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ABSTRACT Muscle contraction is highly dynamic and thus may be influenced by viscosity of the medium surrounding the
myofilaments. Single, skinned fibers from rabbit psoas muscle were used to test this hypothesis. Viscosity within the
myofilament lattice was increased by adding to solutions low molecular weight sugars (disaccharides sucrose or maltose or
monosaccharides glucose or fructose). At maximal Ca21 activation, isometric force (Fi) was inhibited at the highest solute
concentrations studied, but this inhibition was not directly related to viscosity. Solutes readily permeated the filament lattice,
as fiber diameter was unaffected by added solutes (except for an increased diameter with Fi , 30% of control). In contrast,
there was a linear dependence upon 1/viscosity for both unloaded shortening velocity and also the kinetics of isometric
tension redevelopment; these effects were unrelated to either variation in solution osmolarity or inhibition of force. All effects
of added solute were reversible. Inhibition of both isometric as well as isotonic kinetics demonstrates that viscous resistance
to filament sliding was not the predominant factor affected by viscosity. This was corroborated by measurements in relaxed
fibers, which showed no significant change in the strain-rate dependence of elastic modulus when viscosity was increased
more than twofold. Our results implicate cross-bridge diffusion as a significant limiting factor in cross-bridge kinetics and,
more generally, demonstrate that viscosity is a useful probe of actomyosin dynamics.

INTRODUCTION

Active muscle contraction is a highly dynamic process at
both the macroscopic and particularly at the microscopic
level (Finer et al., 1994; Huxley and Simmons, 1971; Mol-
loy et al., 1995; Thomas et al., 1995). Force generation and
shortening result from asynchronous, cyclic interactions of
myosin with actin coupled to hydrolysis of MgATP (Cooke,
1995). Evidence indicates that during the actomyosin cycle,
myosin catalytic domains (subfragment 1 “heads”) move
from the vicinity of the thick filament toward the thin
filament, bind to specific sites on actin, and undergo nucle-
otide-dependent changes in conformation (Fisher et al.,
1995; Harford and Squire, 1992; Huxley, 1969; Yu and
Brenner, 1989).

Because of the small size of actin filaments and particu-
larly myosin cross-bridges, the fundamental motions under-
lying muscle contraction occur in the realm of low Reynolds
number, and thus dynamic muscle function might reason-
ably be predicted to be affected by cytoplasmic viscosity.
However, it was suggested in 1924 that the hyperbolic
force-velocity relation of intact muscle provided evidence
against viscosity being the primary resistive force that op-
poses unloaded shortening (Gasser and Hill, 1924). The
total force exerted on an individual actin filament is the sum

of cross-bridge forces and a viscous force (Fh), which is
linearly proportional to speed (dx/dt) for simple Newtonian
fluids:

Fh}h
dx

dt
(1)

where h is the viscosity of the medium. Huxley (1957)
suggested that the ensemble of myosin cross-bridges is the
main determinant of shortening velocity, not only the driv-
ing force for muscle shortening but also the primary resis-
tance, as myosin cross-bridges are mechanically coupled via
a common thick filament backbone and the architecture of
the sarcomere. In this model, a portion of cross-bridges
actively translocating an actin filament also push the re-
maining bound cross-bridges past the range of useful work,
i.e., into a region of negative strain. In support of this view,
calculations (assuming cytoplasmic viscosity approximately
twice that of water) (Huxley, 1980) and experimental mea-
surements in frog muscle fibers (Bagni et al., 1995; Ford et
al., 1977) suggest that the viscous force that opposes fila-
ment sliding in a sarcomere shortening at its maximal ve-
locity should be several orders of magnitude smaller than
cross-bridge forces measured under isometric conditions
(Finer et al., 1994; Molloy et al., 1995). In addition to these
possible frictional effects, increased viscosity of the solvent
decreases chemical reaction kinetics (Ansari et al., 1992;
Beece et al., 1980; Gavish and Werber, 1979; Hunt et al.,
1994). Thus viscosity may also affect other fundamental
properties of actomyosin interaction such as ATPase kinet-
ics independently of molecular frictional effects and of
dynamic sliding of the filaments.

Evidence from skinned fiber experiments suggests that
variations in solution viscosity do in fact affect contractile
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performance (Ashley and Moisescu, 1977; Chase and Kush-
merick, 1988; Endo et al., 1979). At high concentrations,
maximal Ca21-activated force has been shown to be inhib-
ited by small molecules (sucrose and glucose) that readily
permeate the filament lattice of skinned fibers (Ashley and
Moisescu, 1977; Chase and Kushmerick, 1988; Endo et al.,
1979). Calcium sensitivity was also decreased under these
conditions (Endo et al., 1979). Unloaded shortening veloc-
ity was inhibited to a greater extent than isometric force
(Chase and Kushmerick, 1988), strongly implying (but not
proving) that the relevant variable was viscosity as viscosity
was not specifically evaluated in the earlier work. Further
support derives from the observations of Hunt et al. (1994)
who demonstrated that increased solution viscosity slows
and can actually stall microtubules translocated by single
kinesin molecules in an in vitro motility assay.

To directly evaluate the hypothesis that viscosity within a
muscle cell influences its function, we used skinned fiber
preparations in which the medium bathing the myofilaments
is under direct experimental control. Solution viscosity was
varied by adding low molecular weight (MW) sugars (su-
crose, maltose, glucose, or fructose); comparing effects of
mono- versus disaccharides permitted separation of viscos-
ity effects from effects related to osmotic pressure. The
results are consistent with previous suggestions that viscous
resistance to filament sliding is not a major factor affecting
muscle shortening. Nonetheless, there was a marked viscos-
ity dependence of both the rate of isometric tension rede-
velopment and also unloaded shortening velocity, which
implies a significant modulation of cellular motility by
cytoplasmic viscosity, resulting at least in part from viscous
effects on cross-bridge diffusion to binding sites on actin. A
portion of these results have been reported in abstract form
(Chase et al., 1996).

MATERIALS AND METHODS

Preparation of single, glycerinated fibers

Single fiber segments from rabbit psoas muscle were dissected and pre-
pared for mechanical experiments as described previously (Chase and
Kushmerick, 1988; Chase et al., 1994b). In brief, small bundles of psoas
muscle, tied to Teflon strips at in vivo length, were removed from adult,
New Zealand White rabbits that had been euthanized with pentobarbital
(120 mg kg21) administered through the marginal ear vein. The bundles
were treated with 0.5% Brij 58 detergent and then 50% glycerol in skinning
solution and were stored at220°C before use. Fiber segments were
dissected in a chilled bath of 50% glycerol/skinning solution with 10 mg
ml21 bovine serum albumin or soybean trypsin inhibitor added to protect
the fibers against diffusion of fixative. One precaution we took to stabilize
fiber structure and mechanical properties during prolonged activation was
to chemically fix the ends of the fiber segments by localized microappli-
cation of 5% glutaraldehyde (plus 1 mg ml21 fluorescein for visualization)
(Chase and Kushmerick, 1988). The fixed ends were wrapped in aluminum
foil T-clips (partially visible in Fig. 1A) for attachment to the mechanical
apparatus via small hooks (Chase and Kushmerick, 1988; Chase et al.,
1994b).

Microscopy and mechanical apparatus

Fiber segments were mounted on a motor (step time# 300 ms; General
Scanning, Watertown, MA) to control overall fiber length at one end and
on a capacitative-type force transducer (2.2 kHz resonant frequency; Cam-
bridge Technology, Watertown, MA) at the other end. The motor and force
transducer were located on a modified stage of an inverted microscope
(Chase and Kushmerick, 1988; Sweeney et al., 1987).

Sarcomere length measurement

Steady-state, isometric values of sarcomere length (LS) and fiber diameter
were measured during an experiment using an optical micrometer and also,
after the experiment, from photographic prints (Fig. 1,B–D). The length of
the unfixed, central portion of the fiber (LF) was determined at the end of
the experiment as described previously (Chase and Kushmerick, 1988;
Chase et al., 1994b); note thatLF is shorter than the length of fiber visible
between T-clips (Ltot; Fig. 1 A) as a short fixed region extends beyond the
edge of the clips (Chase and Kushmerick, 1988).LF was 1.556 0.24 mm
at relaxed (pCa. 8); LS 5 2.566 0.06mm (mean6 SD; N 5 31). The
diameter of relaxed fibers was 756 16 mm (mean6 SD; N 5 31). During
maximal Ca21 activation (pCa 5–4),LS decreased to 2.436 0.08 mm
(mean6 SD; N 5 27, as measurements were not made on four fibers).

FIGURE 1 Photomicrographs of a single, glycerinated psoas fiber re-
laxed at pCa 9.2 (A andB, no added solute) or maximally Ca21-activated
at pCa 4.5 (C, no added solute;D, 0.4 M sucrose). The fiber was attached
to a force transducer and motor by aluminum foil clips (see Materials and
Methods), which are visible at either end inA. Both ends of the fiber
segment were chemically fixed by local application of glutaraldehyde
before attaching foil clips (Materials and Methods); approximately 150mm
of fixed segment is visible on either end outside of the clip (A), as
determined at the end of the experiment (Materials and Methods).LS was
2.57mm at pCa 9.2 (A); at pCa 4.5,LS was 2.49mm (B) or 2.48mm (C).
The calibration bar represents 830mm (A) or 104mm (B–D).

Chase et al. Viscosity Affects Muscle Kinetics 1429



In some experimental protocols,LS was also measured by HeNe laser
diffraction during transient length changes as well as during isometric
steady state. Each diffraction first-order maximum was compressed using
a cylindrical lens, which increased the intensity of light impinging upon the
detectors and which summed light intensity from the substructure within
each first order, and were continuously monitored as described (Chase et
al., 1994a,b, 1993). One first order was sensed by a wide bandwidth
Schottky photodetector (model PIN-LSC5D, United Detector Technolo-
gies, Hawthorne, CA) whereas the opposite first order was sensed by a
photodiode array (model RL0256C/17; Reticon, Sunnyvale, CA) (Iwazumi
and Pollack, 1979).LS signals were recorded and analyzed primarily for
protocols that involved small length changes (typically, 1% LF), thus
minimizing potential artifacts due to translation of sarcomeres (Burton and
Huxley, 1995; Goldman, 1987; Ru¨del and Zite-Ferenczy, 1979).

Solutions

Skinned fiber solutions were calculated and prepared essentially as de-
scribed (Chase and Kushmerick, 1988), with slight modifications to adjust
solution viscosity. The basic composition of solutions was (in mM): 5
MgATP, 1 Pi, 4 EGTA (pCa 5.0–4.0 (activating) or pCa. 8 (relaxing),
15 PCr, 1 mg ml21 creatine kinase (CK; 260 U ml21), 100 K1 plus Na1,
3 Mg21, 50 MOPS, and 1 dithiothreitol. Solution pH was adjusted to 7.1
at 12°C. Ionic strength (G/2) was 0.2 M and was adjusted with Tris and
acetate.

Experimental solutions were held in 300-ml wells machined in anodized
aluminum. The bottom of each well consisted of a glass number 1 coverslip
and, forLS measurement by HeNe laser diffraction, the top was covered
with a portion of a plain glass microscope slide. The temperature was
12–15°C (measured with a K-type thermocouple) and was controlled to
within 1°C during individual experiments.

No agents for osmotic compression of the filament lattice (e.g., Dextran
T-500) were added to solutions because Dextran T-500 at 0.4% (w:v)
increased bulk viscosity more than fourfold. As size exclusion maintains
the major fraction of Dextran T-500 outside of the filament lattice, it would
therefore have less effect on viscosity of the medium within the fiber. Thus
it would not be possible to correlate fiber mechanical performance with the
actual viscosity of the medium bathing the myofilaments when such high
MW osmotic agents were added to the bulk solution.

Solution viscosity

To vary solution viscosity, we used four low MW sugars: disaccharides
sucrose and maltose and monosaccharides glucose and fructose. Low MW
compounds were used to ensure that solutes would readily permeate the
filament lattice of skinned fibers (as verified in Results; see Fig. 5) and thus
interfilament viscosity would be the same as bulk solution viscosity, in
contrast to high MW compounds (e.g., Dextran T-500) discussed above.
These molecules are uncharged and therefore had no effect onG/2, except
through a small reduction of water activity (see Fig. 4 in Results).

Sugars were added to solutions in one of two ways, with no significant
difference in results obtained using either method. Either 1) solid sugar was
dissolved directly in a solution (and any resulting volume change corrected
for) or 2) concentrated sugar stock solution was mixed with 2X concen-
trated fiber solution and water was added to make up the difference in volume.
Note that, throughout the text and also in Figs. 2, 4A, 5, and 7A, added solute
refers to the concentration of low MW sugars (sucrose, maltose, glucose, or
fructose) in fiber solutions beyond standard components.

To directly correlate fiber mechanics with bulk solution viscosity, we
used an Ostwald-type viscometer (VWR Scientific, West Chester, PA) to
measure the viscosity of fiber solutions relative to that of water. Relative
viscosity (h/h0) was calculated according to:

h

h0
5

tr

t0r0
(2)

wheret is the flow time measured in the viscometer,r is density, and the
subscript 0 indicates measurements on water (McKie and Brandts, 1972).
All viscosity measurements, including that of water, were made at the
experimental temperature (12°C) by immersing the viscometer in a tem-
perature-controlled, circulating water bath.

The viscosity of control fiber solutions (no added sugars) was slightly
greater than that of deionized water at the same temperature (12°C),h/h0

5 1.126 0.08 (mean6 SD;N 5 24; Fig. 2), due to the presence of solutes
other than sugars (salts, buffers, etc.). Addition of low MW sugars in-
creasedh/h0 as expected (Fig. 2) (Weast, 1982). To obtain similar in-
creases ofh/h0 for the various sugars used, it was necessary to add
approximately twofold higher concentrations of monosaccharides than
disaccharides (compare the two curves in Fig. 2) over the range used in
these experiments (Weast, 1982). To estimateh/h0 in experimental solu-
tions as a function of added solute, we used nonlinear least-squares
regression to fit the data for mono- and disaccharides separately to the
following expression:

h~@solute#!

h0
5 A@solute#B 1

h~0!

h0
(3)

where A and B were the fitted parameters. In Eq. 3,h(0)/h0 was con-
strained to be equal to the average value ofh/h0 measured in the absence
of added solute (see above).

Experimental control, data acquisition, and
data analysis

During the course of these experiments, two different computer systems
were employed for experimental control, data acquisition, and analysis. In
earlier experiments, a PDP-11/23 system (Digital Equipment, Maynard,
MA) with custom data acquisition hardware and software was used (Chase
and Kushmerick, 1988; Sweeney et al., 1987). In later experiments, a
PC-based system with a DT2831-G board (Data Translation, Marlboro,
MA) and custom software were used (Chase et al., 1994a,b).

Fiber stabilization

In addition to chemical fixation of fiber segment ends and reduced tem-
perature as methods of maintaining integrity of fiber structure and mechan-
ical properties during prolonged activation, both experimental control
systems also employed periodic (0.2 Hz) unloading (i.e., fiber shortening
followed by restretch to the isometric length) (Brenner, 1983; Chase and
Kushmerick, 1988; Sweeney et al., 1987). Periodic length releases and the

FIGURE 2 Increase of solution viscosity by low molecular weight sug-
ars (sucrose,F; maltose,f; glucose,Œ; fructose,�). Relative viscosity
(h/h0) of experimental solutions, relative to water, was determined at 12°C
(Materials and Methods). Points represent individual measurements except
for control solutions with no added solute (l), which is shown as mean6
SD (N 5 24). Lines were drawn according to the nonlinear least squares
regressions using Eq. 3 for disaccharides (—) or monosaccharides (- - -).
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corresponding force transients are visible as vertical lines in both traces of
the slow time base recording of Fig. 3. Notable in Fig. 3 is the stability of
force throughout.14 min of maximal Ca21 activation. Fig. 1,C andD,
illustrate structural stability of the sarcomere striation pattern at maximal
Ca21 activation (compare with Fig. 1B), both in the absence (Fig. 1C) and
presence (Fig. 1D) of low MW sugars.

Determination of isometric force

Steady-state, isometric force (Fi) at maximal Ca21 activation (pCa 5–4)
was determined from the initial portion of digitized records such as those
shown in Fig. 6,A andB. Note that the force baseline (dotted lines in Fig.
6, A andB) could be unambiguously determined from such records during
the period of unloaded shortening.Fi in control conditions (l in Fig. 4)
was 1456 38 mN mm22 (mean6 SD; N 5 31). Passive tension obtained
in a similar manner at pCa. 8 was 26 2% of Fi (mean6 SD; N 5 27;
determinations were not made on four fibers). For comparison between
fibers, Fi at elevatedh/h0 was normalized to the average of bracketing
control determinations (l in Fig. 4; also see Fig. 3).

Velocity of unloaded shortening and maximal velocity
of shortening

The majority of measurements of velocity of unloaded shortening (VUS)
were made using the slack method (Edman, 1979). A series of up to nine
length steps were applied to the fiber (asterisks aboveLtot recording in Fig.
3), and the resulting changes in force were recorded (Fig. 6,A andB). VUS

(in LF s21) was obtained from the absolute value of the linear least-squares
regression slope of length change versus slack time (Fig. 6C) as described
previously (Chase and Kushmerick, 1988; Chase et al., 1993). ControlVUS

(l in Fig. 7) was 3.36 0.7 LF s21 (mean6 SD; N 5 29; determinations
were not made on two fibers), and the corresponding intercept on the
ordinate was 4.16 1.3%LF (mean6 SD;N 5 29; determinations were not
made on two fibers).

For one fiber, maximal velocity of shortening (Vmax) was determined
from records obtained during isotonic shortening (load clamps) as de-
scribed previously (Chase and Kushmerick, 1988). In this case, estimates
of Vmax were obtained by nonlinear least-squares regression fits of Hill’s
(1938) hyperbolic relation to force-velocity data.

For comparison between fibers, bothVUS andVmax obtained at elevated
h/h0 were normalized to the average of bracketing control determinations
(l in Fig. 7; also see Fig. 3). Results obtained using isotonic shortening
were similar to those obtained by the slack method applied to the same
fiber.

Strain-rate dependence of elastic modulus

To characterize the passive, viscous resistance to sarcomere motion, we
used a method previously described by Brenner et al. (1986) and by
Schoenberg (1988), as adopted in our laboratory (Chase et al., 1994a). In
four fibers, small-amplitude ramp stretches (,0.5% LF) were applied to
relaxed (pCa. 8) fibers, and the resulting changes in force andLS were
recorded, as illustrated previously (Chase et al., 1994a). Linear least-
squares regression was used to obtain slopes for both force (F) and LS

signals against time (dF/dt anddLS/dt, respectively). The strain rate (dLS/
dt) was varied from 1.23 100 to 3.8 3 104 nm per half-sarcomere per
second (nm h.s.21 s21). dLS/dt for these measurements was obtained from
the Schottky photodetector signal because of its wider bandwidth. Elastic
modulus (K) was taken as the ratioK 5 (dF/dt)/((dLS/dt)/LS). Individual
measurements ofK from all fibers were combined, binned bydLS/dt (four
to eight individual measurements per bin), and bothK and dLS/dt were
averaged within each bin.

Determination of rate of isometric tension redevelopment

Kinetics of isometric tension redevelopment (kTR) were determined in six
fibers as described (Chase et al., 1994b; Regnier et al., 1996) using a
protocol adapted from Brenner and Eisenberg (1986).kTR was estimated
from the half-time of tension recovery (t0.5) by assuming a monoexponen-
tial relationship:kTR 5 t21 5 2ln 0.5 (t0.5)

21. kTR estimated fromt0.5 was
well correlated with that estimated from monoexponential fits to the data
using nonlinear least-squares regression. The majority ofkTR data were
obtained withoutLS clamp, although the effect of viscosity onkTR was
similar in two of these same fibers comparing results with and withoutLS

control; our previous results (obtained using our methods of fiber prepa-
ration and stabilization) demonstrated thatkTR measured withoutLS control
was correlated with a paired measurement usingLS control in the same
condition, although the latter was 20–30% faster (Chase et al., 1994b;
Regnier et al., 1996). For comparison between fibers,kTR was normalized
to the average of bracketing control determinations (l in Fig. 9B. Control
kTR was 9.16 2.0 s21 (mean6 SD; N 5 6).

Statistical analysis

Statistical analysis, including linear and nonlinear least-squares regression,
was performed using Excel (version 5.0a; Microsoft, Redmond, WA) or
SigmaPlot for Windows (version 3.02; Jandel Scientific, San Rafael, CA).
Statistical comparison of regression parameter estimates was carried out
according to Draper and Smith (1981).

FIGURE 3 Chart recording (model RS4–5P, General Scanning, Watertown, MA) of force (top) and motor position (LF; bottom) during a representative
experiment. Solution pCa and added solutes are indicated by the central bar. Note that periods of high viscosity (0.8 M or 1.2 M glucose, which correspond
to h/h0 of approximately 1.5X or 2X, respectively) are bracketed by control solutions (no additional solute). Also note that the striation stabilization protocol
resulted in periodic reductions in force to baseline (Materials and Methods). The start of each slack test is indicated by an asterisk above theLF trace.
Calibration bars correspond to 0.2 mN (upper force trace), 180mm (lower LF trace; isometricLF was 1.51 mm), and 1 min (time).
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RESULTS

Skinned fiber mechanics

Force

The effect of low MW sugars on maximal Ca21-activated
isometric force was in many instances inhibitory, but the
extent was variable (Fig. 4A). The variability of the re-
sponse ofFi to low MW sugars was not due to reduced
Ca21 sensitivity (Endo et al., 1979) as there was no effect of
solution pCa, which was always,5. Inhibition of Fi was
reversible (e.g., Fig. 3), and bothFi and sarcomere structure
were stable during steady-state activation (Figs. 1 and 3).
Sucrose appeared to be particularly inhibitory toFi (Fig. 4,
F), although the cause of force inhibition by sucrose is not
known. What is clear from the data is that viscosity is not a
primary determinant of isometric force in the steady state
(Fig. 4 B).

Because high concentrations of solutes were added to
experimental solutions, we were concerned that observed
physiological effects could be due to altered activity of
water (aw). We calculatedaw as a function of sucrose
concentration from published data obtained at 20 and 50°C
(Moore, 1972; Weast, 1982), and the result is plotted in Fig.
4 A (z z z). Note that little change inaw is expected over the
range of solute concentrations tested and thus is not likely
responsible for effects of low MW sugars on fiber mechanics.

Added solutes readily permeated the filament lattice; thus
there was no observed decrease in fiber diameter due to
changes in osmotic pressure (Fig. 5). A slight increase in
fiber diameter was observed whenFi was substantially
inhibited by high sugar concentrations (Fig. 5). An increase
in fiber diameter at low force would be expected from
previous results that demonstrated that lattice spacing varied
with Ca21 activation level, and thus force, in the absence of
high MW agents that compress the filament lattice (Brenner
and Yu, 1985). Therefore, changes in force or other me-
chanical parameters could not be ascribed to altered fila-
ment lattice spacing.

Shortening velocity

As the greatest effect of viscosity is expected during motion
(Eq. 1) and, although there is at most a small and variable
effect of viscosity onFi (Figs. 3 and 4), preliminary data
suggested a greater effect of sucrose on velocity than onFi

(Chase and Kushmerick, 1988). Therefore we examined the
effect of increased solution viscosity on the velocity of
unloaded shortening (VUS). Superimposed, individual
records from an experiment illustrate that, for a given extent
of imposed shortening, the slack time is clearly longer at
higherh/h0 (compare slack times indicated by‚ in Fig. 6,
B versusA; also compare� versusl in Fig. 6C), and thus
VUS is slowed (Figs. 6C and 7). Although there is slight
curvature in theDLF-time plot obtained at maximal Ca21

activation (Fig. 6C), as has been reported previously (Mar-
tyn et al., 1994; Metzger and Moss, 1988; Moss, 1986), it is
evident from the data that slowerVUS at increasedh/h0 did
not result from the curvature as slowing is evident even at
the earliest times examined.

Inhibition of maximal shortening velocity by low MW
sugars is demonstrated in Fig. 7, which contains the com-
bined data from 48VUS measurements on 22 fibers. Obser-

FIGURE 5 Lack of effect of low MW sugars on fiber diameter at
maximal Ca21 activation (pCa 5.0–4.0). Symbols are the same as in Fig.
2. Points represent individual measurements normalized to the average of
bracketing control measurements (l). The line was drawn according to
y 5 1.

FIGURE 4 Relationship between maximal steady-state, Ca21-activated force (pCa 5.0–4.0) and (A) low MW sugar concentration or (B) solution
viscosity. Symbols are the same as in Fig. 2. Points represent individual measurements normalized to the average of bracketing control measurements(l).
The dotted line inA corresponds to an estimate ofaw using data from Moore, 1972, and Weast, 1982 (see Results). InB, h/h0 was estimated from the
regressions shown in Fig. 2. Note that Fi was not strongly dependent on added solute, except for sucrose (F), or solution viscosity over the ranges studied.
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vations were excluded whenFi , 0.7 becauseVUS has
previously been shown to co-vary with isometric steady-
state force at varying degrees of Ca21 activation (Martyn et
al., 1994; Metzger and Moss, 1988) and also when fibers
were activated with a constitutively activating troponin C,
which enables force generation and sarcomere shortening in
the absence (or presence) of calcium (Martyn et al., 1994).
However, the conclusions of this work would remain un-
changed if the excluded observations were retained in the
data set. Also included in Figs. 7 are 3 measurements of
Vmax (E and‚), extrapolated from isotonic shortening data
from one fiber in the presence of sucrose or glucose. It is
evident thatVmax was inhibited by addition of low MW
sugars, similar to their effects onVUS; there was no detect-

able effect of low MW sugars on curvature of the force-
velocity relation in these measurements. As withFi, inhibi-
tion of VUS or Vmax was fully reversible. Thus the observed
reduction in shortening velocity was neither related to the
method of determining the maximal velocity (VUS or Vmax)
nor was it a consequence of reduced isometric force; clearly,
inhibition of shortening velocity is a direct result of addition
of solute.

The data in Fig. 7A appear to fall into two groups,
distinguished between mono- and disaccharides (compare
the two lines in Fig. 7A), much like the bulk solution
viscosity data shown in Fig. 2. When the data were replotted
as a function of (h/h0)

21, as suggested by Eq. 1, the data for
mono- and disaccharides converge to demonstrate that

FIGURE 7 Relationship between unloaded shortening velocity (VUS; F, f, Œ, and�) or maximal velocity of shortening (Vmax; E and‚) at maximal
Ca21 activation (pCa 5.0–4.0) and (A) low MW sugar concentration or (B) solution viscosity. Symbols are the same as in Fig. 2 plusE, sucrose, and‚,
glucose. Points represent individual measurements normalized to the average of bracketing control measurements (l). Data are shown only for conditions
in which Fi was greater than 70% of control (no added sugars) to eliminate possible bias asVUS is linearly proportional to isometric steady-state force,
independent of method of activation (Martyn et al., 1994); applying this constraint resulted in exclusion of 14 observations although inclusion of these data
did not statistically alter the conclusion (Results). The lines inA are the linear least-squares regressions on the data obtained in the presence of disaccharides
(—) or monosaccharides (- - -), with each regression constrained to pass through the control point (x, y) 5 (0, 1). The line inB corresponds toy 5 1.1x
and is thus constrained to pass through the control point (x, y) 5 (0.909, 1.0). Note the marked inverse dependence of shortening velocity on bulk solution
viscosity illustrated inB.

FIGURE 6 Determination of unloaded shortening velocity (VUS) in the absence (A) and presence (B) of 1.4 M fructose (h/h0 5 2.4; Fig. 2) at maximal
Ca21 activation (pCa 4.0). Shown in panelsA andB are nine superimposed force records (top) and correspondingLF records (bottom) from two slack test
protocols (as indicated by asterisks in Fig. 3). A total of 1024 points were digitized in each record (A andB) at 10 kHz (A) or 4 kHz (B). Force baseline
is indicated by dotted lines (A andB, top). Measured slack times are indicated (‚) below force records (A andB, top) and are plotted against corresponding
DLF (C). In C, the linear least squares regression estimates ofVUS and intercept were 3.35LF s21 and 5.0%LF, respectively, for control measurements
(—l—; from data shown inA) and were 1.69LF s21 and 5.0%LF, respectively, for measurements in the presence of 1.4 M fructose (- - -�- - -; from
data shown inB). Force records were normalized to isometric steady-state force (A andB, top). Calibration bars (A andB, bottom) correspond toDLF 5
167 mm (10%LF).
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shortening velocity decreases as viscosity increases (left-
ward on the abscissa of Fig. 7B). As data from both mono-
and disaccharides follow the same linear relationship (Fig. 7
B), we conclude that inhibition of shortening velocity is not
a result of changes in solution properties, such as decreased
aw or increased osmolarity or osmotic pressure, but is a
direct consequence of elevated viscosity.

Strain-rate dependence of elastic modulus

The simplest model to explain an effect of viscosity on fiber
shortening velocity is to hypothesize a significant viscous
force (relative to cross-bridge forces) that acts as a resistive
load to impede filament sliding and thus to slow sarcomere
shortening (Eq. 1). Previous calculations suggested that this
possibility is unlikely (see Introduction). If this was in fact
the mechanism underlying the results shown in Fig. 7, such
a viscous load should be measurable in relaxed fibers as a
viscosity-induced increase of elastic modulus at high strain
rates (i.e., speeds of sarcomere stretch,dLS/dt, comparable
to VUS ). Therefore, to test this hypothesis we measured the
strain-rate dependence of elastic modulus (K; see Materials
and Methods) of relaxed fibers at two viscosity levels:
control (h/h0 5 1.1) andh/h0 5 2.2–2.4 (added [fructose]
5 1.3–1.4 M).

Control measurements of the strain-rate dependence ofK
pooled from four relaxed fibers at 0.2 MG/2 (l; Fig. 8)
exhibited typical visco-elastic behavior as reported previ-
ously (Brenner et al., 1986; Chase et al., 1994a; Schoenberg,

1988). K increased at the fastest rates of stretch tested
(particularly for dLS/dt . 103 nm h.s.21 s21) with no
evidence of saturation. Note that the magnitude ofK was
low over the range ofdLS/dt used because the measurements
were made at physiologicalG/2, and thus the contribution of
weak binding cross-bridges to the elastic modulus was
minimal (Brenner et al., 1986; Schoenberg, 1988).

There was no significant change in the relationship be-
tweenK and dLS/dt when h/h0 was increased more than
twofold (Fig. 8,�). The data obtained at elevatedh/h0 in
fact tended to lie below control data, although this was
within the noise of the measurements. What is most signif-
icant about these data is that there was no detectable effect
of viscosity on the elastic modulus measured at rates of
sarcomere length change comparable toVUS (;5 3 103

nm h.s.21 s21). Thus these observations are in agreement
with previous predictions (Huxley, 1980) and measure-
ments in intact (Bagni et al., 1995; Ford et al., 1977) and
skinned frog fibers (Bagni et al., 1995) that viscous forces
associated with filament sliding should be negligible.
Therefore it became necessary to seek an alternate expla-
nation for the effect of bulk solution viscosity onVUS.

Rate of tension redevelopment (kTR)

Examination of steady-state isometric force during maximal
Ca21 activation revealed at most a minor dependence on
viscosity (Fig. 4B). However, the approach to steady state
as measured bykTR was markedly dependent onh/h0 (Fig.
9). As with VUS, kTR in the six fibers tested decreased in
proportion to (h/h0)

21, i.e., ash/h0 increased (Fig. 9B).
AlthoughLS clamp was not used in these measurements (see
Materials and Methods),kTR was similarly slowed by ele-
vated viscosity when the measurements were repeated using
LS clamp during tension recovery in two of these fibers
(data not shown). We have previously reported that such
paired measurements ofkTR obtained with and withoutLS

control are well correlated at varied degrees of Ca21 acti-
vation in normal viscosity solutions (Chase et al., 1994b;
Regnier et al., 1996). Thus the normalized data shown in
Fig. 9 are representative of results obtained with or without
LS control. With or withoutLS clamp, these measurements
are made in conditions that are sarcomere isometric or
nearly sarcomere isometric, respectively; even with fila-
ment elasticity within the sarcomere (Huxley et al., 1994),
the rate of filament sliding is very slow duringkTR mea-
surements. Thus these data (Fig. 9) are consistent with Fig.
8, illustrating that the predominant effect of bulk solution
viscosity is on an aspect of actomyosin function other than
imposing a resistive force that opposes filament sliding.

DISCUSSION

The major result of this study is that two kinetic measures of
actomyosin mechanics within the intact sarcomere, i.e., the
rate of isometric tension redevelopment (kTR) and maximal

FIGURE 8 Lack of effect of increased solution viscosity on strain-rate
dependence of elastic modulus (K) for four relaxed fibers (pCa. 8).
Elastic moduli were measured using small-amplitude ramp stretches (Ma-
terials and Methods) and were obtained first in the absence (l) and
subsequently in the presence (�) of 1.3–1.4 M fructose (h/h0 5 2.2–2.4;
Fig. 2). Changes inLS were obtained from the output of a Schottky
photodetector that indicated the position of a HeNe laser diffraction first
order (Materials and Methods). Points are the mean6 SEM for four to
eight observations. Lines are nonlinear least-squares regressions to the
individual data points to

K 5 b2S1 2 e2b1

dLS

dt D1 b0 (5)

Note that the regression on the data obtained in the presence of fructose
(z z z�z z z) was not significantly different from that on the control data
(—l—).
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velocity of shortening (bothVUS and Vmax), were both
markedly slowed when the solution viscosity was increased
(Figs. 7B and 9B). There was a linear, inverse dependence
of both kinetic parameters on solution viscosity (Figs. 7B
and 9B) but not the concentration of solute used (Fig. 7A)
to vary viscosity; thus viscosity is the pertinent variable.
The inverse dependence of kinetics on viscosity (Figs. 7B
and 9B) strongly implies diffusional limitation(s) to those
reactions. As slower kinetics were obtained for both isotonic
and nearly-isometric conditions, we inferred that viscosity
most likely affects the diffusional motion(s) of cross-
bridges rather than filament sliding. Our results suggest that
such diffusional motion(s) need to be more carefully con-
sidered in experimental design as well as in elucidating the
mechanism of cross-bridge function.

Viscosity as a probe of muscle function

Beyond its utility in determining macromolecular size and
shape, variation of solvent viscosity is a useful probe ap-
plied in studies of protein dynamics, ligand binding and
reaction kinetics, and enzyme function (Ansari et al., 1992;
Beece et al., 1980; Gavish and Werber, 1979; Hunt et al.,
1994) but has been used very little in studies on muscle. The
work reported here clearly demonstrates that viscosity di-
rectly impacts actomyosin kinetics as measured byVUS

(Fig. 7 B) andkTR (Fig. 9 B) in skinned muscle fibers. All
of the reported effects of low MW sugars (used to vary
viscosity) were reversible in these experiments; care was
taken to ensure that structural and mechanical integrity of
the fibers (Figs. 1 and 3) was maintained during the pro-
longed activations used to demonstrate reversibility and to
ensure that measurements were obtained during steady-state
conditions (Brenner, 1983; Chase and Kushmerick, 1988;
Chase et al., 1994a,b; Sweeney et al., 1987). Previous
reports that sucrose and glucose inhibit maximal Ca21-
activated force (Ashley and Moisescu, 1977; Chase and
Kushmerick, 1988; Endo et al., 1979) were confirmed here,

although it appears likely that viscosity per se is not the
relevant parameter for effects onFi (Fig. 4). What is clear is
that the observed effects occurred in the absence of osmot-
ically induced changes in filament lattice spacing (as re-
flected by constant fiber diameter; Fig. 5), thus implying
that changes in solute concentration were attained uniformly
throughout the skinned fibers.

One of the practical considerations stemming from this
work is that viscosity needs to be carefully considered in
both the design of skinned fiber experiments and interpre-
tation of experimental data. One such example is the inhi-
bition of VUS when Dextran T-500 is added to fiber solu-
tions (Metzger and Moss, 1987). High MW molecules like
Dextran T-500 compress the filament lattice of skinned
fibers and thus alter the geometry of cross-bridge attach-
ment to actin, which is the most likely cause of decreased
velocity. But Dextrans also increase the bulk solution vis-
cosity (Materials and Methods). As the majority of Dextrans
(average MW, 500,000) do not permeate the filament lattice
(thus its utility for osmotic compression), the viscosity
within the filament lattice does not increase to the same
extent as the bulk solution. However, one must consider the
minor fraction of Dextran that does permeate the lattice and
thus alters viscosity within the fiber, providing a plausible,
alternate explanation for the concentration-dependent inhi-
bition of VUS by Dextran T-500 (Metzger and Moss, 1987).

A second practical implication of this work is the con-
sideration of solution viscosity changes associated with
variations in temperature. Although temperature clearly has
direct effects on the thermodynamics and kinetics of bio-
chemical processes, it also could have an additional, indirect
effect on kinetics via its marked influence on the viscosity
of water. For example, a temperature decrease from 25°C to
5°C results in a 71% increase in the viscosity of water
(Weast, 1982), which would substantially affectVmax by
itself (Fig. 7). Thus, effects of temperature on solution
viscosity may be a significant component of temperature
effects on chemomechanical kinetics.

FIGURE 9 Relationship between the kinetics of tension redevelopment (kTR) at maximal Ca21 activation (pCa 4.0) and solution viscosity. (A) Two
superimposed force records from the tension redevelopment protocol (see Materials and Methods) in the absence (—) or in the presence (z z z) of 1.4 M
fructose (h/h0 5 2.4; Fig. 2). ThekTR estimated fromt1/2 measurements (Materials and Methods) was 7.8 s21 (control) or 4.0 s21 (1.4 M fructose). (B)
Summary of data from six fibers. Symbols are the same as in Fig. 2. Points represent individual measurements normalized to the average of bracketing
control measurements (l). The line inB corresponds toy 5 1.1x (as in Fig. 7B) and is thus constrained to pass through the control point (x, y) 5 (0.909,
1.0). Note the marked inverse dependence of rate of tension redevelopment on bulk solution viscosity illustrated inB.
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Implications for limiting factors of muscle
chemomechanical kinetics

There are several possible mechanisms by which low MW
sugars could inhibit contractile function of skinned fibers.
First, Parsegian et al. (1995) and Lumry (1995) point out
cautions associated with osmotic stress at the molecular
level and choice of solute or co-solvent in experiments of
this type. Thus it is necessary to identify viscosity as the
relevant effector, as was done here by using low MW (,400
MW), nonionic solutes having different dependencies of
viscosity on concentration (Fig. 2). Second and most im-
portantly, viscosity probes all molecular motions: 1) diffu-
sion of substrate, products, and Ca21, 2) motions of the
filaments, as in sarcomere shortening, 3) movement of
myosin’s motor domain to binding sites on the thin fila-
ment, and 4) subdomain motions within proteins including
any that may be associated with changes in nucleotide state
(e.g., nucleotide binding and hydrolysis as well as product
dissociation) and with actin binding. In some experiments,
the nonspecific nature of the probe may be a limitation, but
as is the case in these experiments, there are also benefits to
a general probe of protein dynamics. We can rule out the
first possibility (diffusion of substrate, products, and Ca21)
because the experiments were carried out during steady-
state activation at saturating levels of Ca21 and MgATP,
and PCr and excess CK were included in the solutions
which maintained MgADP in the micromolar range (Chase
and Kushmerick, 1995). Even if this were not so, little or no
effect on function would be expected for severalfold varia-
tion in Ca21, MgATP, or MgADP concentrations due to
exacerbated diffusional gradients (Chase and Kushmerick,
1995). As described in Results, the second possibility is not
relevant because similar slowing of kinetics was observed
for both isotonic (VUS andVmax) and isometric (kTR) mea-
surements (Figs. 6, 7, and 9) and also because measure-
ments indicated viscous resistance to filament sliding is
minimal (Fig. 8). Below, we explore the implications of the
remaining possibilities.

Kinetics of tension redevelopment and
cross-bridge diffusion

Previous experiments demonstrated that the kinetics of ten-
sion redevelopment (kTR) reflect different mechanisms at
different levels of Ca21 activation. At maximal Ca21 acti-
vation,kTR is dominated by the force-generating process of
actomyosin interactions (Brenner and Eisenberg, 1986;
Chase et al., 1994b; Metzger and Moss, 1990). In constrast,
at submaximal Ca21 activation,kTR reflects the dynamic
events within individual regulatory units (Chase et al.,
1994b; Regnier et al., 1996). Because the results shown here
were obtained at maximal Ca21 activation, Fig. 9 therefore
illustrates effects of viscosity on dynamic properties of the
motor proteins rather than regulation.

Our conclusion that increased viscosity slowskTR via an
effect on cross-bridge diffusion to binding sites on actin

(recall that the diffusion coefficientD of a sphere of radius
r is D 5 kT/6phr, wherek is Boltzmann’s constant andT is
absolute temperature) implies in turn that cross-bridge dif-
fusion is a limiting factor in determining the rate of tension
development. Such a mechanism is implicit in the hypoth-
esis of how phosphorylation of skeletal myosin light chain
2 (MLC2) enhanceskTR (Metzger et al., 1989; Sweeney et
al., 1993; Sweeney and Stull, 1990). Phosphorylation of
MLC2 is thought to bias the average position of cross-
bridges away from the thick filament and thus closer to
binding sites on actin (Levine et al., 1996), yielding a
shorter average diffusion distance and faster tension rede-
velopment compared with cross-bridges having unphospho-
rylated MLC2. According to this hypothesis, both phosphor-
ylation of MLC2 and viscosity should affect primarily the
rate at which steady state is attained and, to a lesser extent,
the steady-state force itself; this prediction is in accord with
the data (Figs. 4 and 9) (Metzger et al., 1989; Sweeney et
al., 1993; Sweeney and Stull, 1990). However, the kinetic
influence of motor diffusion to its binding site is rarely
considered explicitly in models of motor protein function
(Howard, 1996; Hunt et al., 1994).

Shortening velocity

Considering the similarity between viscosity effects on
shortening velocity (Fig. 7B) and kTR (Fig. 9), it seems
likely that cross-bridge diffusion is also a limiting factor for
the kinetics of sarcomere shortening under saturating con-
ditions of both nucleotide and Ca21 concentrations. A
model that describes how motor diffusion can limit maximal
sliding speed was developed by Hunt et al. (1994) for the
kinesin-microtubule system, although their result is gener-
ally applicable to myosin and actin. In their model,

^n&max 5
d

t0 1 tK
(4)

where d is the distance between binding sites,t0 is the
refractory time (no filament sliding), andtK is the average
time for thermal fluctuations to stretch a spring of stiffness
K by distanced. Viscosity dependence of^v&max enters the
relationship (Eq. 4) becausetK is proportional toh. Al-
though t0 is the predominant term in the denominator for
individual myosin molecules at physiological substrate con-
centrations (Finer et al., 1994; Molloy et al., 1995), it would
be expected to become small for an ensemble of cross-
bridges, as in a muscle fiber, and would thus explain the
observed inverse dependence ofVUS on solution viscosity
(Fig. 7 B).

The view that cross-bridge attachment rate is a major
limiting factor to isotonic shortening stands in contrast to
the hypothesis outlined in the Introduction (Huxley, 1957),
i.e., that attached, negatively strained cross-bridges, and
thus detachment rate, is the primary determinant of short-
ening velocity in the intact sarcomere. It does not seem
likely that cross-bridge detachment would be diffusion lim-
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ited (unless subtrate was limiting, which was not the case in
these experiments). A possible explanation is that the lim-
itation involves diffusional motions of the cross-bridge
other than those associated with the initial binding to actin.
It is also possible that the diffusional limitations ofVUS and
kTR do not reflect the same processes. However, in the
absence of evidence to the contrary, we consider the sim-
plified view of only a single, common limiting process that
can explain all of the data, diffusion of myosin heads to
binding sites on actin, to be the more likely possibility.

If diffusion of cross-bridges to binding sites on actin is
truly a kinetic constraint on shortening velocity, then that
would imply only a small number of working cross-bridges
are associated with an actin filament moving atVmax

(Homsher et al., 1996; Spudich, 1994; Uyeda et al., 1990,
1991). Actin filament translocation by small numbers of
cross-bridges could explain the observed gradation ofVUS

with activation level in skinned fibers (Martyn et al., 1994;
Metzger and Moss, 1988; Moss, 1986) and also the Ca21-
dependent gradation of sliding speed for regulated actin
filaments in an in vitro motility assay (Gordon et al., 1997;
Homsher et al., 1996). Such a low apparent duty ratio also
seems likely from structural and theoretical considerations
(Howard, 1997) and direct observations of individual myo-
sin molecules at physiological substrate concentrations
(Finer et al., 1994; Molloy et al., 1995).

In addition to the mechanistic significance of these ob-
servations, the 2- to 10-fold higher viscosity of myoplasm
relative to water (Kushmerick and Podolsky, 1969; Sachs
and Latorre, 1974) may at least in some instances have
significant physiological implications. First, our data would
predict that Vmax should become faster when an intact
muscle fiber is skinned. Furthermore, physiologically rele-
vant variations in viscosity likely influence motility of ec-
totherms. In particular, certain species of fish may experi-
ence significant changes in temperature, with concomitant
changes in cytoplasmic viscosity (see above) and thus
changes in the speed and energy requirements for swim-
ming (Moerland and Sidell, 1986).

CONCLUSIONS

Our results imply that viscosity is a generally useful probe
of cross-bridge function within the structural constraints of
the intact filament lattice. Additionally, viscosity needs to
be carefully considered in experimental design and inter-
pretation of skinned muscle fiber experiments. As both
isometric (kTR; Fig. 9B) and isotonic (VUS andVmax; Fig. 7
B) contraction kinetics were slowed by elevated viscosity,
we conclude that viscosity most likely affects the diffu-
sional motion of cross-bridges to binding sites on actin, thus
supporting the idea that cross-bridge dynamics are inti-
mately linked to the kinetics of force generation (Thomas et
al., 1995).
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