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Telomerase is the ribonucleoprotein reverse transcriptase that
adds telomeric DNA repeats to the ends of chromosomes. This
involves annealing of the telomerase RNA template to the 30 end
of the chromosome, reverse transcription of the RNA template by
the telomerase reverse transcriptase polypeptide and transloca-
tion. Here, we overexpress and partially purify the catalytically
active yeast telomerase core in its natural host and probe
telomerase RNA base methylation accessibility with dimethyl
sulphate in the presence and absence of a DNA substrate and
after substrate elongation. The length of the RNA–DNA hybrid
is kept constant at seven base pairs after primer binding and
elongation. Thus, new base-pair formation at the 30 end of the
substrate during elongation coincides with disruption of base-pair
interactions at the other side of the template. Presumably,
this circumvents the generation of an exceedingly high energy
barrier for translocation and dissociation. Our analysis also
corroborates recently proposed yeast telomerase RNA secondary
structure models.
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INTRODUCTION
The telomerase catalytic core is provided by the telomerase
reverse transcriptase (TERT) polypeptide, which reverse tran-
scribes a short stretch of the telomerase RNA moiety (TER) to
extend the chromosome 30 ends. TERT is thought to function
similarly to reverse transcriptases from retroviruses and retro-
elements because they share highly conserved sequence motifs
(Kelleher et al, 2002). However, reverse transcription by
telomerase involves re-setting the relative positions of the RNA

template and telomeric substrate in the active site after the
addition of each telomeric repeat. Thus, in addition to the RT
motifs, TERT contains one or two amino-terminal RNA-binding
domains that bind TER outside the template and that may enable
stable association with telomerase RNA while allowing the
template to move through the active site (Bryan et al, 2000).
Other telomerase-associated proteins have a role in telomerase
assembly and its regulation at chromosome ends in vivo, but
they are not required for enzymatic activity in vitro (Evans
& Lundblad, 2000).

Single-stranded telomeric DNA is bound by telomerase
through base pairing with the RNA template and through
protein–DNA interactions at the so-called anchor site. Measure-
ment of the dissociation rates of different telomeric oligonucleo-
tide substrates with telomerase from Euplotes aediculatus showed
that substrate affinity was largely independent of the extent of
base complementarity between primer and template (Hammond
& Cech, 1998). This suggested that either the protein–DNA
interaction could compensate for different binding energies
stemming from a variable number of base pairs or that telomerase
maintains a more or less constant RNA–DNA hybrid length during
the reaction cycle. In a study with Tetrahymena telomerase with
mutant telomerase RNA templates and various DNA substrates, it
was concluded that the requirement for potential pairing between
primer 30 end and template increases as catalysis moves along the
template (Wang et al, 1998).

The comparison of the telomerase RNA sequences from
different phyla demonstrates that this RNA diverged quickly in
evolution. The sizes range from 150–200 nucleotides (nt)
in ciliates to about 450 nt in vertebrates and about 1,200 nt in
Saccharomyces. The telomerase RNA sequences can be aligned
with confidence only among closely related organisms, and
secondary structure models were derived for the different groups
by phylogenetic comparison (Romero & Blackburn, 1991; Lingner
et al, 1994; Chen et al, 2000; Dandjinou et al, 2004; Zappulla &
Cech, 2004). In addition, chemical probes and structure-specific
RNases have been instrumental in evaluating the secondary
structure models (Bhattacharyya & Blackburn, 1994; Zaug &
Cech, 1995; Sperger & Cech, 2001; Antal et al, 2002; Dandjinou
et al, 2004). Despite the divergence in sequence and size, the
template of all telomerases is single stranded, and all telomerase
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RNAs have been proposed to contain a pseudoknot domain. The
potential of the telomerase RNA to form a pseudoknot structure is
well supported through nucleotide covariation in ciliates (ten Dam
et al, 1991; Lingner et al, 1994) and vertebrates (Chen et al, 2000),
and alternative pseudoknot structures have also been proposed for
telomerase RNAs from Saccharomyces (Chappell & Lundblad,
2004; Dandjinou et al, 2004; Lin et al, 2004) and Kluyveromyces
(Tzfati et al, 2003).

Here, we overexpress the TERT (Est2) and TER (Tlc1) sub-
units from yeast and probe the telomerase RNA structure with
dimethyl sulphate (DMS) in the absence and presence of DNA
substrate primers and after substrate elongation. Our results
indicate that telomerase maintains a constant number of base
pairs between template RNA and telomeric DNA substrate. In
addition, our results corroborate and refine the telomerase
RNA secondary structure models that were recently proposed for
Saccharomyces cerevisiae.

RESULTS AND DISCUSSION
To obtain sufficient amounts of telomerase for structural probing,
we co-overexpressed the telomerase reverse transcriptase Est2 and
the RNA moiety Tlc1 with the Gal1 promoter in S. cerevisiae.
These two components form the catalytic core of telomerase, and
their overexpression leads to increased in vitro telomerase activity
without strongly affecting telomere length (Teixeira et al, 2002).
Overexpressed telomerase was enriched through purification
over a DEAE column (see Methods). The telomerase RNA in this
fraction was probed for accessibility by the methylating agent
DMS in the template region (Fig 1) and other parts of the RNA
(Fig 2; supplementary Fig 1 online). Our analysis covers the
essential core region described previously (Livengood et al, 2002).
DMS methylation at position N-1 of A and N-3 of C in RNA occurs
readily in single-stranded RNA, but the bases become protected
after base-pair formation or protein binding. The modified
positions are detected as stop sites during primer extension by
reverse transcriptase.

The template region of telomerase RNA
Telomerase from S. cerevisiae has the peculiarity of not
dissociating from bound telomeric DNA oligonucleotides in vitro
(Prescott & Blackburn, 1997). We took advantage of this stability
to ‘lock’ the enzyme in different states of the reaction cycle. We
found that in the absence of DNA substrate, the entire template
region of TLC1 was accessible to modification by DMS (Fig 1A),
whereas in the absence of DMS, no stops of the reverse
transcription reaction were observed in this region (Fig 1A, right
panel). The accessibility to modification by DMS is consistent with
the ability of the template to bind chromosome end substrates and
is in accordance with the results obtained for Tetrahymena
telomerase (Zaug & Cech, 1995) and recently proposed models for
S. cerevisiae telomerase RNA (Dandjinou et al, 2004; Zappulla &
Cech, 2004). Starting at three nucleotides 50 of the template, seven
bases in a row are completely protected. Strikingly, these bases
have been proposed to form one strand of a stem–loop structure
involved in defining the 50 boundary of the template (Seto et al,
2003). On addition of a telomerase substrate before modification
with DMS, the central portion of the template became protected
as expected from the base complementarity of DNA substrate and
RNA (Fig 1B). However, the protected region was only 7 bp long,

starting at the DNA 30 end. Closer to the 30 boundary of the RNA
template, the remaining three bases were readily modified by
DMS even though they were complementary to the substrate.
Thus, although these bases were accessible to DMS, they did
not engage in base pairing. We also noted that the presence of
substrate primer increased pausing or abortion of the reverse
transcription reaction at G446 and G449. However, as G is not
protected from DMS modification due to base pairing, the
interpretation of this result is not straightforward.

To determine the protection pattern after substrate elongation,
dNTPs were added to the telomerase–telomeric primer complex
before DMS modification. The shift in the DMS protection pattern
indicates that most of the bound substrates became elongated by
five nucleotides (Fig 1C), as expected from analysis of product
length obtained under similar reaction conditions (Prescott
& Blackburn, 1997; Forstemann & Lingner, 2001; Teixeira et al,
2002; supplementary Fig 2 online). This result also indicates that
most of the telomerase RNA molecules were assembled with Est2
in a catalytically active enzyme. Again, only seven bases of
the telomerase RNA engaged in base pairing with the extended
substrate, starting at the new DNA 30 end. Thus, base-pair
formation at the 30 end of the substrate during elongation
coincided with base-pair disruption at the 50 end. The measured
Km of the same substrate was about 0.8 mM (supplementary Fig 2
online), which is consistent with the free energy calculated for
the formation of a 7–8 bp RNA–DNA hybrid (see legend to
supplementary Fig 2 online for details). This assumes that the
interaction of the telomerase protein with the DNA substrate does
not contribute substantially to the binding energy. The short
substrate oligonucleotides used in our study are too short to
interact with the presumed anchor site in S. cerevisiae telomerase
(Lue & Peng, 1998).

The putative pseudoknot domain
Two alternative pseudoknot structures have been proposed for the
telomerase RNA from S. cerevisiae (Dandjinou et al, 2004; Lin
et al, 2004; Fig 2B). Significantly, both pseudoknot structures
include one stem, corresponding to CS3/CS4 in the lower
pseudoknot structure in Fig 2B or to the lower part of stem VI in
the upper structure, the base-pair potential of which has been
demonstrated to be important for binding the yeast TERT Est2
(Chappell & Lundblad, 2004; Lin et al, 2004). Our DMS
modification analysis (Fig 2A) is consistent with the existence of
the CS3/CS4 stem or the extended bulged stem VI, as all adenines
and cytosines in these stems are protected from modification.
Also, the DMS protection is consistent with the existence of stem
fK1 of the upper pseudoknot, whereas A758–762 in the extended
H4 helix were accessible to DMS, indicating that stem H4 may be
shorter than indicated, or that it may not be stably formed. Three
adenines in stem V (A707, A709 and A710) of the upper structure
were also strongly modified by DMS, indicating that this stem
does not stably form in the Tlc1–Est2 catalytic core complex
analysed here.

The Est1 binding bulged stem
The DMS modification data are in excellent agreement with the
proposed secondary structures for stems IIa, III and IVa–c. Stem
IVc corresponds to the previously described Est1 binding bulged
stem (Seto et al, 2002). C651 in the bulge of IVc (Fig 2B, asterisk)
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also shows a strong pause in the reverse transcriptase reaction of
unmethylated RNA (supplementary Fig 1 online). Termination at
this position may therefore reflect an in vivo-modified RNA base.

Speculation
Here, we assess the telomerase RNA structure in the catalytically
active yeast Tlc1–Est2 core complex. The accessibility of Tlc1 to
DMS supports the recently proposed secondary structure models
(Dandjinou et al, 2004; Zappulla & Cech, 2004). The discrepancy
between DMS accessibility and predicted secondary structure in
the pseudoknot domain might be reconciled with structural
changes that may occur during substrate translocation, which
was not resolved here.

Our results demonstrate that the analysed telomerase core
allows the formation of only 7 bp for primer binding and after
primer extension. Thus, our work provides direct proof for
previous proposals that the TERT may limit the number of base
pairs during the reaction cycle (Hammond & Cech, 1998). Product
DNA disengagement from template RNA bases 30 of the active site
during elongation should facilitate telomeric DNA substrate
dissociation and/or translocation (Fig 3). Although yeast telomer-
ase only inefficiently dissociates or translocates from elongated
primers in vitro, primer dissociation or translocation clearly occurs
in vivo where many telomeric repeats can be added in a single
cell cycle (Teixeira et al, 2004).

RNA–DNA helix unwinding seems to be a unique feature of the
TERT when compared with the related retroviral reverse tran-
scriptases, which are known to form several hundred nucleotide-
long RNA–DNA hybrid molecules during reverse transcription.

Conversely, RNA polymerase II also limits the length of the RNA–
DNA hybrid to 9–10 residues by interaction with a set of protein
loops (Westover et al, 2004). Whether the TERT polypeptide
functions in a similar way remains to be seen. A concomitant
accessibility of bases to DMS and inaccessibility to base pairing
(Fig 1) could also be explained by a model in which a steri-
cally constrained RNA template is under tension after primer
binding, allowing the formation of only three-quarters of a helical
turn (Fig 3).

METHODS
Strain construction. Est2 was overexpressed from the Gal
promoter as N-terminal His-tagged fusion protein. A plasmid
coding for a PGAL1–His6–TEV cassette was constructed, by PCR-
amplifying DNA fragments from pFA6a–TRP1–PGAL1 and
pFA6a–HIS3MX6–PGAL1 (Longtine et al, 1998) with oligonucleo-
tides His6–TEV–R2 (50-GCGAATTCTCCTCCGGATTGGAAGTA
CAGGTTCTCACCAGAACCATGGTGATGGTGATGGTGCGATC
CTCTCATTTTGAGATCCGGGTTTT-30) and F4-short (50-CGGAA
TTCGAGCTCGTTTAAAC-30). The products were cloned into
pBluescript and sequenced. The plasmids, named pKF13 (His3MX
marker) and pKF14 (TRP1 marker), can be used to construct PCR-
based PGal–His–TEV integration cassettes analogous to previously
described plasmids (Longtine et al, 1998). The amino-acid
sequence appended to the N terminus of the tagged protein is
MRGSHHHHHHGSGENLYFQSGG. The primer sequence for
amplification is 50-(gene-specific sequence)-TCCTCCGGATTG
GAAGTACAG-30 (Longtine et al, 1998). Here, the EST2 gene was
tagged by amplifying pKF13 with DNA oligonucleotides F4-Est2
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Fig 1 | DMS accessibility of the telomerase RNA template region analysed by primer extension with reverse transcriptase. (A) Lanes C, U, A and G

denote dideoxynucleotide sequencing reactions using TLC1-containing plasmid DNA as a template. DMS denotes the lane in which enriched

telomerase fraction was treated with DMS, RNA was extracted and TLC1 RNA was reverse transcribed in vitro. Termination at methylated sites occurs

one nucleotide before the corresponding dideoxy termination product. The right panel shows a control experiment from a gel that was exposed under

identical conditions in which the sample was not treated with DMS before reverse transcription. The RNA template region and the template boundary

element are highlighted. (B) Preincubation of a DNA oligonucleotide substrate with telomerase before DMS modification in the absence of

deoxynucleotide triphosphates (dNTPs). Base formation is indicated and inferred from the protection of seven bases of the telomerase RNA template.

Note the particularly high accessibility of the base in the active site at the þ 1 position relative to the DNA substrate. (C) Primer extension on

addition of dNTPs. The bases that are protected after primer extension are indicated.
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are shown. Strong modifications are indicated by black arrowheads and moderate modifications by grey arrowheads. Positions at which reverse

transcription stopped also in the absence of DMS modification are ambiguous and are therefore not labelled. C651 (asterisk) in the bulge also shows a

strong pause in the reverse transcriptase reaction of unmethylated RNA. Termination at this position may therefore reflect an in vivo-modified RNA base.
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(50-CACAAGTGAAATAGAAAAGTGAAAAATTAAAAAAAAAAAA
AAAAAAAAAAAAACTGATTTATACTCGAATTCGAGCTCGTTTA
AAC-30) and R6-Est2 (50-TGTAGATCAATGTCAAGCTTGTCTT
GAATGAACTCGAATAAGATTTTCATTCCTCCGGATTGGAAGTA
CAG-30) and by transforming FYBL1-4D (MAT a ura3-D851
trp1D63 leu2D1 his3D200 lys2D202).

The overexpression construct for the TLC1 RNA was obtained
by subcloning the PGAL1–TLC1 cassette from pRS314–PGAL1–
TLC1 (Forstemann & Lingner, 2001) into pRS306, yielding
pRS306–PGAL1–TLC1. The plasmid was linearized with HpaI
and integrated at the TLC1 locus in the strain above, leading to
duplication of the TLC1 gene with one TLC1 gene under the
control of the endogenous promoter and one under the control of
the GAL1 promoter. This strain is referred to as YKF24 (MAT a
ura3-D851 trp1D63 leu2D1 his3D200 lys2D202 HIS3MX6
PGAL1-HIS/TEV-EST2 TLC1HPGAL1-TLC1 URA3).
Yeast culture and telomerase preparation. YKF24 was precul-
tured in galactose medium lacking uracil for 48 h at 25 1C to
inoculate 2 l of rich galactose medium (2% peptone, 1% yeast
extract, 3% galactose). Cells were grown at 25 1C to an OD600 of
1, collected by centrifugation, washed once with H2O and
resuspended in lysis buffer (150 mM Tris–HCl (pH 8.0), 150 mM
NaAc (pH 8.0), 1 mM MgCl2, 1 mM dithiothreitol, 0.2% Triton
X-100, 10% glycerol) supplemented with 2� protease inhibitors
without EDTA (Roche, Rotkreuz, Switzerland). Cells were lysed
and telomerase was prepared by DEAE adsorption as described
previously (Cohn & Blackburn, 1995; Prescott & Blackburn, 1997;

Forstemann & Lingner, 2001). Most of the overexpressed Tlc1
RNA was associated with Est2 as determined by co-immunopre-
cipitation with a Myc-tagged version of Est2 (data not shown).
Telomerase RNA methylation. DMS modification was performed
as described previously (Zaug & Cech, 1995; Antal et al, 2002).
The reactions were carried out in 1� telomerase reaction buffer
(Forstemann & Lingner, 2001) in a volume of 20 ml containing
DEAE-enriched telomerase fraction (20 mg of total protein).
Substrate DNA oligonucleotides were included at a concentration
of 25 mM. Substrate extension by the telomerase enzyme was
initiated by addition of dNTPs (50 mM each) and incubation for
5 min at 23 1C. For RNA methylation, 1.5 ml of 10% DMS (diluted
in 100% ethanol) was added to 20 ml reaction mixture, yielding a
final concentration of 0.75% DMS. The samples were incubated
for 5 min at 23 1C. The reactions were quenched by the addition of
half volume of 2 M b-mercaptoethanol and incubated for 10 min
at 23 1C. To digest the proteins in the methylated RNA sample,
200 ml of proteinase K solution (200 mg/ml proteinase K in reaction
buffer) was added and the samples were incubated for 30 min at
23 1C. To acidify the solution, 25ml of 3 M sodium acetate (pH 5.3)
was added and the RNA was extracted with 150 ml of phenol/
chloroform/isoamyl alcohol (25:25:1). The acid–phenol extraction
partitioned DNA contaminations into the phenol phase. The
aqueous phase containing RNA was transferred to a fresh tube
containing 1 ml of glycogen solution (20 mg/ml) and precipitated
with 600 ml of 100% ethanol. The RNA pellet was washed twice
with 70% ethanol and resuspended in 10 ml of water. Dried gels
were exposed for 1–3 days and signal strength was classified as
strong or moderate visually, by both authors independently and
discrepancies were re-evaluated by them together. All experi-
ments were conducted at least twice, giving highly reproducible
results.
Reverse transcriptase reactions and gel electrophoresis. The
oligonucleotides used for primer extension by reverse transcrip-
tase (tlcas600: 50-GCAAATCTAACTTAAACTCC-30 and tlcas
900: 50-TAAGAAAGGACACCCTTGCC-30) were labelled with
[32P-g]ATP (equimolar amounts of ATP and oligonucleotide) and
T4 DNA polynucleotide kinase (NEB) at their 50 end. Labelled
oligonucleotides were purified with the Nucleotide Removal Kit
(Qiagen, Hombrechtikon, Switzerland). For reverse transcription,
the entire 10 ml of methylated RNA was incubated with 1 pmol of
radiolabelled oligonucleotide primer and 100 U of Superscript II
reverse transcriptase (Invitrogen, Basel, Switzerland) according to
the manufacturer’s instructions. For parallel sequencing reactions,
1 pmol of the same radiolabelled oligonucleotide primer was used
in standard dideoxynucleotide sequencing reactions (Amersham,
Otelfingen, Switzerland) using pSD107 (Singer & Gottschling,
1994) as a template. After primer extension, all reaction products
were precipitated with sodium acetate and ethanol according to
standard protocols and resuspended in 5 ml of formamide loading
buffer (90% formamide, 0.1� TBE). The reaction products were
separated on 6% acrylamide/urea gels according to standard
procedures. The gels were dried and exposed to Kodak Biomax
film for 2–14 days.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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