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Restarting stalled replication forks partly depends on the break-
induced recombination pathway, in which a DNA double-
stranded break (DSB) is created on the stalled replication fork
to initiate the downstream recombination cascades. Single-
stranded DNA gaps accumulating on stalled replication forks
are potential targets for endonucleases to generate DSBs.
However, it is unclear how this process is executed and which
nucleases are involved in eukaryotic cells. Here, we identify a
novel gap endonuclease (GEN) activity of human flap endo-
nuclease 1 (FEN-1), critical in resolving stalled replication fork. In
response to replication arrest, FEN-1 interacts specifically with
Werner syndrome protein for efficient fork cleavage. Replication
protein A facilitates FEN-1 interaction with DNA bubble
structures. Human FEN-1, but not the GEN-deficient mutant,
E178A, was shown to rescue the defect in resistance to UV and
camptothecin in a yeast FEN-1 null mutant.
Keywords: DNA replication fork; flap endonuclease 1; Wemer
syndrome protein
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INTRODUCTION
The DNA replisome frequently encounters DNA lesions, stable
DNA secondary structures, and DNA-bound protein complexes,
such as transcription factors (Cox, 2001). In each of these

situations, the replisome disassembles and the DNA replication
fork collapses. Mishandling or failure to repair the damaged
replication fork can lead to mutagenesis, tumorigenesis or cellular
lethality. Previous studies have shown that break-induced
recombination (BIR) has a vital role in repairing stalled replication
forks (Cox, 2001; Michel, 2000). In BIR, conversion of stalled
replication forks into recombination substrates, DNA double-
stranded breaks (DSBs), is the initial and critical step. It has been
shown that extensive accumulation of single-stranded DNA
(ssDNA) regions occurs in response to replication fork arrest
(Sogo et al, 2002). These ssDNA regions were thought to be the
sites cleaved by structure-specific endonuclease to trigger down-
stream BIR (Michel, 2000). However, it is unclear how this
process is executed and which nucleases are involved in
eukaryotic cells. Here, we provide in vitro and in vivo data,
which demonstrate a novel gap endonuclease (GEN) activity of
the flap endonuclease 1 (FEN-1) complexes and its possible role in
processing stalled DNA replication forks.

RESULTS AND DISCUSSION
Replication fork cleavage is a new property of FEN-1
To identify the human GEN activity capable of cleaving
replication forks, we fractionated HeLa cell nuclear extracts
(Fig 1A) and partially purified a GEN activity that specifically
cleaves DNA replication-fork-like structures at the ssDNA region
on either the lagging (Fig 1B, left panel) or the leading (Fig 1B,
right panel) strand template. However, GEN cleavage of the
lagging strand was about threefold more efficient than that of the
leading template strand. We also noted a 50 blunt end exonuclease
activity in the GEN fraction (Fig 1B). SDS–polyacrylamide gel
electrophoresis (SDS–PAGE) of this partially purified GEN fraction
showed a prominent band migrating at about 43 kDa, which was
subsequently identified as FEN-1 by protein microsequencing
(Mass Spectrometry Laboratory, City of Hope, National Medical
Center) and further confirmed by western blotting (Fig 1C).
Depletion of FEN-1 from the GEN sample with anti-FEN-1 protein
A–agarose resulted in loss of the GEN activity, which was
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recovered by addition of recombinant human FEN-1 (Fig 1D). We
detect no XPF, XPG or exonuclease 1 in western analysis of
fractions containing GEN activity.

We then prepared a DNA bubble structure (Fig 2A), which
resembles the stalled replication fork structure previously
observed (Sogo et al, 2002). Incubating FEN-1 with DNA flap
substrates generated characteristic flap cleavage products (Fig 2B,
lane 4). Likewise, FEN-1 cleavage of DNA bubble structures
generated a product (Fig 2B, lane 6), which co-migrates with
the duplex DNA control mimicking the predicted GEN product
(Fig 2B, lane 2). Notably, the cleavage of DNA flap substrate by
FEN-1 alone was more efficient than that observed with the
bubble substrate. We further mapped the cleavage site of DNA
bubble structures by FEN-1 with a 15% sequencing gel. The result
showed that the GEN activity of FEN-1 cleaved DNA bubble
structures at ssDNA–dsDNA junctions producing products Pb and
Pc (Fig 2B). Pb, being further processed by the FEN activity, was
less than Pc. The exonuclease activity of FEN-1 also cleaved the 50

end of bubble structures generating Pa (Fig 2B). Taken together,
our data suggested that FEN-1 had intrinsic GEN activity, which
cleaves DNA replication fork model structures in vitro. This
was consistent with our previous finding showing that CRN-1,
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Fig 1 | Identification of GEN from HeLa cell nuclear extracts.

(A) Purification scheme for the GEN activity. The specified fraction in

each step contained the GEN activity. (B) GEN cleavage of 50 (left) or 30

(right) DNA double-stranded flap substrates (oligos 1, 2, 4, 5) by

HiTrap-SP-HP fractions 12–17. A 500 ng portion of each fraction was

assayed and the reaction was analysed with sequencing PAGE. Lanes 2–7

in both panels correspond to fractions 12–17, respectively. (C) Detection

of FEN-1 protein in GEN fractions by western blotting with purified anti-

FEN-1 antibody. (D) FEN-1 accounts for the identified GEN activity.

FEN-1 was depleted from F17 with anti-FEN-1-bound protein A-agarose.

Nuclease activities were assayed with 500 ng F17, 500 ng FEN-1-depleted

F17 and 500 ng FEN-1-depleted F17 supplemented with 100 ng of purified

recombinant human (h)FEN-1. NE, nuclear extract.
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Fig 2 | Cleavage of DNA bubble and flap substrates by FEN-1. (A) DNA

flap (oligos 7, 9, 15) and bubble substrates (oligos 7, 8, 13). (B) Analysis

of FEN-1 cleavage of DNA substrates with native PAGE. A 2 pmol

portion of human FEN-1 was incubated with 1 pmol of indicated DNA
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the FEN-1 homologue in Caenorhabditis elegans, cleaves DNA
duplex structures with gaps mimicking the one in the apoptosis
pathway (Parrish et al, 2003).

WRN significantly stimulates the GEN activity
Next, we examined whether FEN-1 forms a complex with proteins
that are involved in resolving stalled replication forks, such as
Werner syndrome protein (WRN; Wu & Hickson, 2002), in
response to DNA replication arrest. We assessed the amount of
WRN and proliferative cell nuclear antigen (PCNA) that complex
with FEN-1 in HeLa cells in response to camptothecin (CPT)
treatment by using the co-immunoprecipitation assay. CPT
specifically blocks replication forks by stabilizing the DNA–
topoisomerase-1 complex (Hsiang et al, 1985). Our data showed
that in response to CPT treatment, the FEN-1–WRN complex
increased markedly, whereas the PCNA–FEN-1 complex showed
little change (Fig 3A). There was little change in the levels of
nuclear FEN-1 and WRN in response to CPT treatment, indicating
that the increase of the FEN-1–WRN complex did not result from
an increase of WRN or FEN-1 expression. Our observation was
consistent with the study showing that exposure of cells to
mitomycin C, a DNA crosslinker, induces FEN-1 and WRN
colocalization (Sharma et al, 2004). In our in vitro endonuclease
assays, the GEN activity of FEN-1 weakly cleaved lagging, leading
or bubble substrate at rates of 0.22, 0.08 or 0.06 pmol product/
pmol FEN-1, respectively, in the absence of WRN (Fig 3B;
supplementary Fig S1 online). The cleavage of 50 flap or double
flap substrate by FEN-1 was at a significantly higher rate of 0.8
or 3.2 pmol product/pmol FEN-1, respectively. However, WRN
significantly increased GEN cleavage of lagging, leading and
bubble substrate to 0.8, 0.9 and 0.7 pmol product/pmol FEN-1,
respectively (Fig 3B; supplementary Fig S1 online). WRN
stimulated FEN-1 cleavage of 50 flap substrates as previously
reported (Brosh et al, 2001). In addition, the GEN and FEN
stimulation fold increased as the concentration of FEN-1
decreased (data not shown). The stimulation did not require the
helicase or 30 exonuclease activities of WRN, as WRNC—the
WRN carboxy-terminal region that interacts with FEN-1 (Brosh
et al, 2001)—showed similar stimulation as the full-length WRN
(Fig 3B; supplementary Fig S1 online). Interestingly, PCNA failed
to stimulate FEN-1’s GEN cleavage of either DNA substrates with
gaps in the presence of the clamp loader replication factor C
(RFC), which ensures the appropriate load of PCNA onto bubble
substrates, but it strongly stimulated the FEN cleavage of the flap
substrate (Fig 3B; supplementary Fig S1 online).

RPA recruits FEN-1 to DNA bubble structures
Next, we investigated whether RPA, a eukaryotic ssDNA-binding
and FEN-1 interaction protein (Khlimankov et al, 2002), affected
the binding and cleavage of DNA bubble structures by FEN-1
in vitro. Our data showed that RPA strongly stimulated FEN-1
binding to the DNA bubble structure, whereas Escherichia coli
ssDNA-binding protein (SSB) inhibited the interaction (Fig 4A).
Nuclease assays showed that in the presence of 4 pmol RPA,
FEN-1 cleavage of DNA bubble structures was stimulated;
however, the stimulation decreased at 10 and 20 pmol RPA
(Fig 4B). We further investigated the effects of phosphorylated RPA
(p-RPA) on the GEN activity of FEN-1, because it was reported that

replication fork arrest led to phosphorylation of RPA (Shao et al,
1999). We found that p-RPA strongly stimulates the GEN
activity (Fig 4B). The stimulation by p-RPA was more effective
than p-RPA. We also noted that RPA/p-RPA enhanced the
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Fig 3 | WRN interacts with FEN-1 and stimulates its GEN activity.

(A) Immunoprecipitation of FEN-1. Nuclear extracts from CPT-treated or

untreated HeLa S3 cells were incubated with purified polyclonal anti-

FEN-1-bound protein A–agarose. The precipitated FEN-1, WRN and

PCNA were detected with monoclonal anti-FEN-1, anti-WRN and anti-

PCNA, respectively. The input levels of FEN-1, WRN and PCNA were

also examined. The purified recombinant FEN-1, WRN and PCNA were

included as a control. (B) WRN and PCNA effects on GEN and FEN

activities of FEN-1. The GEN activity was assayed by incubation of

1 pmol of FEN-1 with 1 pmol of 50 and 30 double-stranded flap (lagging

(oligos 1, 2, 4, 6) and leading (oligos 1, 3, 4, 5) substrates, respectively)

or bubble substrates in the absence or presence of 5 pmol of PCNA,

WRN, WRNC or 50 U RFC. FEN activity was assayed by incubation of

0.1 pmol of FEN-1 with 1 pmol of normal flap and double flap (d-flap,

oligos 7, 10, 15) substrates in the absence or presence of 5 pmol of

PCNA, WRN, WRNC or 50 U RFC. The DNA substrates and products

were resolved with sequencing gel and quantified with the Imagine

Quante program. Values are an average of three independent experiments.
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cleavage at all Pa, Pb and Pc sites, which represents a unique
cleavage pattern of bubble structures by the GEN activity of FEN-1
(Fig 4B). These results suggested that the concentration and the
phosphorylation of RPA were important in modulation of the GEN
activity of FEN-1.

The GEN resolves stalled replication forks
To address whether the GEN activity of FEN-1 is involved in
processing stalled replication forks in vivo, we sought to identify a
mutation that specifically eliminates the GEN activity of FEN-1. By
screening a pool of more than 50 point mutations of FEN-1, we
found that the E178A mutation in FEN-1 abolished more than 95%
of the GEN activity, but retained the FEN activity cleaving 50

double flap substrates (Fig 5A,B). This result indicated that the two
endonuclease activities could be segregated. Even in the presence
of WRN, the GEN cleavage of bubble structures by E178A was less
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cleavage was quantified (lower panel).
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than 3% (Fig 5C). Substrate-binding assays indicated that E178A
retained the ability to bind flap substrates, but lost binding
capacity to DNA bubble structures (Fig 5D). It suggested that
FEN-1 might have distinct substrate-binding modes, depending on
the substrate structure. With flap substrates, FEN-1 recognized and
tracked down the 50 ssDNA flap strand to the ssDNA–dsDNA
junction for cleavage (Murante et al, 1995), whereas in DNA
substrates with gaps lacking 50 free DNA end, FEN-1 directly
bound to the ssDNA region.

To test the specific function of the GEN activity of FEN-1 in
resolving stalled replication forks, we complemented rad27 null
mutant (rad27D) yeast with wild-type (wt) and GEN-deficient
(E178A) human FEN-1. The rad27D strain expressing E178A
(rad27D/E178A) grew as well as the wt strain at 30 1C and at the
restrictive 37 1C (Fig 6A). Furthermore, the spontaneous Lysþ
reverse mutation rate of the rad27D/E178A strain was similar
to that of the wt strain, but was about 30-fold less than that of
the rad27D strain (Fig 5B). Of these Lysþ reverse mutations in
the rad27D/E178A strain, similar to the wt strain, only 7% of the
mutations were duplication mutations, compared with 67% in the
rad27D strain. This suggested that E178A, with a similar FEN
activity as the wt enzyme, could fully substitute for RAD27’s
function in RNA–DNA primer removal. The rad27D strain had
similar CPT sensitivity to that seen in the sgs1 null strain lacking
the yeast WRN homologue (data not shown). Furthermore, the
rad27D/E178A strain showed similar CPT sensitivity to that of the
rad27D strain, whereas the rad27D/human FEN-1 and the wt
strains were both resistant to CPT treatment (Fig 6C). Ultraviolet
(UV) irradiation also causes DNA crosslinks and stalls the DNA
replication fork (Limoli et al, 2002). Deletion of rad27 caused
yeast to be sensitive to UV irradiation (Reagan et al, 1995). Here,
we found that the GEN activity is critical in FEN-1-mediated UV
resistance, because the rad27D/E178A strain showed similar UV
sensitivity to that of the rad27D strain, whereas the rad27D/human
FEN-1 and the wt yeast strains showed similar resistance to UV
irradiation (Fig 6D).

Our current study suggests that FEN-1 is involved in processing
stalled replication forks through a cellular mechanism that is
alternative to the recently identified Rad51C-mediated Holliday
junction cleavage (Liu et al, 2004). FEN-1, in complex with
replication fork repair protein WRN, directly cleaves stalled
replication forks by the GEN activity to initiate the recombination
repair pathway. It is consistent with previous studies showing that
in yeast, FEN-1 is synthetically lethal with nuclease complex
Mus81–Mms4 (Tong et al, 2001), which cleaves the leading
template strand of a synthetic replication fork to generate DSBs
in vitro (Kaliraman et al, 2001). Conversely, the suggestion that
the FEN-1–WRN complex initiates recombination seems to be
contradictory to the observations that WRN and FEN-1 are both
anti-recombination proteins (Tishkoff et al, 1997; Gangloff et al,
2000). However, WRN may both promote and suppress DNA
recombination as its prokaryotic homologue, E. coli Rec Q
helicase, has been shown to both initiate and inhibit DNA
recombination depending on the growth condition (Harmon &
Kowalczykowski, 1998). Similarly, under normal growth condi-
tion, FEN-1, with the assistance of PCNA, efficiently cleaves
RNA–DNA flaps to avoid DSB generation during DNA replication,
thus suppressing DNA recombination (Tishkoff et al, 1997). In
response to DNA damage during DNA replication, FEN-1 interacts
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with WRN to cleave the replication forks efficiently, switching its
function to initiation of BIR.

METHODS
Yeast strains, genetic manipulation and genotoxic assays. The
rad27D, rad27D/human FEN-1 and rad27D/E178A Saccharomyces
cerevisiae strains were constructed as previously reported (Frank
et al, 1998). The growth rate and temperature sensitivity were
measured as previously reported (Frank et al, 1998). The Lys2-Bgl
mutation rate and spectrum analysis were carried out as
previously reported (Tishkoff et al, 1997). In the mutation
spectrum analysis, DNA sequences of the Lys2 gene from 28
independent Lys2þ revertants from each genetic background
were analysed. The UV sensitivity was measured as the survival
rate of yeast cells on exposure to UV irradiation as described
previously (Reagan et al, 1995). The CPT sensitivity was
determined using a modified procedure as described previously
(Pouliot et al, 1999). Experiments were repeated at least three
times independently.
Fractionation of native GEN from HeLa S3 cells. Nuclear extracts
of HeLa S3 cells (National Cell Culture Center) were prepared and
fractionated by ammonium sulphate precipitation as previously
described (Ramilo et al, 2002). The GEN fraction was resuspended
in buffer A (25 mM Hepes, pH 7.5, 0.1 mM EDTA, 2 mM
dithiothreitol, protein inhibitor cocktails (Roche Applied Science,
Indianapolis, IN, USA) and 25 mM KCl) and applied onto an
ssDNA cellulose column (Sigma, St Louis, MO, USA), followed
by washing and eluting with buffer A containing 0–1 M NaCl. The
GEN fraction was further fractionated by a fast-performance liquid
chromatography system harbouring a HiTrap-Q-HP or HiTrap-SP-
HP column (Amersham Pharmacia Biotech, Piscataway, NJ, USA)
according to the manufacturer’s instructions. Each fraction was
analysed with SDS–PAGE and nuclease assay.
Recombinant protein purification, nuclease activity and DNA
binding assay. Expression and purification and preparation of
recombinant human FEN-1, RPA, WRN and WRNC were
performed on the basis of previously published protocols (Brosh
et al, 2001; Yannone et al, 2001; Zheng et al, 2002). RPA was
phosphorylated by DNA–protein kinase and purified as previously
described (Oakley et al, 2003). RFC was a gift from the Hurwitz
laboratory (Memorial Sloan-Kettering Cancer Center, New York,
NY, USA). Synthetic DNA substrates were prepared and nuclease
activity assays conducted as previously described (Zheng et al,
2002) and oligo sequences of DNA substrates are listed in
supplementary Table S1 online and specified in the figure legends.
Briefly, FEN-1 was incubated with indicated DNA substrates in
50 mM Tris–HCl, pH 8.0, 50 mM NaCl and 5 mM Mg2þ at 37 1C
for 30 min if not specified. Nuclease assays with RPA/p-RPA were
carried out at 30 1C to avoid potential transient breathing of
DNA duplex region caused by RPA. For native PAGE analysis,
DNA substrates and products were extracted with an equal
volume of phenol and chloroform (1:1), followed by analysis with
5% native PAGE. For sequencing PAGE analysis, DNA substrate
and products were denatured with 95% formamide, 20 mM
EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol
and analysed with 15% denaturing PAGE. The interaction of
FEN-1 with DNA substrates was analysed as previously described
(Zheng et al, 2002).

Co-immunoprecipitation of FEN-1–WRN and FEN-1–PCNA
complexes. HeLa cells were synchronized at the G1/S phase
boundary by serum starvation for 72 h and then released into S
phase by replacement of fresh DMEM containing 10% serum.
Cells were treated or untreated with 10 mM CPT (Sigma) for 6 h.
The nuclear proteins were extracted and immunoprecipitated
according to a previously published procedure with purified
polyclonal anti-FEN-1 antibody (Partridge et al, 2003).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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