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ABSTRACT We have employed an interferometric technique for the local measurement of bending modulus, membrane
tension, and adhesion energy of motile cells adhering to a substrate. Wild-type and mutant cells of Dictyostelium discoideum
were incubated in a flow chamber. The flow-induced deformation of a cell near its adhesion area was determined by
quantitative reflection interference contrast microscopy (RICM) and analyzed in terms of the elastic boundary conditions:
equilibrium of tensions and bending moments at the contact line. This technique was employed to quantify changes caused
by the lack of talin, a protein that couples the actin network to the plasma membrane, or by the lack of cortexillin I or II, two
isoforms of the actin-bundling protein cortexillin. Cells lacking either cortexillin I or II exhibited reduced bending moduli of 95
and 160 kBT, respectively, as compared to 390 kBT, obtained for wild-type cells. No significant difference was found for the
adhesion energies of wild-type and cortexillin mutant cells. In cells lacking talin, not only a strongly reduced bending modulus
of 70 kBT, but also a low adhesion energy one-fourth of that in wild-type cells was measured.

INTRODUCTION

For an amoeboid cell, the composite plasma membrane,
comprising the lipid-protein bilayer and the subjacent actin
cortex, controls the shape and motility of a cell as well as its
ability to adhere to a solid substrate (Sackmann, 1994). Key
parameters are the intrinsic stiffness of the cytoskeleton and
its coupling to the lipid-protein bilayer. These parameters
reflect the activities of a wide variety of proteins that
mediate the cross-linkage and bundling of actin filaments
(Sato et al., 1987; Janmey et al., 1990), as well as the
binding of these filaments to the protein-lipid bilayer (Hor-
witz et al., 1986; Isenberg and Goldmann, 1992; Geiger et
al., 1995; Jockusch et al., 1995)

In previous studies, the effect of cytoskeletal proteins on
the motion ofDictyostelium discoideumcells was addressed
(Schindl et al., 1995; Weber et al., 1995). Mutants lacking
two actin cross-linking proteins,a-actinin and 120-kDa
gelation factor, and an actin filament-severing protein, the
gelsolin homolog severin, did not differ significantly from
wild-type cells in their motility on albumin-coated glass, a
substrate of optimal adhesiveness. However, on freshly
cleaved mica, a weakly adhesive substrate, the motility of
the triple mutants was impeded. This behavior could be
attributed to a reduced bending elastic modulus of the
composite plasma membrane due to the elimination of actin
cross-linking proteins. More recently, an influence of the
same actin cross-linking proteins on the viscoelastic prop-
erties of a pellet ofDictyosteliumcells has been shown in a

rheological study using a torsion pendulum (Eichinger et al.,
1996).

To quantify the influence of actin-binding proteins on the
bending elasticity of the cell cortex and the strength of
adhesion in single cells, we developed an interferometric
technique for measuring bending modulus, membrane ten-
sion, and adhesion energy. Adhering cells were exposed to
a small hydrodynamic flow. It is impossible to evaluate the
flow-induced deformation of the cell envelope as a whole
because of its very complex and heterogeneous structure.
Locally, however, the shape of the composite cell envelope
is in good approximation determined by two elastic bound-
ary conditions: the equilibria of tensions and bending mo-
ments. We used reflection interference contrast microscopy
(RICM) to determine the flow-induced deformation of the
cell contour near the contact area. Analysis of this local
deformation in terms of the above boundary conditions
yields values for the bending modulus and the adhesion
energy, without having to consider global shape changes of
the cell.

Viscous shear forces have been successfully used to
measure molecular parameters of cell adhesion, such as the
kinetics of formation and breakage of receptor-ligand bonds
(Evans, 1985; Hammer and Lauffenburger, 1987; Xia et al.,
1993; Xiao and Truskey, 1996) or the density of receptors
(Alon et al., 1995). Flow chambers have been employed for
studying detachment (Gallik et al., 1989; Xia et al., 1994),
adhesion (Tissot et al., 1992; Olivier and Truskey, 1993), or
rolling of cells (Zhao et al., 1995) on functionalized sub-
strates. In these studies the laminar flow velocity was usu-
ally high enough to detach the cells. In the present study the
shear forces were kept small to minimize deformation of the
cells and to avoid their detachment. The exerted shear forces
altered the cell contour near the adhesion area only slightly.
The small changes in this area could be detected with high
accuracy by using RICM.
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To determine the influence of specific actin-binding pro-
teins on the intrinsic stiffness of cell-cortex and on cortex-
bilayer coupling, we compared mutant cells deficient in
cortexillin I, cortexillin II, or talin with wild-type cells.
Cortexillins I and II contain the conserved actin-binding
sites characteristic of thea-actinin/spectrin superfamily of
F-actin cross-linking proteins (Faix et al., 1996). The cor-
texillins are distinguished from other members of this su-
perfamily by forming parallel dimers through the interaction
of a long coiled-coil domain in the C-terminal halves of the
subunits. Elimination of either isoform causes slight defi-
ciencies in cytokinesis, resulting in an increased proportion
of multinucleated cells. The isoforms cooperate in enabling
the cells to divide and in stabilizing the cell shape. Elimi-
nation of both cortexillins results in giant, extremely flat
multinucleated cells (Faix et al., 1996). The focal adhesion
protein talin of vertebrate cells binds tob-integrin (Horwitz
et al., 1986) and nucleates actin polymerization at lipid
membranes (Kaufmann et al., 1992), thereby playing a key
role in coupling the actin cortex to the membrane (Isenberg
and Goldmann, 1992; Jockusch et al., 1995; Geiger et al.,
1995). Dictyosteliumcells contain a full-length talin ho-
molog of 269 kDa. Elimination of this protein by targeted
gene disruption results in reduced substrate adhesion and in
a conditional phagocytosis defect, depending on the adhe-
siveness of the particle to be taken up (Niewo¨hner et al.,
1997).

Compared to wild-type cells, the cells of all three mutants
exhibited markedly reduced bending moduli. This reduction
was more pronounced for talin and cortexillin I mutants
than for the cortexillin II mutant. The adhesion energy of
cells lacking talin was reduced to one-fourth, whereas it was
barely impaired in cells deficient in one of the bundling
proteins. These results underline an important role of talin in
lipid bilayer-cytoskeleton coupling, and indicate a strong
influence of this coupling on cell-to-substrate adhesion.

MATERIALS AND METHODS

Culture and preparation of cells

Mutant and wild-type AX2 cells ofDictyostelium discoideumwere culti-
vated on SM agar plates, usingKlebsiella aerogenesas a bacterial food
source (Sussmann, 1966). Three different mutants obtained by gene dis-
ruption were examined in this study. Mutant HG1666 failed to produce
talin (Niewöhner et al., 1997). The two other mutants were defective in the
production of either cortexillin I or cortexillin II (Faix et al., 1996).
Immediately before the experiment, cells were taken from the edge of a
colony and washed three times in cold 17 mM K-Na phosphate buffer
(Soerensen), pH 6.0, to remove the bacteria. The washed cells were diluted
to a density of;103 ml21, injected into the assembled flow chamber, and
allowed to attach to the substratum. For all experiments we used a bovine
serum albumin (3 mg/ml BSA; Sigma)-coated glass coverslip (603 24 3
0.17 mm) as a substratum, which formed the bottom wall of the flow
channel. Cells were used for no more than 2 h after injection into the flow
chamber.

Setup

The flow chamber consisted of two Plexiglas blocks serving as cover (I)
and base plate (II) and of a glass coverslip (Fig. 1A). The coverslip
forming the bottom wall of the flow channel was fastened between the base
and the cover plate. A rectangular cut across the cover plate served as the
actual flow channel. The chamber was sealed with silicon grease and
mounted on the stage of an inverted microscope. To allow a laminar flow
to become established in the flow chamber, the channel lengthl has to be
greater thanghRe (Van Kooten et al., 1992). Here,Re 5 rQ/(b 1 h)h is the
Reynolds number;h andb are the channel height and width, respectively;
Q is the flow rate in ml/s;r andh denote the density and viscosity of the
fluid; andg is a numeric factor of;1.8 (Bowen, 1985). A self-built syringe
pump (Fig. 1B) was used for controlling flow rateQ and the resulting shear
stresss 5 6hQ/bh2, ranging from 4 to 12 dyne/cm2.

For RICM we used an Axiomat inverted microscope (Zeiss,
Oberkochen, Germany) with a Zeiss Antiflex-Neofluar 633/1.25 oil im-
mersion objective, supplemented by nonstandard optical devices for addi-
tional magnification. For illumination, the 546.1-nm line of a high-pressure
mercury arc lamp (HBO100/W2, Osram) was filtered out with a band-pass
filter (line width 5 nm, peak transmission 85%) and reflected by a 50%
mirror into the objective. The interference images of adhering cells were
projected onto a CCD camera (HR-480; Aqua-TV, Kempten, Germany)
and recorded with a 1/4-inch S-VHS video recorder (AG7350; Panasonic).
Recorded sequences were digitized with a Macintosh Quadra 950 (Apple
Computer) equipped with Pixel Tools imaging boards (Perceptics, Knox-
ville, TN) and Image VDM software (Perceptics). A customized version of
the image analysis software National Institutes of Health-Image (W. Ras-
band, National Institutes of Health, Bethesda, MD) was used to analyze the
interference images.

FIGURE 1 Parallel-plate chamber for the measurement of flow-induced
deformation of adhering cells. (A) Cross section of the flow chamber,
consisting of two Plexiglas blocks connected with screws, one block
serving as a cover plate (I), the other as a base plate (II). A glass coverslip
forming the bottom wall of the flow channel was held in the recess of the
base plate. The rectangular flow channel had been cut into the cover plate.
The flow channel was 5.9 cm long, 5 mm wide, and 500mm high. The
chamber was sealed with silicon grease. Different flow directions are
indicated by the arrows. The encircled area at the edge of a cell adhering
to the coverslip denotes the region of interest, which is observed by RICM.
(B) A home-made syringe pump, consisting of a stepping motor driving
two glass syringes, was used for controlling the rate and direction of flow
in the channel.
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Reconstruction of the cell contour near the
contact zone with RICM and digital
image processing

We examined the cell contour of adhering cells in terms of the spacingh(x)
between cell membrane and substratum, in the proximity of their contact
zone, using RICM. The principle of image formation (Gingell and Todd,
1979; Gingell et al., 1982; Ra¨dler and Sackmann, 1992; Ku¨hner and
Sackmann, 1996) is illustrated in Fig. 2A. Briefly, light reflected from the
substratum (I1) interferes with light reflected from the ventral cell surface
(I2), giving rise to the following intensity distribution of the image:

I~x! 5 I1 1 I2 1 2ÎI1I2 z F@a, h~x!#

z cos~2kh~x! z ~1 2 G~a!! 1 d!

(1)

Both F andG are functions of the anglea of the illumination aperture, and
k 5 2ph/l denotes the wave vector of the illuminating light in the buffer.
Assuming that the refractive index of the cell membrane is higher than the
index of the surrounding buffer, light reflected on the buffer-cell interface
experiences a phase jump ofd 5 p. Therefore, the contact area of an
adhering cell appears dark in RICM. Around the adhesion area, interfer-
ence produces a specific fringe pattern (Fig. 2B) that depends on the shape
of the cell contourh(x).

Light reflected from cell organelles in close proximity to the substratum
can strongly perturb the interference pattern. These disturbances are rec-

ognized by changing the illumination numerical aperture (INA) (Ver-
schueren, 1985; Schindl et al., 1995). To reduce the noise introduced by
rapidly moving cell organelles, we usually averaged images over two to
five frames. The cell contour was always reconstructed around the edge of
the adhesion area, where the distance of the cell wall from the substrate
rises continuously with increasing distance from the contact lineL (Fig. 2).
As has been pointed out in the framework of the “finite-aperture theory”
(Rädler and Sackmann, 1993; Gingell and Todd, 1979) or the “nonlocal
theory” (Kühner and Sackmann, 1996), the nonzero aperture angle of
illumination is important for measurement of the absolute height of an
object above the substratum. In the present work only the shape of the cell
contour is relevant; the absolute height, however, is not. In this case it is
sufficiently accurate to assume a zero aperture angle for calculatingh(x), as
shown by Kühner et al. (Ku¨hner and Sackmann, 1996). In this simplified
approach, an inverse cosine transformation of the observed intensity dis-
tribution yields the cell contourh(x):

h~x! 5
l

4pn
arccos~I~x! 2 I1 2 I2! (2)

Elastic model of the cell contour near the substrate

In contrast to the behavior of droplets of partially wetting liquids on solids,
the adhesion of soft and closed shells is not only determined by the
adhesion energyW and the surface tensiong, but also by the elasticity of
the shell. For fluid lipid vesicles only bending elasticity is important, and
a rigorous theory relating the shape of the adhering vesicle to the mem-
brane tension, the osmotic pressure, and the adhesion energy is available
(Seifert and Lipowsky, 1990). In this case, bending modulus, adhesion
energy, and membrane tension can, in principle, be measured by analyzing
the three-dimensional shape of the vesicle.

The situation is much more complex for cells, because the cortical shell
of a cell is not isotropic and the membrane exhibits bending elasticity as
well as shear elasticity. The effect of the latter on the cell shape can be
neglected if the adhesion is weak and does not result in area changes of the
shell. Recent studies of vesicle adhesion showed that the shape of adhering
soft shells near the substrate is determined by the following two boundary
conditions: first, the balance of tensions that can be expressed in terms of
Young’s law,

W5 g~1 2 cosqc! (3a)

where qc is the contact angle andg is the surface tension; second, the
equilibrium of bending moments relating the local radius of curvature
Rc

21 5 ­2h(x)/­x2 at the contact line to the bending modulusk and the
adhesion energyW, according to

W5
1

2
k/Rc

2 (3b)

Unfortunately, a direct measurement ofRc is difficult and does not yield
reliable results (Ra¨dler et al., 1995). Following Bruinsma (1995), the
difficulty can be overcome by calculating the approximate contour by
minimizing the total free energyDGr of the shell in the rim region around
the contact lineL. In the absence of strong pinning centers, the contact line
does not exhibit sharp edges. In this case the above boundary conditions
must be fulfilled locally, and the free energyDG of the contour per unit
length is

DG 5 E
0

` Hk

2S­2h~x!

­x2 D 1
k

2S­h

­xD
2Jdx2 E

2`

0

W~x!dx (4)

Minimizing DG yields a fourth-order differential equation,

g
­2h

­x2 2 k
­4h

­x4 5 0 (5)

FIGURE 2 Principle of reflection interference contrast microscopy. (A)
RICM images are formed by interference of light reflected from the surface
of the glass substratum (I1) with light reflected from the cell surface (I2).
The maximum distanceh(x) between substratum and cell surface still
leading to visible interference fringes decreases with increasing anglea of
illumination. For the setup used, this maximum distance was;1 mm. (B)
The schematic RICM image of an adhering cell reveals that the adhesion
area of a cell appears dark, because of a phase jump of light reflected at the
buffer-cell interface. The contact lineL circumscribes the adhesion area,
where the cell forms close contact with the substratum. Outside of this area,
the increasing distance between cell and substratum gives rise to a series of
interference fringes.
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The characteristic length scalel 5 =k/g embedded in this differential
equation separates regions of the cell contour dominated by lateral tension
from regions near the contact line that are dominated by the bending
modulus (Fig. 3). The above description of the cell contour does not apply
to regions of the cell where the membrane curvature within the plane of the
substratum becomes large compared to the curvature perpendicular to the
substratum (or 1/l). In particular, this is the case in close proximity to
strong pinning centers, where sharp edges at the contact line would be
associated with an infinitely small bending energy. Therefore, measure-
ments were not performed in the vicinity of pinning centers.

A solution h(x) of Eq. 5 can be obtained by considering the following
boundary conditions:h(x) 5 0 within the contact area andh(x) 5 qcx for
x large and positive (Fig. 3), whereqc denotes the macroscopic contact
angle (Bruinsma, 1996):

h~x! 5 Hqc~x 2 l! 1 qcle2x/l

0
x $ 0
x , 0

(6)

The contact angleqc can be directly measured by a least-squares fit to the
tension-dominated linear part of the reconstructed cell contour (Fig. 3). The
distance between the contact line and the intersection of the linear fit with
the x axis defines the characteristic lengthl. Note that the contact line is
usually well defined by a sharp increase in the intensity of the RICM image
at the edge of the adhesion area, as in the example in Fig. 5C.

RESULTS

Effect of small shear forces on the cell contour

As outlined in Materials and Methods, analysis of the con-
tact contour yields only two parameters,l andqc, whereas
we have three unknown parameters (g, k, andW). To obtain
absolute values of bending stiffnessk and membrane ten-
sion g, we studied the effects of small shear forces on the
contour and the length scalel, using wild-type and mutant
cells of Dictyostelium discoideum. The shear stresses ap-
plied ranged from 4 to 12 dyne/cm2. They were small
enough to prevent strong deformation or detachment of the
cells, as checked by phase-contrast microscopy. Yet these

shear stresses were large enough to measurably alter the
contact angle and contact curvature of the cell.

The relationship between shear flow and the resulting
shape of adhering cells is very complicated and has only
been solved numerically for a few spherically symmetrical
cell geometries (Goldmann et al., 1967; Olivier and Trus-
key, 1993). For the analysis of nonsymmetrical cells, as
examined in the present work, we concentrated on the effect
of shear forces at the boundary region between cell surface
and substrate, adopting the following approximation. Be-
cause of the bending stiffness of the composite membrane,
the shear force acting on the dorsal cell surface changes the
tension at the contact line (Bruinsma, 1995). According to a
theorem of shell elasticity (Landau and Lifschitz, 1989), the
resultant of the load above the surface must be compensated
by a shift in the tension of the shell at the surface in the
direction of the load. Therefore, the tension increases byDg
at the edge of the cell facing the flow and decreases at the
opposite side by the same amount (Fig. 4). We used laser
scanning microscopy to determine the average height of
wild-type cells. To facilitate comparison of wild-type and
mutant cells, we evaluated only cells that had approximately
the same size (controlled by bright-field microscopy) and
exhibited adhesion areas of comparable size (controlled by
RICM), so that the height of all cells could be considered to
be in the same range of;5 mm. This height was small
compared to the typical dimension of a cells contact area of
;15 mm, or the height of the flow channel of 500mm.
Considering this flat cross section of the cells along the
direction of flow, the load on the cell can be approximated
by sLo, wheres is the applied shear stress andLo denotes
the width of the contact area parallel to the direction of flow.

FIGURE 3 Theoretical height profile of adhering soft shells near the
contact area. The predicted height profileh(x) perpendicular to the contact
line is governed by two boundary conditions, the balance of tensions and
the equilibrium of bending moments. The characteristic lengthl separates
two regimes. For distancesx , l the cell contour is dominated by the
bending energy and is therefore curved. Forx . l the contour is dominated
by the lateral tension of the composite membrane, and approaches a
straight line. Extrapolation of this line to the substratum defines bothl and
the contact angleqc.

FIGURE 4 Deformation of a cell in response to shear. (A) A schematic
cross section of an undisturbed adhering cell exhibiting the contact angle
qc with the substratum. If the cell is exposed to a laminar shear flow (B),
the contact angle is measurably increased on the edge of the cell facing the
flow and is decreased on the opposite side. This change in contact angles
is accompanied by a shift in membrane tensiong due to the shear stress
exerted on the cell. For flat cells the shear stresss results in an increase in
the lateral tension at the edge facing the flow by approximatelyDg ' sLo/2
and a decrease at the opposite side by the same amount. Note that for the
weak deformations used in this study, the diameter of the adhesion areaLo

does not significantly change because of the flow.
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Therefore, the flow-induced increase in tensionDg at the
edge of the cell facing the flow is given by

Dg <
1

2
sLo (7)

Note that this equation only holds for small deformations,
where the bending modulus of the shell remains unaffected.
The shear-induced change in tensionDg will therefore
change the characteristic lengthl in a predictable way. By
measuringl in the absence of flow~l 5 Îk/g ! and in the
presence of flow~l 5 Îk/~g 1 Dg! !, we have two equa-
tions, from which both membrane tensiong and the bending
modulusk can be obtained. The adhesion energyW can be
derived from Young’s law (Eq. 3a) by measuring the con-
tact angle in the stress-free state.

The height profile of an undisturbed cell was recon-
structed from RICM images along a section perpendicular
to the contact lineL. The characteristic lengthl and the
contact angleqc were obtained from a least-squares fit to
the linear portion of the profile. Subsequently, the same
measurement was repeated along the same section shortly
after a shear force was applied (Fig. 5). Note that the
length-scalel decreases under the influence of flow, as
predicted. Cell contours were always reconstructed at the
side of the cell facing the direction of flow. To avoid
artifacts due to changes in the fringe pattern caused by
active cell movement, the time interval between measure-
ments of the two compared contours was always,0.5 s.
Furthermore, we chose only cells that exhibited a straight
edge approximately perpendicular to the direction of flow,
which did not change considerably during this short time
interval. Measurements were not performed in the vicinity
of pinning centers, where additional strong lateral tensions
mask the effect of the applied flow. Finally, the cell density
in the flow channel (103 ml21) was sufficiently small to
prevent neighboring cells from affecting the laminar flow
profile in the vicinity of an examined cell.

Influence of three actin-binding proteins on
membrane tension, bending modulus, and
adhesion energy

Values for the contact anglea and the characteristic length
l of wild-type and mutant cells were determined and used
for the calculation of membrane tensiong, bending stiffness
k, and adhesion energyW. To facilitate a comparison of the
results, only cells with approximately equal volume and
height were evaluated.

In the absence of an external force, wild-type and mutant
cells exhibited almost identical contact angles of;22°.
Remarkable differences were observed, however, in the
presence of flow. In Fig. 6 histograms of the bending
moduli, adhesion energies, and lateral tensions are shown
for all types of cells examined. As typical for measurements
on single living cells, the distributions were broad. Never-
theless, the differences between wild-type and mutant cells

could be clearly established. The bending modulusk was
strongly reduced for cells deficient in cortexillin I, and even
more for talin-deficient cells. Removal of cortexillin II
produced a smaller but still obvious reduction ofk.

A remarkable difference between cortexillin I and II
mutants on one side and the talin mutant on the other was
observed in their lateral membrane tensionsg and their
adhesion energiesW. In talin-deficient cells,W andg were
markedly reduced, similar to the bending energyk. In
contrast, only a slight reduction inWandg was observed for
cells lacking cortexillin I. No reduction in these two param-
eters could be observed for cells deficient in cortexillin II.
Table 1 summarizes the results obtained for wild-type and
mutant cells lacking cortexillin I, cortexillin II, or talin.

DISCUSSION

Elastic properties deduced from local
measurements of adhering cells

To assess the influence of actin-binding proteins on the
elastic properties of motile cells, we developed an interfero-
metric technique to evaluate small local deformations of
adhering cells that are caused by hydrodynamic shear
forces. These deformations of the cell contour close to the
substratum can be analyzed in terms of two simple bound-
ary conditions, the balance of tensions and the equilibrium
of bending moments, without having to consider the com-
plex shape of the cell as a whole. By applying this technique
to wild-type and mutant cells ofDictyostelium discoideum,
a marked dependence of the bending modulusk and the
adhesion energyW on both the rigidity of the cytoskeleton
and its coupling to the lipid-protein bilayer was observed.
Our results, quantifying changes in the physical properties
of cells that are caused by the absence of certain cytoskel-
etal proteins, can be interpreted in the framework of the
minimum elastic energy concept (Seifert and Lipowsky,
1990; Schindl et al., 1995; Bruinsma, 1995).

The length scale in our experiments of;1 mm is too
large for seeing small-scale heterogeneities in the actin
cortex. However, there may be more global differences in
the membrane properties, for instance, between the leading
and trailing edges of the cell. To make measurements be-
tween different strains comparable, we have therefore al-
ways performed measurements on the side of the cell.

Effect of cytoskeletal proteins on the
bending modulus

The bending modulusk was significantly decreased in
mutant cells deficient in talin or either isoform of cortexil-
lin, as compared to wild-type cells (Table 1, Fig. 6). The
reduction was most pronounced for cells lacking talin,
where we determined a value ofk comparable to that of a
phosopholipid vesicle containing;50% cholesterol (Sack-
mann, 1995). This finding underlines the important role of
talin, a protein implicated in coupling of the cytoskeleton to
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the lipid-protein bilayer in vertebrate cells (for reviews see
Geiger et al., 1995; Jockusch et al., 1995).

Cortexillin is known to bundle actin filaments and to
connect these bundles into meshworks (Faix et al., 1996).
The elimination of cortexillin I by gene disruption resulted
in a stronger impairment of cell division than the elimina-
tion of cortexillin II (Faix et al., 1996). In agreement with
these findings, the reduction of bending moduli was signif-

icantly stronger for cells lacking cortexillin I than for cells
lacking cortexillin II. Cells of the double mutant lacking
both cortexillins I and II were extremely flat and, because of
a dramatic impairment of cell division, very large. These
cells proved to be inappropriate for the measurements per-
formed in the present study.

Our results can be related to data obtained in cell popu-
lations by the use of a torsional rheometer. Measurements

FIGURE 5 RICM images, fringe patterns, and con-
tact angles in the absence and presence of shear. To
exemplify the experimental data, typical RICM images
are shown of a wild-typeDictyostelium discoideum
cell adhering to albumin-coated glass in the absence
(A) or the presence (B) of a laminar flow. Darker and
brighter patches visible within the adhesion area are
caused by intracellular compartments such as vacuoles
and mitochondria. The time interval between two im-
ages is,0.5 s. InC the intensity distributions along
the line froma to b are shown, as marked inA (– – –)
andB (——). From this distribution the cell contour is
reconstructed as described in Materials and Methods.
The sharp increase in intensity of the RICM images at
the edge of the adhesion area defines the location of
the contact line. As seen inD, the profile in the
presence of flow (——) exhibits a smaller value ofl
(674 nm) than the profile in the absence of flow (– – –,
l 5 900 nm), in agreement with the theory.
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showed a markedly decreased shear modulusm in mutants
that lack the two F-actin cross-linking proteinsa-actinin
and 120-kDa gelation factor (Eichinger et al., 1996). For
isotropic systems, the shear modulusm can be expressed
in terms of the Young’s modulusE by m 5 E/(2 1 s),
which in turn is related to the bending modulusk by
k 5 Eh3/12(1 2 s2) (Landau and Lifschitz, 1989). Hereh
is the thickness of the cell cortex ands is the Poisson ratio,
which is;0.5. Although this relationship betweenm andk
holds only approximately for cells, a reduction inm also
suggests a decrease in the bending modulusk of the cell
cortex.

Lowered adhesion energy in cells lacking
cytoskeletal proteins

Key parameters for the bending modulus and the lateral
tension of the composite membrane are both the intrinsic
rigidity of the actin cortex and its coupling to the lipid-
protein bilayer. As known from a variety of studies in vitro,

the rigidity of the actin cortex is determined by a large
number of actin-binding proteins mediating cross-linkage
and bundling of actin filaments (Sato et al., 1987; Janmey et
al., 1990).

Lateral tension and bending energy of the cell envelope
have, in fact, a strong bearing on the adhesion of a cell. As
known from erythrocyte studies (Zilker et al., 1992), cell
membranes exhibit thermally induced undulations, leading
to repulsive forces. These undulation forces, as discussed by
Seifert and Lipowsky (1990), have been shown experimen-
tally to substantially reduce the van der Waals attraction and
thus the adhesion energy (Ra¨dler et al., 1995). Reduction of
lateral tensiong or bending modulusk of the composite
membrane increases the undulations and therefore leads to a
smaller adhesion energy. Becausek andg are significantly
smaller for the lipid-protein bilayer alone, as compared to
the composite cell membrane, disruption of the bilayer-
cortex coupling can be expected to result in a pronounced
reduction of the adhesion energy.

TABLE 1 Comparison of effective contact angle, membrane bending modulus, membrane tension, and cell adhesion energy on
albumin-covered glass for cells of the wild type (AX2) and the mutants indicated

AX2 (19) Talin-null (9) Cortexillin I-null (14) Cortexillin II-null (11)

Contact angle* (°) 21.56 1.8 21.86 1.9 22.36 1.8 20.56 2.2
Bending modulus (kBT ) 3916 156 716 21 946 18 1596 51
Membrane tension (mN/m) 3.16 1.4 0.86 0.3 2.26 0.8 3.56 1.8
Adhesion energy (1026 J/m2) 22.06 12.2 5.96 2.4 15.26 4.7 21.26 10.0

*The effective contact angle was measured at zero shear stress. Means are shown with their standard deviations. The numbers in parentheses denote the
number of cells examined for each wild-type or mutant strain.

FIGURE 6 Histograms of mem-
brane bending moduli, lateral ten-
sions, and adhesion energies deter-
mined for wild-type and mutant cells
of Dictyostelium discoideum. In each
histogram, they axis denotes the
number of cells. The mutants com-
pared with wild-type AX2 were defi-
cient in cortexillin II, cortexillin I, or
talin. Medians of the distributions are
denoted by a vertical line. Numbers
of cells analyzed were 19 (AX2), 11
(cortexillin II-null), 14 (cortexillin I-
null), or 9 (talin-null). The distribu-
tions of membrane tensions and ad-
hesion energies obtained for
cortexillin I mutants differ signifi-
cantly from the results for AX2 cells.
The Mann-Whitney U-test revealed a
probability of p , 0.01 that these
distributions would be identical.
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In previous work it was shown that the locomotion of
Dictyosteliumcells deficient in the three actin-binding pro-
teins a-actinin, 120-kDa gelation factor, and severin was
not significantly affected on strongly adhesive substrates
such as albumin-covered glass (Schindl et al., 1995; Weber
et al., 1995). In contrast, the motility of the mutant cells was
strongly impeded on weak adhesive substrates such as
freshly cleaved mica. The differences in motility were ten-
tatively attributed to a substantial reduction of the adhesion
strength of these mutants, due to a smaller bending modulus
of the bilayer-cytoskeleton composite membrane. This hy-
pothesis was based on theoretical considerations showing
that both the shape and the state of adhesion of vesicles or
cells are determined by the minimum of the total free elastic
energy (Seifert and Lipowsky, 1990; Bruinsma, 1995).

Our results, demonstrating that cortexillins and talin in-
fluence the adhesion energy to different degrees, provide
strong evidence that undulation forces can substantially
decrease the adhesion energy of cells, if the coupling be-
tween the lipid-protein bilayer and the actin cortex is weak.
Whereas the lack of cortexillin II had no significant effect,
and the removal of cortexillin I had only a moderate influ-
ence, the lack of talin markedly reduced adhesion of the cell
to albumin-covered glass (Fig. 6, Table 1). This strong
decrease in the adhesion energy of the talin mutant also
substantiates biological studies indicating that talin is in-
volved not only in the adhesion ofDictyosteliumcells to a
substrate on which they move, but also in adhesion to
particles to be phagocytosed, and in adhesion of the cells to
each other (Niewo¨hner et al., 1997).

It is well established that in fibroblasts or platelets, talin
plays a key role in the coupling of the cytoskeleton to the
lipid protein-bilayer through integrins (Isenberg and Gold-
mann, 1992; Nuckolls et al., 1992; Albige`s-Rizo et al.,
1995). Our results suggest that inDictyosteliumtoo, talin
binds to a transmembrane protein. The pronounced reduc-
tion of membrane bending modulusk and lateral tensiong
in talin-null mutants provides evidence for this role of talin
in coupling. Elimination of talin may therefore directly
affect a specific protein-mediated interaction between the
actin cortex and the plasma membrane. The bending mod-
ulus we determined for talin-deficient cells was comparable
to that of a phospholipid vesicle containing 50% cholesterol
(Sackmann, 1995). The plasma membrane ofDictyostelium
contains;20% cholesterol (Weeks and Herring, 1980).
Thus the bending modulus of its lipid bilayer alone should
be still lower than the measured one. Nevertheless, the low
value of k obtained for the talin-null mutant indicates a
strong effect of talin relative to ponticulin (Hitt et al., 1994;
Shutt et al., 1995), hisactophilin (Scheel et al., 1989; Be-
hrisch et al., 1995; Hanakam et al., 1996), or other potential
coupling proteins.
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Rädler, J., and E. Sackmann. 1992. On the measurement of weak repulsive
and frictional colloidal forces by reflection interference contrast micros-
copy.Langmuir.8:848–853.
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