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Eukaryotic transcriptional regulation often involves regulatory
elements separated from the cognate genes by long distances,
whereas appropriately positioned insulator or enhancer-blocking
elements shield promoters from illegitimate enhancer action.
Four proteins have been identified in Drosophila mediating
enhancer blocking—Su(Hw), Zw5, BEAF32 and GAGA factor. In
vertebrates, the single protein CTCF, with 11 highly conserved
zinc fingers, confers enhancer blocking in all known chromatin
insulators. Here, we characterize an orthologous CTCF factor
in Drosophila with a similar domain structure, binding site
specificity and transcriptional repression activity as in verte-
brates. In addition, we demonstrate that one of the insulators
(Fab-8) in the Drosophila Abdominal-B locus mediates enhancer
blocking by dCTCF. Therefore, the enhancer-blocking protein
CTCF and, most probably, the mechanism of enhancer blocking
mediated by this remarkably versatile factor are conserved from
Drosophila to humans.
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INTRODUCTION
Expression of the eukaryotic genome is controlled by enhancer
and silencer elements, both of which can mediate their function
from a distance. Insulator elements with enhancer-blocking
activity curb enhancer activity, such that only appropriate
promoters are activated (Ishii & Laemmli, 2003). The proteins
that mediate insulator function have been identified for only
a few Drosophila insulator sequences. These are Zw5, BEAF-32
(Zhao et al, 1995; Gaszner et al, 1999), GAGA factor (Ohtsuki
& Levine, 1998; Belozerov et al, 2003) and Su(Hw) (Gerasimova
et al, 1995).

Another perspective on the requirement of insulators comes
from the fact that many genes are controlled by several regulatory
elements needed for tissue- and cell-specific expression. For
example, the Drosophila gene Abdominal-B (Abd-B) contains an
extended 30 regulatory region that is functionally subdivided into
distinct enhancer domains. Functional separation of the enhancer
sequences is achieved by intervening insulators such as Front-
abdominal (Fab)-7 and Fab-8 (Hagstrom et al, 1996; Barges et al,
2000). Although both elements have been shown to mediate
enhancer-blocking function, the protein involved in this activity
has not been described.

In sharp contrast to Drosophila, the genome of vertebrates
is much more expanded, due primarily to larger distances
between genes. Therefore, the need for insulators to separate
genes may not seem as pronounced as it is in Drosophila.
Indeed, until now, only a single protein, CTCF, has been identified
to mediate enhancer-blocking activity (Ohlsson et al, 2001).
Binding sites for CTCF have been shown to be involved in
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gene activation (Vostrov & Quitschke, 1997), gene repression
(Baniahmad et al, 1990; Lobanenkov et al, 1990) and enhancer
blocking (Bell et al, 1999; Hark et al, 2000; Kanduri et al, 2000;
Szabo et al, 2000; Filippova et al, 2001; Lutz et al, 2003;
Tanimoto et al, 2003). Furthermore, vertebrate- and mammalian-
specific functions, such as X-chromosome inactivation and
control of the epigenetic DNA methylation state, seem to involve
CTCF (Lee, 2003).

Obviously, the function of enhancer blocking has developed
during evolution such that Drosophila uses several proteins and
mechanisms for enhancer blocking and insulation (Kuhn et al,
2003). However, none of the known Drosophila insulator proteins
has a counterpart found to be conserved in vertebrates. Rather,
vertebrates use CTCF, which has not yet been found in
Drosophila. Here, we characterize a Drosophila orthologue of
CTCF with similarities to many of the features identified for
vertebrate CTCF. Furthermore, we show that a previously
characterized Drosophila insulator, Fab-8, mediates enhancer
blocking by CTCF in Drosophila as well as in vertebrate cells.
Thus, the enhancer-blocking protein CTCF and, probably, the
mechanisms of CTCF-driven enhancer blocking are both
conserved from Drosophila to humans.

RESULTS AND DISCUSSION
Vertebrate and Drosophila CTCF are similar
FlyBase data entries and cDNA sequence analysis (see supple-
mentary information online) revealed an open reading frame
(ORF) coding for a protein similar to vertebrate CTCF with respect
to the overall structure. dCTCF contains all of the expected 11 zinc
fingers (Zn-fingers), separated by both standard and noncanonical
inter-finger linkers (Fig 1A). Furthermore, most of the crucial DNA
base recognition residues at positions �1, 2, 3 and 6 are identical.
Variation in position 6 for fingers #6 and #9 generate a change
from alanine or serine to methionine, which is of no consequence
for the DNA-binding specificity, as the recognition code is not
changed (Suzuki et al, 1994).

Similarities in Zn-fingers do not necessarily imply similarities in
function. Therefore, we examined whether dCTCF can act as a
transcriptional repressor, as has been demonstrated previously for
vertebrate CTCF (Burcin et al, 1997). The strongest repressive
function has been shown to reside within the combined carboxy-
terminal plus Zn-finger domains (Lutz et al, 2000). Equivalent
regions of Drosophila and chicken CTCF (chCTCF) were fused to
the yeast GAL4 transcription factor DNA-binding domain. Both
Drosophila and chicken GAL4–CTCF fusions repressed reporter
gene activity to a similar extent in two different cell lines (Fig 1E)
and in a way comparable with the previously characterized strong
repressor GAL4-v-erbA362 (Baniahmad et al, 1992). These results
clearly indicate that dCTCF, like its vertebrate counterpart, has
transcriptional repressor activity.

In vertebrates, CTCF is ubiquitously expressed (Burke et al,
2002), apparently functioning as a global transcriptional regulator
in all cell types (Ohlsson et al, 2001). In comparison, we
monitored dCTCF RNA expression levels at various stages of fly
development. Using in situ hybridization, we found that dCTCF
RNA is present in the cytoplasm of the nurse cells within the fly
egg chamber (Fig 1B), transported into and distributed uniformly
in the developing oocyte and in 0–24 h embryos as a maternal

RNA (not shown). Later stages show expression in all tissues and
stages (see supplementary information online), revealing that
dCTCF is a ubiquitous factor as in vertebrates. Location of
dCTCF protein is clearly nuclear, exemplified by the nuclear
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Fig 1 | Drosophila CTCF encodes a protein similar to human CTCF.

(A) Sequence alignment of the Zn-finger domain of dCTCF and hCTCF.

Similar and identical residues (shading), zinc-coordinating amino acids

(red) and amino acids with identical binding site recognition (yellow)

are indicated. (B) In situ hybridization of Drosophila egg chamber with

DIG-labelled antisense dCTCF RNA. Polyploid nurse cell nuclei are

surrounded by dark staining of cytoplasmic dCTCF RNA (top), nuclei

are identified by Hoechst staining (middle) and in the overlay (bottom).

The egg chamber to the right is surrounded by follicle cells (Hoechst-

stained nuclei). (C,D) dCTCF detection in syncytial blastoderm stage 3

with the rabbit anti-dCTCF-C antibody and visualization by avidin-

peroxidase at two different magnifications (scale bars (B–D), 40 mm).

(E) CV-1 and COS-1 cells were transfected with DNA constructs

expressing the GAL DNA-binding domain (GAL), a fusion of the Zn-

finger domain plus the C-terminus of chicken CTCF, a similar fusion of

dCTCF or of v-erbA. Relative CAT activity is calculated with the GAL

transfection defined as 100%.
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staining of syncytial blastoderm embryos with dCTCF-specific
antibodies (Fig 1C,D).

To extend the comparison of vertebrate and Drosophila CTCF,
we tested in vitro-translated Drosophila and vertebrate CTCF for
binding to several previously characterized vertebrate CTCF
targets (CTS). The sequences tested included the CTS of the FII
insulator element of the b-globin gene, the APP gene, the myc
genes and the mouse ARF promoter (Fig 2A–D). With the
exception of the two myc FPV and A sites, all the other sequences
bound chicken and Drosophila CTCF similarly. Binding and
enhancer-blocking results with additional CTS are summarized in
supplementary Table I online.

We used a methylation-interference assay to determine
whether both proteins contact the same guanidine nucleotides
on a given target DNA site (Fig 2E). Both Drosophila and human
CTCF were found to contact the same nucleotides on the b-globin
FII insulator fragment. These results indicate that, despite
considerable overall sequence divergence, fly and human CTCF
show a striking degree of functional conservation with respect
to DNA binding.

Enhancer blocking of the Fab-8 insulator by CTCF
To identify potential Drosophila CTCF regulatory targets, we
performed an in vitro screen for CTCF-binding sites (supplemen-
tary information online) and found the Fab-8 element for which

enhancer-blocking and boundary function have been shown
(Barges et al, 2000). This sequence is situated in the Abd-B locus,
separating and insulating enhancer domains infraabdominal-7
(iab-7) from iab-8. As the protein involved in this mechanism was
unknown, and as vertebrate CTCF mediates enhancer-blocking
activity (Ohlsson et al, 2001), we tested whether dCTCF might
have a similar role in the context of the Fab-8 element. In vitro
binding of dCTCF to Fab-8, as determined by methylation
interference (Fig 3A), suggested two binding sites for CTCF. We
generated binding site mutations resulting in single-site mutations
(mut1 or mut2) and in a double-site mutation (mut1þ 2) used for
electrophoretic mobility shift assay (EMSA; Fig 3B). The wild-type
Fab-8 element generates two retarded bands corresponding to a
different mobility of the same DNA molecule occupied by CTCF
at one of the two closely spaced CTS sequences. These different
mobilities are probably caused by a site-specific DNA bending
(Arnold et al, 1996), which has also been observed on other
dual binding sites, such as the H19 locus (Kanduri et al, 2000).
Excess protein generated a slow mobility complex only resolved
after a long run of the gel (Fig 3B), reflecting binding of
CTCF to both sites.

To test in vivo dCTCF binding to this important element, we
prepared crosslinked chromatin from Drosophila embryos and
precipitated CTCF-occupied sites with the anti-dCTCF-C antibody.
PCR primers for the Fab-8 sequence identified specifically
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2003) and in the mouse ARF promoter (Filippova et al, 2002). (E) DMS methylation interference analysis was carried out with the b-globin FII

insulator fragment labelled on the top or the bottom strand. After separation of bound (b) and unbound fragments (f), the DNA was analysed on a

sequencing gel. The G nucleotides interfering with binding after methylation are indicated by dots, and in the sequence (F) by bold lettering.
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precipitated chromatin, whereas primers against a different non-
dCTCF-binding site (clone 10) and mock-precipitated chromatin
resulted in no signal (Fig 3F).

To test the functional similarity between dCTCF and vertebrate
CTCF, we analysed enhancer blocking of Fab-8 in vertebrate K562
cells. In comparison to the known enhancer-blocking effect
mediated by the FII sequence (Bell et al, 1999), a similar reduction
in colony numbers mediated by Fab-8 was seen (Fig 4A). More
importantly, specific abrogation of CTCF binding by the double
mutation, mut1þ 2, resulted in loss of enhancer blocking.

The crucial test for enhancer-blocking activity of dCTCF had to
be carried out in flies. Therefore, we used a vector with two
regulatory regions containing the iab-5 enhancer from the Abd-B
locus and two copies of the minimal twist enhancer, PE, directing
an additive pattern of expression when placed between diver-
gently transcribed white and lacZ reporter genes (Lin et al, 2003).
As shown in Fig 4C,D, the iab-5 enhancer directs expression in the
posterior one-third of the blastoderm stage embryo, whereas the
2� PE enhancer activates transcription in the ventral-most region
where twist is normally expressed. Enhancer elements are
enhancing both the white gene as well as the lacZ gene. Altered

patterns of transcription were observed when the 1 kb spacer
sequence was replaced by the 680 bp Fab-8 element. On the
white promoter, the iab-5 activity was completely abolished
(shown as the lack of staining in the iab-5 activity region), while
the 2� PE enhancer was still activating the white gene (Fig 4E).
The lacZ promoter, conversely, could be activated only by the
proximal iab-5 but not by the distal 2� PE (Fig 4F). This result
suggests that the Fab-8 fragment blocks the respective distal
enhancer for both the white and the lacZ promoters. When the
CTCF sites were mutagenized (mut1þ 2 as in Fig 3), the iab-5
activity on white was partly restored (Fig 4G). Similarly, the 2� PE
element again directed the transcription of the lacZ gene (Fig 4H).
Chromatin/CTCF immunoprecipitation revealed specific CTCF
binding to the Fab-8 element of the enhancer-blocking vector,
whereas binding to the Fab-8 mut element was clearly reduced
(Fig 4I). This correlation between strong CTCF binding and full
enhancer-blocking function (Fig 4E,F) indicates that the activity of
Fab-8 is at least partly mediated by CTCF and that dCTCF, similar
to vertebrate CTCF, confers enhancer blocking.

Thus, at least one enhancer-blocking protein (CTCF) in Drosophila
and vertebrates is conserved with a similar enhancer-blocking
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function. In addition to enhancer blocking, mammalian CTCF has
gained functions involving the control of epigenetic states in the
context of imprinted genes and X-chromosome inactivation (Lee,
2003; Lewis & Murrell, 2004).

METHODS
EMSA. Full-length CTCF and 11 Zn-finger fragments were
subcloned into pET 16B vector by PCR-designed primers.
Drosophila CTCF proteins were produced using the TnT in vitro
coupled transcription–translation kit (Promega Co., Madison, WI,
USA). Probes for EMSA were obtained by PCR, gel purified, end-
labelled by T4 kinase and used in DNA binding as described
(Filippova et al, 1996).

Repression and enhancer blocking. Repression analysis in COS-1
and CV-1 cells was performed as described earlier (Lutz et al,
2000). The colony formation assay in K562 cells has been carried
out essentially as in Chung et al (1993) and Lutz et al (2003). The
Drosophila enhancer-blocking assay was carried out as described
(Lin et al, 2003).

For information regarding primers for methylation interference,
site-directed mutagenesis, plasmid construction, peptides for
antibody production, immunocytology, western and chromatin
immunoprecipitation, as well as Drosophila target-site library
construction, see supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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