Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):633–638. doi: 10.1016/S0006-3495(98)77822-1

Caspar carboxylates: the structural basis of tobamovirus disassembly.

H Wang 1, A Planchart 1, G Stubbs 1
PMCID: PMC1299416  PMID: 9449364

Abstract

Carboxylate groups have been known for many years to drive the disassembly of simple viruses, including tobacco mosaic virus (TMV). The identities of the carboxylate groups involved and the mechanism by which they initiate disassembly have not, however, been clear. Structures have been determined at resolutions between 2.9 and 3.5 A for five tobamoviruses by fiber diffraction methods. Site-directed mutagenesis has also been used to change numerous carboxylate side chains in TMV to the corresponding amides. Comparison of the stabilities of the various mutant viruses shows that disassembly is driven by a much more complex set of carboxylate interactions than had previously been postulated. Despite the importance of the carboxylate interactions, they are not conserved during viral evolution. Instead, it appears that during evolution, patches of electrostatic interaction drift across viral subunit interfaces. The flexibility of these interactions confers a considerable advantage on the virus, enabling it to change its surface structure rapidly and thus evade host defenses.

Full Text

The Full Text of this article is available as a PDF (288.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuh D., Lesk A. M., Bloomer A. C., Klug A. Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J Mol Biol. 1987 Feb 20;193(4):693–707. doi: 10.1016/0022-2836(87)90352-4. [DOI] [PubMed] [Google Scholar]
  2. Bancroft J. B. The self-assembly of spherical plant viruses. Adv Virus Res. 1970;16:99–134. doi: 10.1016/s0065-3527(08)60022-6. [DOI] [PubMed] [Google Scholar]
  3. Butler P. J., Durham A. C. Structures and roles of the polymorphic forms of tobacco mosaic virus. V. Conservation of the abnormally titrating groups in tobacco mosaic virus. J Mol Biol. 1972 Dec 14;72(1):19–24. doi: 10.1016/0022-2836(72)90064-2. [DOI] [PubMed] [Google Scholar]
  4. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  5. Culver J. N., Dawson W. O., Plonk K., Stubbs G. Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology. 1995 Jan 10;206(1):724–730. doi: 10.1016/s0042-6822(95)80096-4. [DOI] [PubMed] [Google Scholar]
  6. Culver J. N., Stubbs G., Dawson W. O. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J Mol Biol. 1994 Sep 16;242(2):130–138. doi: 10.1006/jmbi.1994.1564. [DOI] [PubMed] [Google Scholar]
  7. Gallagher W. H., Lauffer M. A. Calcium ion binding by isolated tobacco mosaic virus coat protein. J Mol Biol. 1983 Nov 15;170(4):921–929. doi: 10.1016/s0022-2836(83)80195-8. [DOI] [PubMed] [Google Scholar]
  8. Gallagher W. H., Lauffer M. A. Calcium ion binding by tobacco mosaic virus. J Mol Biol. 1983 Nov 15;170(4):905–919. doi: 10.1016/s0022-2836(83)80194-6. [DOI] [PubMed] [Google Scholar]
  9. Hilf M. E., Dawson W. O. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology. 1993 Mar;193(1):106–114. doi: 10.1006/viro.1993.1107. [DOI] [PubMed] [Google Scholar]
  10. LORING H. S., FUJIMOTO Y., TU A. T. Tobacco mosaic virus--a calcium-magnesium coordination complex. Virology. 1962 Jan;16:30–40. doi: 10.1016/0042-6822(62)90199-x. [DOI] [PubMed] [Google Scholar]
  11. Lu B., Stubbs G., Culver J. N. Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology. 1996 Nov 1;225(1):11–20. doi: 10.1006/viro.1996.0570. [DOI] [PubMed] [Google Scholar]
  12. Namba K., Pattanayek R., Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. J Mol Biol. 1989 Jul 20;208(2):307–325. doi: 10.1016/0022-2836(89)90391-4. [DOI] [PubMed] [Google Scholar]
  13. Pattanayek R., Stubbs G. Structure of the U2 strain of tobacco mosaic virus refined at 3.5 A resolution using X-ray fiber diffraction. J Mol Biol. 1992 Nov 20;228(2):516–528. doi: 10.1016/0022-2836(92)90839-c. [DOI] [PubMed] [Google Scholar]
  14. Wang H., Culver J. N., Stubbs G. Structure of ribgrass mosaic virus at 2.9 A resolution: evolution and taxonomy of tobamoviruses. J Mol Biol. 1997 Jun 27;269(5):769–779. doi: 10.1006/jmbi.1997.1048. [DOI] [PubMed] [Google Scholar]
  15. Wang H., Planchart A., Allen D., Pattanayek R., Stubbs G. Preliminary X-ray diffraction studies of ribgrass mosaic virus. J Mol Biol. 1993 Dec 5;234(3):902–904. doi: 10.1006/jmbi.1993.1639. [DOI] [PubMed] [Google Scholar]
  16. Wang H., Stubbs G. Molecular dynamics in refinement against fiber diffraction data. Acta Crystallogr A. 1993 May 1;49(3):504–513. doi: 10.1107/s0108767392011255. [DOI] [PubMed] [Google Scholar]
  17. Wang H., Stubbs G. Structure determination of cucumber green mottle mosaic virus by X-ray fiber diffraction. Significance for the evolution of tobamoviruses. J Mol Biol. 1994 Jun 10;239(3):371–384. doi: 10.1006/jmbi.1994.1379. [DOI] [PubMed] [Google Scholar]
  18. Wittmann H. G., Hindennach I., Wittmann-Liebold B. Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. VI. Aminosäurensequenz (Positionen 62-156) des Proteins des Tabakmosaikvirusstammes Holmes rib grass. Z Naturforsch B. 1969 Jul;24(7):877–885. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES