloth, and microscopic debris including
intact cells and cellular organelles was pelleted. Run-on transcrip-
tion assays were based on Klein & Mullet (1990) and performed
within 10–15 min of macerating the tissue. Briefly, pellets
were resuspended in 50 mM Hepes/KOH, pH 8.0, 10 mM
MgCl2, 25 mM potassium acetate, 10 mM DTT, 2 mM spermidine,
125 mM each CTP, GTP and ATP, 10 mM unlabelled UTP plus
200 mCi [a32P]UTP, and incubated at 22 1C for 30 min. RNA
was extracted with TriReagent, pelleted with isopropanol, washed
with 70% ethanol and resuspended in DEPC-treated water.
Labelled RNAs were incubated with specific DNA probes
(digested plasmids and PCR-amplified DNAs) blotted onto
GeneScreen nylon filters. Blots were washed and visualized as
described above for RNA analysis.
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