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ABSTRACT The material properties of lipid bilayers can affect membrane protein function whenever conformational
changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the
protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy
cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein’s hydrophobic exterior
surface and the average thickness of the bilayer’s hydrophobic core, using a (liquid-crystal) elastic model of bilayer
deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion,
splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus
renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion
energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers.
When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to
the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the
boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring
formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 Å,
an increase in hydrophobic mismatch to 1.3 Å can increase the Boltzmann factor (the equilibrium distribution for protein
conformation) 10-fold due to the elastic properties of the bilayer.

INTRODUCTION

The hydrophobic membrane-spanning domains of integral
membrane proteins (Singer and Nicolson, 1972) couple the
proteins to the bilayer (Owicki et al., 1978). This hydro-
phobic coupling entails protein conformational changes
possibly perturbing the structure of the surrounding bilayer.
As a result, the free energy difference between two protein
conformations will depend on the deformation energy asso-
ciated with the bilayer perturbation. This provides a mech-
anism by which the lipid composition of the bilayer could
play a role in determining protein conformation and protein
function.

Numerous studies show that the function of integral
membrane proteins is affected by bilayer lipid composition.
Systematic investigations of this dependency of membrane
protein function on the lipid bilayer composition show that
chemical specificity is relatively unimportant for protein-
lipid interactions (Devaux and Seigneuret, 1985; Bienvenu¨e
and Marie, 1994). Rather, changes in membrane protein
function can be correlated with changes in the bilayer ma-
terial properties: bilayer hydrophobic thickness (Caffrey
and Feigenson, 1981; Johannsson et al., 1981; Criado et al.,
1984; Baldwin and Hubbell, 1985) and monolayer curvature
stress (Brown, 1994; Navarro et al., 1984; McCallum and
Epand, 1995). These effects are difficult to rationalize

within models that approximate the lipid bilayer as being
equivalent to a thin sheet of liquid hydrocarbon, which is
stabilized by the phospholipid polar groups.

Lipid bilayers, in fact, are self-assembled structures of
amphipathic molecules with material properties similar to
those of smectic liquid crystals (Helfrich, 1973; Evans and
Hochmuth, 1978). Thus it is necessary to extend the liquid-
hydrocarbon descriptions of the bilayer to incorporate the
bilayer curvature component of the deformation energy
(Canham, 1970; Helfrich, 1973; Brochard and Lennon,
1975; Brochard et al., 1976), changes in bilayer thickness
and the associated compressibility modulus (Evans and
Hochmuth, 1978; Mouritsen and Bloom, 1984; Bloom et al.,
1991), and changes in bilayer surface area and the associ-
ated interfacial tension (Abney and Owicki, 1985; Marcelja,
1976; Owicki and McConnell, 1979).

The theory of liquid crystal elastic deformations (Hel-
frich, 1973), which provides for a coherent continuum de-
scription of the shapes of lipid vesicles, can be used to
describe free energy differences associated with membrane
perturbations due to protein-bilayer interactions (Huang,
1986; Helfrich and Jakobsson, 1990; Dan et al., 1993, 1994;
Ring, 1996). In this description the curvature component is
associated with the monolayer curvature and is a local
parameter, i.e., only dependent upon the conditions at bi-
layer/inclusion boundary. Global curvature contributions
reflecting intrinsic asymmetry between the inner and outer
monolayer, which give rise to an area difference elasticity
term (e.g., Miao et al., 1994), are not considered.

The model analyzed in this paper emphasizes the cou-
pling between a bilayer and its embedded proteins (inclu-
sions) in terms of membrane mechanics and energetics that
provides for a thermodynamically based description of lip-
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id-protein interactions. The purpose of the present article is
to examine some generic consequences of such a liquid
crystal theory-based model of bilayer deformation energy.
The results demonstrate that the bilayer deformation energy
can be as large as 10–15 kJ/mol—comparable with effects
of point mutations on protein function—indicating that bi-
layer material properties can play an equally important role
in protein function. Some of the results have appeared in
preliminary form (Nielsen et al., 1997).

THEORY

The model

A length mismatch between the bilayer hydrophobic core
and the hydrophobic exterior surface of a membrane inclu-
sion (integral membrane protein) will perturb the lipid pack-
ing in the vicinity of the inclusion (Fig. 1). Following
Huang (1986) we approximate the changes in lipid packing
as occurring in three independent modes or components:
compression-expansion (CE, due to changes in bilayer
thickness) with a characteristic elastic deformation modulus
Ka; splay-distortion (SD, due to variation in the director
among adjacent lipid molecules) with a splay-distortion
modulusKc; and surface tension (ST, due to changes in
bilayer surface area) with interfacial tensiona. The magni-
tude of each energy component will vary with the magni-

tude of the corresponding modulus and, as we will see later,
vary as a function of the other moduli.

For a given set of moduli the shape of the bilayer defor-
mation will be one that minimizes the total free energy cost
of the deformation. Assuming that the three components
splay-distortion, compression-expansion, and surface ten-
sion are sufficient to describe the problem,1 the deformation
free energyDGdef for the situation shown in Fig. 1a can be
described (to second order) as the surface integral

DGdef 5 E
V

1
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1 Su
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where d0 is the bilayer equilibrium thickness,u(x, y) the
local monolayer perturbation, andC0 is the spontaneous
monolayer curvature. In the following we takeC0 5 0.

1One also may have an energy contribution proportional to the degree of
tilt of lipid molecules—a situation where the lipid molecule director is not
aligned with its corresponding surface normal (Helfrich, 1973). Also,
strong hydrophobic coupling may fail for larger bilayer deformations.

FIGURE 1 The model. (a) The total deformation free
energy is determined by the bilayer deformation profile
associated with a hydrophobic mismatch between the
bilayer and the inclusion. The inclusion is treated as a
rotationally symmetrical deformation of the bilayer. As-
suming midplane symmetry (a symmetrical bilayer), the
problem can be reduced to a radially varying deforma-
tion of a monolayer with unperturbed thicknessd0/2,
whereu(r) denotes the local perturbation in monolayer
thickness at the distancer from the luminal axis. At the
channel-bilayer contact surface,r0, the deformation is
u0. The first derivative at the contact surface (the contact
slope)du/dr is s. (b andc) The two different boundary
conditions considered. Bilayer deformation profiles are
drawn to scale. The circles represent the polar head-
group for a phosphatidylcholine lipid molecule, the ver-
tical dotted lines marked by asterisks denote integration
limits. In (b) s 5 smin and in (c) s 5 0. The deformation
profiles obtained using the elastic membrane model
define the average hydrocarbon/headgroup boundary.
The actual (instantaneous) profile will be less well-
defined due to thermal motion of the bilayer lipids
perpendicular to the bilayer/solution interface (Wiener
and White, 1992).
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To determine the minimum free energy conformation, the
integral in Eq. 1 is minimized with respect to variations in
u(x, y). In Cartesian coordinates

DGdef 5 E
a

b E
c

d

cSx, y, u,
u

x
,
u
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,
2u

x2,
2u

y2Ddxdy (2)

and one determines the functionu 5 f (x, y) that minimizes
the integral by calculating the variation of the integral in Eq.
2 (Lebedev et al., 1979). The variation integral vanishes for
arbitrary variationsdu if u 5 f (x, y) is a solution of
Lagrange’s equation:

c

u
2



xS c

~u/x!D 2


yS c

~u/y!D
1

2

x2S c

~2u/x2!D 1
2

y2S c

~2u/y2!D 5 0

(3)

Substituting Eq. 1 into Eq. 3 leads to the linear differential
equation

Kc¹
4u 2 a¹2u 1 SKa

d0
2Du 5 0,

where (4)

¹2 5
2

x2 1
2

y2

Four boundary conditions are needed to solve Eq. 4 (see
Fig. 1 a). Three of these are straightforward. Using radial
symmetry (with r 5 =x2 1 y2), for r 3 `, the bilayer
perturbation will approach zero. We thus have the following
two conditions:

u~r`! 5 0, (5a)

du

dr
Ur` 5 0. (5b)

A third boundary condition arises from the hydrophobic
coupling between the hydrophobic core of the bilayer and
the hydrophobic exterior surface of the embedded inclusion
at the bilayer/inclusion contact surface, which determines
the deformation at the bilayer/inclusion boundary:

u~r0! 5 u0 5 ~d0 2 l!/2 (5c)

Eq. 5c is valid only in the limit of strong hydrophobic
coupling, i.e., the case where the strength of the interaction
is such that there is no exposure of hydrophobic residues to
water.

The fourth boundary condition has been formulated in
several different ways (Huang, 1986; Helfrich and Jakobs-
son, 1990; Dan et al., 1993, 1994; Ring, 1996). Helfrich and
Jakobsson (1990) proposed thatdu/drur0 5 smin the value of
the contact slopes for which Gdef is minimized (Fig. 1b).
This “free” boundary condition implies that (/r)¹2uur0 5
0 (cf. Landau and Lifshitz, 1986, p. 44). Physically, the free

boundary condition implies that the lipid molecules are
allowed some degree of tilt (Fig. 2,a andb). Huang (1986)
used experimental results, namely the variation of gramici-
din channel lifetime as a function of bilayer thickness, to
evaluate the contact slope. The analysis showed that the
slope was zero or close to zero (Fig. 1c), a result that differs
considerably from (/r)¹2uur0 5 0. This can be rational-
ized by assuming that the tilt of lipid molecules is associated

FIGURE 2 Lipid packing close to the inclusion. (a) Situation with no
lipid molecule tilt ands , 0. The molecule directordW is parallel to the
surface normalnW at every point. This hypothetical situation will create a
void at the inclusion-bilayer boundary. (b) When the first lipid molecule is
forced to be closely aligned at the boundary fors , 0 implies that the
molecule director cannot align with the corresponding surface normal, i.e.,
the molecules are tilted. (c) When there is close alignment at the boundary,
the need for lipid molecule tilt will be diminished with thes 5 0 condition
(in the case of cylindrical inclusions).
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with a significant energetic penalty (see Fig. 2c), as previ-
ously discussed by Helfrich (1973).

To partially account for the ensuing uncertainties we
investigate two different boundary conditions: a free contact
slope and a clamped contact slope



r
¹2uur0 5 0 ~s5 smin! (5d)

u

r
Ur0 5 s. (5e)

We cannot exclude that more elaborate boundary conditions
should be used, but they would require more parameters
than can be justified when using a second-order continuum
approximation (Eq. 1). In Appendix I we examine a specific
set of boundary conditions that were proposed by Ring
(1996) and show how they reduce to Eq. 5d.

Solution

The Euler-Lagrange equation, Eq. 4, can be rewritten as

¹4u 2 g¹2u 1 bu 5 0 (6)

where

g 5
a

Kc
b 5

Ka

d0
2Kc

(7)

Solutions of Eq. 6 that vanish forr 3 ` can be expressed
as a linear combination of modified zero-order Bessel func-
tions of the second kind (see Appendix II) which satisfy

¹2_0~kr! 5 k2_0~kr! (8)

We therefore have

k4 2 gk2 1 b 5 0f k6
2 5

g 6 Îg2 2 4b

2
, (9)

andu(r) can be written as

u~r! 5 A1_0~k1r! 1 A2_0~k2r! (10)

The boundary conditions at the bilayer/inclusion boundary
(for clamped contact slope) provide the constraints:

u~r0! 5 u0f A1_0~k1r0! 1 A2_0~k2r0! 5 u0 (11a)

and (for a fixeds)

u9~r0! 5 sf A1k1_1~k1r0! 1 A2k2_1~k2r0! 5 2s (11b)

where_1 is the modified first-order Bessel function of the
second kind (Abramowitz and Stegun, 1968). The coeffi-
cientsA6 are

A1 5
k2_1~k2r0!u0 1 _0~k2r0!s

k2_0~k1r0!_1~k2r0! 2 k1_0~k2r0!_1~k1r0!
(12a)

A2 5
2k1_1~k1r0!u0 2 _0~K1r0!s

k2_0~k1r0!_1~k2r0! 2 k1_0~k2r0!_1~k1r0!
(12b)

and the expression for the deformation free energy becomes
(see Appendix II)

DGdef 5 2pr0Kc@s~A1k1
2 _0~k1r0! 1 A2k2

2 _0~k2r0!!

1 u0~A1k1
3 _1~k1r0! 1 A1k2

3 _1~k2r0!! 1 gu0s# (13)

To investigate the interdependence between specific energy
contributions we solved the Euler-Lagrange equation nu-
merically. To do so, Eq. 4 is expressed as

KcS1

r3

du

dr
2

1

r2

d2u

dr2 1
2

r

d3u

dr3 1
d4u

dr4D
2 aS1r du

dr
1

d2u

dr2D 1
Ka

d0
2 u 5 0

(14)

The total deformation free energy integral Eq. 1 can also be
expressed in cylindrical coordinates:

DGdef 5 p E
r0

r` FKa

d0
2 u2 1 KcS1r du
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1

d2u

dr2D2

1 aSdu

drD
2Grdr

(15)

where the energy component corresponding to the compres-
sion-expansion modulus can be identified as

DGCE 5 p E
r0

r` Ka

d0
2 u2rdr, (16a)

the energy component corresponding to the splay-distortion
modulus as

DGSD 5 pE
r0

r` FKcS1r du

dr
1

d2u

dr2D2Grdr, (16b)

and the energy component corresponding to the surface
tension modulus as

DGST 5 p E
r0

r`

aSdu

drD
2

rdr (16c)

For the energy decomposition we solved Eqs. 14–16 nu-
merically as a two-point boundary value problem using
standard relaxation methods (Press et al., 1986).

Parameters

To facilitate comparison with previous studies (Huang,
1986; Helfrich and Jakobsson, 1990), our reference system
is a thin, solvent-free lipid bilayer with an embedded inclu-
sion that has dimensions similar to those of a gramicidin
channel (see Fig. 1a and Tables 1 and 2). The standard
parameter set used by Huang (1986) and Helfrich and
Jakobsson (1990), which is listed in Table 2, defines this
reference membrane. These parameter values are identified
by asterisks in the following.
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There is, however, uncertainty about what would be the
“correct” value for any of the material constants. First, the
measured parameters are macroscopic entities whereas the
quantities in Eq. 1 reflect the microscopic behavior close to
the inclusion; there may not be exact correspondence be-
tween the two classes. Second, the measured parameters are
not unique in the sense that different experimental methods
have provided different values for a given parameter (cf.
Niggemann et al., 1995); even more importantly, the mate-
rial properties vary as a function of membrane composition.

Pipette aspiration methods [for reviews see Evans and
Needham (1987) and Needham, (1995)] have been used to
obtain area compression-expansion valuesKa that range
from 5.7 z 10212 N/Å for diarachidonylphosphatidylcholine
(DAPC) bilayers to 1.9z 10211 N/Å in 1-stearoyl-2-oleoyl-

phosphatidylcholine (SOPC) bilayers.2 The modulus in-
creases with increasing cholesterol mole fraction: from 2.6z
10211 N/Å in SOPC bilayers with 14 mol % cholesterol to
1.2 z 10210 N/Å in SOPC bilayers with 58 mol % cholesterol
(Needham and Nunn, 1990). Given this variability, we
investigate the behavior of the model over two decades in
Ka centered around the reference value.

The splay-distortion modulusKc (dimensions of energy)
is expected to be 10219 J, as estimated from elastic energy
densities in vesicles approximated as a sum of nearest-
neighbor contributions (Helfrich, 1973). This estimate is
remarkably close to the experimental value obtained by
Evans and Rawicz (1990) for SOPC bilayers using mea-
surements based on thermal fluctuations. They foundKc 5
9 z 10220 J; the corresponding value for DAPC bilayers was
4.4 z 10220 J. Addition of cholesterol to the bilayer increases
the elastic bending modulus threefold:Kc 5 2.5 z 10219 J
for SOPC bilayers with 50 mol % cholesterol (Evans and
Rawicz, 1990). Using a different technique (tether forma-
tion form giant lipid vesicles) Song and Waugh (1993)
found comparable values for SOPC bilayers:Kc 5 1.2 z
10219 J, and for SOPC bilayers with 50 mol % cholesterol,
Kc 5 3.3 z 10219 J, in good agreement with the threefold
increase observed by Evans and Rawicz (1990). Our stan-
dard parameter set has a rather low value forK*c 5 2.85 z
10220 J, but we investigate the behavior of the model for a
range of values up to 10z K*c corresponding to the elastic
bending modulus for cholesterol-containing bilayers.3

The surface tension in a monolayer spread at an air/water
interface has a finite value which is;3 z 10212 N/Å (Nagle,
1980): that of a hydrocarbon/air interface. For bilayers with
zero local and global curvature—giant vesicular mem-
branes in osmotic equilibrium, for example—the situation is
different. The unperturbed bilayer will, under these circum-
stances, adopt a state in which the attractive interactions in
the hydrophobic chains and the interfacial region balance
the repulsive interactions between the headgroups (Seddon,
1990). In this case the free energy is minimal with respect
to the area of the membrane; that is, the derivative of the
free energy with respect to area vanishes, the result being a
state of optimal packing of the lipid molecules, i.e., a bilayer

2The area compression-expansion modulusKa can also be determined from
the volume compression-expansion modulusB# as Ka 5 d0B# . Bilayer
capacitance measurements (White, 1978), although indirect, allow for
comparison between glycerolmonooleate (GMO) bilayers and phospho-
lipid bilayers. Using this method Hladky and Gruen (1982) estimated that
B# 5 5 z 10213 N/Å2 for nominally solvent-free GMO bilayers (formed with
squalene). Alvarez and Latorre (1978) estimated thatB# 5 8 z 10213 N/Å2

for nominally solvent-free GMO membranes formed using pentane and
1.3 z 10212 N/Å2 for nomimally solvent-free bacterial phosphatidylethano-
lamine bilayers. For our reference bilayer thicknessd0 the corresponding
Ka values range from 1.4z 10211 N/Å to 3.7 z 10211 N/Å.
3In liquid crystals the splay-distortion modulus sometimes is determined as
a force, denoted byK1 (5 Kc/d0). K1 has been estimated to be 2z 10211 N
when the lamellar repeat distance was 60 Å, and 1z 10211 N when lamellar
repeat was 20 Å, which corresponds toKc 5 2 z 10220 J (de Gennes, 1974).

TABLE 1 List of symbols

Symbol Meaning Unit

u Monolayer perturbation Å
r Radial distance from inclusion symmetry axis Å
d0 Unperturbed bilayer thickness Å
l Hydrophobic length of inclusion Å
u0 Monolayer deformation at inclusion-bilayer boundary Å
r0 r at inclusion-bilayer boundary5 radius of inclusion Å
r` Radial distance limit whereu(r) 5 0 Å
s Contact slope at inclusion-bilayer boundary —
C0 Spontaneous monolayer curvature Å21

Ka Area compression-expansion modulus N/Å
B# Volume compression-expansion modulus N/Å2

Kc Splay-distortion modulus (dimensions of energy) N/Å
K1 Splay-distortion modulus (dimensions of force) NÅ
a Bulk interfacial surface tension N/Å
s Bilayer interfacial surface tension N/Å
DGdef Total deformation free energy kT
DGCE Nominal compression-expansion energy component kT
DGSD Nominal splay-distortion energy component kT
DGST Nominal surface tension energy component kT
b21/4 Characteristic length scale5 =jd0 Å
H Phenomenological spring constant kT/Å22

ru Radial distance fromr0 beyond whichuuu , uu0/eu Å
ru Radial distance fromr0 within which one has

(1 2 1/e) of DGdef

Å

m Exponent forKc dependence (DG ; Kc
m or H ; Kc

m) —
n Exponent forKa dependence (DG ; Ka

n or H ; Ka
n) —

d Exponent forr0 dependence (DG ; r0
d or H ; r0

d) —

TABLE 2 Reference parameters

Symbol Value Unit Reference

d0 28.5 Å Elliott et al., 1983
l 21.7 Å Elliott et al., 1985
u0 3.40 Å (d 2 l)/2
r0 10 Å Hendry et al., 1978
C0 0 Å21 —
K*c 2.85 z 10210 NÅ Helfrich, 1973; Schneider et al., 1984;

Engelhart et al., 1985 (Kc 5 d0K1)
K*a 1.425 z 10211 N/Å White, 1978; Hladky and Gruen, 1982

(Ka 5 d0B# )
a* 3 z 10213 N/Å Elliott and Haydon, 1979
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where the interfacial bilayer surface tensions vanishes
(Jähnig, 1996).

For bilayers surrounded by a Plateau-Gibbs border the
difference between the interfacial bilayer surface tensions
and the bulk interfacial tensiona of the Plateau-Gibbs
border is finite, reflecting the free energy of thinning the
bilayer. Under these experimental conditionsa can be de-
termined using the Lippmann equation (Requena and Hay-
don, 1975), and for GMO/squalene membranes,a 5 3 z
10213 N/Å (Elliott and Haydon, 1979). For phosphatidyl-
choline/n-decane bilayersa vary between 1.6z 10213 N/Å
and 4.8z 10213 N/Å (Neher and Eibl, 1977; Requena and
Haydon, 1975).

In the following we will consider a solvent-free mem-
brane with zero local and global curvature (i.e.,s 5 0) and
use the GMO/squalene value as our reference parameter for
the bulk interfacial surface tensiona.

RESULTS

Choice of boundary conditions

The bilayer deformation energy varies as a function of
mechanical moduli as well as the boundary conditions at
r 5 r0. Fig. 3 a shows (analytical and numerical) solutions
to Eq. 4 as a function ofs for the reference membrane
(Table 2). The results agree with those of Helfrich and
Jakobsson (1990). The energy is at a minimum whens 5
20.446, in which caseDG*def 5 4.05 kT. This solution does
not, however, consider the energetic cost associated with the
packing of the lipid molecules immediately adjacent to the
inclusion. This could be a problem because lipid molecules
cannot just sway away from the inclusion, as this would
create a void at the inclusion/acyl chain boundary (Fig. 2a).
The s 5 smin boundary condition therefore implies that the
acyl chains are allowed to tilt, meaning that the lipid mol-
ecule director is not parallel to the membrane normal (see
Fig. 2 b).

If the penalty for tilt is high, then for cylindrical inclu-
sions (Fig. 2c), the headgroups of the lipid molecules in the
concentric annuli surrounding the inclusion will be nearly in
the samez plane, which corresponds to a situation where
s 5 0. In this case, the deformation energy will differ
considerably from the results obtained whens 5 smin (see
Fig. 3 b).

The two curves in Fig. 3b represent solutions of Eq. 14
for the boundary conditions Eqs. 5d and 5e, respectively.
The curve labeled (1):s 5 smin shows the deformation
energy versusu0 for the s 5 smin boundary condition (i.e.,
the value of 4.05 kT forDGdef at u*0 5 3.4 Å in Fig. 3 b
corresponds to the minimum in the curve shown in Fig. 2a).
The curve labeled (2):s 5 0 represents a solution similar to
that obtained by Huang (1986) with much larger deforma-
tion energies (DGdef 5 11.86 kT foru*0 5 3.4 Å) than the
s 5 smin solution. In both cases (s 5 smin and s 5 0) we
assume strong hydrophobic coupling between inclusion and

the first annulus of surrounding lipid molecules [u0 5
(d0 2 l)/2], meaning that the vertical position of the lipid
molecules is determined completely by the hydrophobic
part of the inclusion.

The bilayer deformation profile

The shape of the deformation profile varies as a function of
the elastic moduli. Using Eq. 4 we find that the surface

FIGURE 3 (a) The deformation free energy associated with insertion of
an inclusion with dimensions of a gramicidin dimer channel in a lipid
bilayer. Parameters were as listed in Table 2. The energy components for
splay-distortion (DGSD), compression-expansion (DGCE), and surface ten-
sion (DGST) are indicated. The analytical solution (Eq. 13) for specific
values ofs is indicated by solid squares; the lines represent numerical
solutions to Eq. 15 and Eq. 16a–c. (b) Comparison of different solutions to
the deformation energy problem. The deformationu0 is varied in steps of
0.2 Å, and the corresponding values forDGdef are connected by lines.
Otherwise, reference parameters (Table 2). (1)DGdef for the case where the
contact slope is determined by the minimum energy constraint,s 5 smin

(Fig. 1 b). (2) DGdef for the case ofs 5 0 (Fig. 1c).
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tension component (DGST) can be neglected provided that

a ,,ÎKaKc

d0
2 , (17)

as is the case for the reference membrane. In this case there
is only a single length scale in the free energy expression
(cf. Eq. 1). It is convenient to characterize the deformation
profile using the length scale

~Kcd0
2 /Ka!

1/4 5 b21/4 5 Îjd0, (18)

wherej 5 =Kc/Ka (see Eqs. 7–10 and Appendix II). For a
given d0, the deformation energy (and profile, see below)
are functions of the ratioKc/Ka and Ka (or Kc). We now
examine some consequences of this.

Depending on the value ofs, the bilayer deformation
profile may be nonmonotonic. That is, the energy minimi-
zation requirement may cause a bilayer compression adja-
cent to the inclusion to induce an expansion further away
from the bilayer/inclusion boundary. Such shapes arise be-
cause the deformation profile is determined by the need to
minimize of the overall deformation energy, which has
implications for lipid packing. The packing problem arises
because the hydrophobic core volume per unit bilayer sur-
face will deviate from its equilibrium value. AsKa increases
(for a constantKc), theDGCE component ofDGdef will tend
to increase, which is reflected in the shape of the deforma-
tion: the deformation will be localized close to the inclusion
as splay-distortion becomes relatively inexpensive (in terms
of energy) and the minimization will primarily affectDGCE.
As Kc increases (for a constantKa), DGSD will tend to
increase, which leads to “long-range” deformations (mini-
mization will primarily affectDGSD at the cost of increasing
compression-expansion). This is illustrated in Fig. 4 and
Table 3.

The profiles shown in Fig. 4 illustrate the bilayer defor-
mation for different choices of parameters and for three
different choices ofs. Fig. 4, a–c was generated with the
reference parameters (b*21/4 5 11.3 Å); Fig. 4,d–f was
generated usingKa 5 0.01 K*a, which corresponds to a
“soft” bilayer (b21/4 5 35.7 Å). When describing the bi-
layer deformations it is helpful to introduce a characteristic
deformation lengthru 5 r1/e2 r0, whereuu(r1/e)u 5 u0/eand
e is the base of the natural logarithm. In case of nonmono-
tonic deformations, whereru may be a multivalued func-
tion, we defineru to be the maximal functional value. A
characteristic energy length (rDG) can be defined similarly,
as the distancerDG 5 rDG 2 r0, whererDG is the radius
within which one has (12 1/e) of the total energyDGdef:

pE
r0

r01rDG FKa

d0
2 u2 1 KcS1r du

dr
1

d2u

dr2D2

1 aSdu

drD
2Grdr

5 ~1 2 1/e!DGdef

(19)

The selectedr criteria for deformation and energy distribu-
tion are arbitrary. With a 10% criterion instead of a 1/e

criterion the absolute values forru andrDG will be different,
but the qualitative trends are unchanged (results not shown).

In Fig. 4 a, s 5 21, the bilayer expansion is small, and
the maximal expansion is less thanu0/e, which results in a
small value forru. Fig. 4d shows the same situation but for
a “softer” bilayer (a bilayer with a largerKc/Ka or b21/4). In
this case the maximal expansion is greater thanu0/e, andru

is not a single-valued function ofu(r), which results in a
higher value forru. The DGST contribution toDGdef in-
creases twofold, and its relative importance becomes more
pronounced:DGST is 5% of DGdef in the reference mem-
brane, but increases to 18% ofDGdef in the softest bilayer
(see Table 3).

In the second pair of profiles (Fig. 4,b ande) s 5 20.5,
which is close tosmin. Both profiles display maximal bilayer
expansions less thanu0/e. An increase in bilayer “softness”
by a factor of 100 (Fig. 4e) does not significantly affectru,
and the shape of the deformation profile is fairly similar in
these two situations. Several features of the energy decom-
position are noteworthy, however. First, the absoluteDGCE

contribution to DGdef decreases almost 30-fold whenKa

changes fromK*a to 0.01K*a, whereasDGSD decreases only
twofold. Second, in the reference (“hard”) bilayer the rela-
tive contributions ofDGSD and DGCE are inverted as one
goes froms5 21 tos5 20.5, which is not the case for the
softer bilayer. Third,DGST is a larger component (29%) of
DGdef in the softest bilayer as compared to the reference
bilayer (8%).

Finally, the third pair of profiles (Fig. 4,c and f ) when
s5 0 shows an example of monotonic deformations. For the
soft bilayerDGCE . DGSD, which is not the case for the
reference bilayer (see Fig. 3a). Hence the need to minimize
the compression-expansion component is less, and the bi-
layer primarily minimizes theDGSD component, which re-
sults in long-range (i.e., several times the bilayer thickness)
deformations (see Fig. 4f ).

To get further insight into how the system responds to the
choice of boundary conditions it is helpful to examine how
ru andrDG vary as a function ofs for different values ofKa.
This is shown in Fig. 5. The different values forKa corre-
spond to different values ofb21/4, becauseKc is kept
constant. For softer bilayers [curves 2 (b21/4 5 20.1 Å) and
3 (b21/4 5 35.7 Å)] and negatives, ru increases markedly
with decreasingsbecause of a bilayer expansion close to the
bilayer/inclusion contact surface (Fig. 4d). A continuous
change ins, going froms5 21 (Fig. 4b) to s5 20.5 (Fig.
4 d), causes a discontinuous change inru reflecting the
nonmonotonic deformation (the jumps in curves 2 and 3 in
Fig. 5 a.4 For s ' 20.5, the deformation extension length
and the total free energy of deformation are decoupled:
variations inb21/4, due to changes inKa, produce no change
in the radial extent of deformation when measured byru (cf.
Fig. 4,b ande), but the absolute energies change (from 4.05

4The reference membrane (curve 1) also displays a pronounced expansion
at very negatives (results not shown).
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kT for the reference membrane to 1.33 in the softest bilayer
whereKa 5 0.01K*a). For s . 20.5, all curves increase in
a sigmoidal manner. Ats 5 1, the value ofru/b

21/4 is ' 2
for all three bilayers, whereas fors ' 0, ru is only slightly
larger thanb21/4 in all cases.

In Fig. 5 b rDG is plotted for the same parameters as in
Fig. 5a. The points labeledw correspond to thesmin values.

For the reference parameter setrDG is ;5 Å (5 1/2b*21/4)
independent of the contact slopes. This surprisingly small
value of rDG shows that most of the deformation energy
results from deformations in the first annulus of lipids
surrounding the inclusion (see below). This result also em-
phasizes the importance of the boundary conditions atr 5
r0. For the softer bilayers (Fig. 5b, curves 2 and 3),rDG is

FIGURE 4 Bilayer perturbation profiles for different choices of boundary conditions and material constants. (a–c) Profiles for the reference membrane
and different values ofs. (a) s 5 21.00, (b) s 5 20.50, and (c) s 5 0.00. (d–f ) Profiles for a soft bilayerKa 5 0.01K*a (reference parameters otherwise).
(d) s 5 21.00, (e) s 5 20.50, and (f) s 5 0.00.
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a nonmonotonic function ofs. When Ka 5 0.01 K*a, rDG

displays a peak close tos 5 0 (cf. Fig. 4 f ). Nevertheless,
rDG is only ' ru/2, andrDG is ,b21/4 for all cases exam-
ined.

Radial decomposition of deformation free energy

Depending on the choice of boundary conditions,DGCE can
be less than, equal to, or larger thanDGSD. The relative
contributions of these two major components toDGdef vary

as functions of two parameters, the contact slopesandb21/4

(Table 3). This parameter dependence can be further illus-
trated when the deformation free energy is decomposed
radially into the component energy per unit length away
from the inclusion (Eq. 16a–c). At boths 5 0 ands 5 smin,
DGCE . DGSD (see Fig. 3a). The radial distribution of the
energy, however, shows a more complex behavior (Fig. 6).
For s 5 0, u0 5 4 Å (Fig. 6 a), the splay-distortion
component dominates close to the interface but decreases to
become nearly zero at 10 Å (5 b*21/4), with a marginal
contribution at 20 Å (;2b*21/4) from the interface. The
compression-expansion component has a maximum at;2.5
Å away from the inclusion and decreases more slowly than
the splay-distortion component, thus dominating the defor-
mation energy at distances.5 Å (5 1/2 b*21/4) from the
bilayer/inclusion boundary. The surface tension component
is negligible (cf. Table 3), and not shown for reasons of
clarity. When a minimum energy constraint (Eq. 5d) is
imposed on the interface slope (Fig. 6b), the component
energies are less, but the splay-distortion energy continues
to dominate close to the boundary. The compression-expan-
sion component begins to prevail only at distances of.9 Å
(5 b*21/4) from the interface. Again the surface tension
component is negligible (cf. Table 3).

For the soft bilayer (Ka 5 0.01K*a) ands 5 0, the radial
distribution of energy components bears qualitative similar-
ities to what is seen for the reference membrane (cf. Fig. 6,
a andc). The splay-distortion component again decreases to
nearly zero atb21/4 ('35 Å), and the compression-expan-
sion component dominates further away from the inclusion,
but now a significant surface tension component is present.
For thes 5 smin solution in the soft bilayer (Ka 5 0.01K*a)
surface tension has become the dominant energy component
(Fig. 6d). The splay-distortion component is approximately
of the same magnitude, whereas the compression-expansion
is negligible. Under selected conditions,DGST may be a
major component of theDGdef.

The linear spring description

In Fig. 2 b, the energy versus deformation curve has a
parabolic shape, which suggests thatDGdef could be a
quadratic function ofu. Such a quadratic relationship is a
characteristic of simple linear springs and is simple to use in
practical applications. It thus becomes important to inves-
tigate to what extent a spring approximation is valid. Setting
u# 5 u/u0 and using Eqs. 5d and e, A11, and A12:

DGdef 5
Kc

2
u0

2 E
V

~~bu
22 1 ¹2u#!2 1 gu¹W u# u2!dV

5 Kcpr0u0
2S2u#

r
¹2u# 1 u#



r
¹2u# 2 gu#

u#

rDUr 5 r0.

(20)

This has the implication that for either (/r)¹2uur0 5 0 or
(u/r)ur0 5 0 the terms in the brackets are independent of

FIGURE 5 Length scales for the bilayer deformations. (a) ru and (b) rDG

different compression-expansion moduli as functions ofs. (1) Ka 5 K*a; (2)
Ka 5 0.1 K*a; (3) Ka 5 0.01 K*a. Reference parameters otherwise. The
correspondingb21/4 values are' 11.3 Å, ' 20.1 Å, and' 35.7 Å,
respectively.

TABLE 3 Absolute and relative proportions of the energy
components for different Ka and s values

Ka/K*a s DGdef/kT SD/kT CE/kT ST/kT %SD %CE %ST

1 21.00 16.05 12.84 2.41 0.80 80 15 5
20.50 4.12 1.28 2.51 0.33 31 61 8

0.00 11.86 4.03 7.59 0.24 34 64 2

0.1 21.00 11.52 8.85 1.66 1.01 77 14 9
20.50 1.76 1.11 0.32 0.33 63 18 19

0.00 2.87 1.03 1.66 0.18 36 58 6

0.01 21.00 8.17 5.56 1.14 1.47 68 14 18
20.50 1.35 0.86 0.09 0.39 64 7 29

0.00 0.83 0.29 0.40 0.14 35 48 17
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u0 andDGdef (Eq. 20) is a quadratic function ofu0. Gener-
ally, DGdef is a homogeneous 2nd order function ofu0 and
s, i.e.,DGdef 5 a1u0

2 1 a2s
2 1 a3u0s for constantsa1, a2, a3.

The consequences of this are illustrated in Fig. 7. Fig. 7,
a–c shows results fors 5 0; Fig. 7,d–f shows results for
s 5 smin. Fig. 7, a and d show the quadratic relationship
betweenDGdef andu0 for different values ofKa. Fig. 7, b
andc ande–f shows the phenomenological spring constants
H (DGdef 5 Hu0

2)5 calculated fors 5 0 (Fig. 7,b andc) and
s5 smin (Fig. 7,eandf ) for the same range of compression-
expansion moduliKa and splay-distortion moduliKc. Em-
pirically, the results are well described by power laws:H ;
Kc

m for fixed Ka, andH ; Ka
n for fixed Kc. Table 4 summa-

rizes values form andn for both boundary conditions:s 5

0 ands 5 smin. In either situation we find thatm 1 n ' 1
(the physical basis for this relation is not clear). Hence

DGdef 5 Hu0
2 , Kaj

2m 5 Kcj
22n (21)

H (and thusDGdef) also scales with the inclusion radius
(Fig. 8 and Table 5). Fors 5 smin (Fig. 8a), H ; r0

d, where
d 5 0.976. The relative energy contributions do not vary
with increasingr0, butsmin changes from20.4466 (r0 5 10
Å) to 20.3288 forr0 5 50 Å (Fig. 8b). For s 5 0 (Fig. 8
c) H ; r0

d, whered 5 0.815. In this case the relative energy
contributions change slightly with increasingr0: the relative
CE/SD/ST contributions (in %) varies between 64/34/2 for
r0 5 10 Å and 71/27/2 forr0 5 50 Å (see Table 5). An
increase inr0 also changes the characteristic lengths, i.e.,
the ru(s) and rDG(s) curves in Fig. 5. Forr0 5 30 Å the
shape of the curves are preserved but they are shifted
;10.1 s units. Fors 5 20.5 ands 5 0 the differences in
r values atr0 5 30 Å and r0 5 10 Å amount to,10%
(results not shown).

5For integral membrane proteins it may be more convenient to use the total
deformation rather thanu0. If that convention is usedDGdef 5 (H/4)(d0 2
l)2 (cf. Eq. 5c), i.e., the appropriate spring constant will be four times less.

FIGURE 6 Radial decomposition of the deformation energy. (a) TheDGdef components as a function of distance from bilayer/inclusion boundary fors5
0 andu0 5 4 Å (standard parameter set otherwise). The free energy per unit length for the total energy and for each of the components are shown. (b) Same
as in (a), except that the contact slope is allowed to relax to its minimal free energy value (s 5 smin). (c) Same as in (a), except thatKa 5 0.01K*a. (d)
Same as in (b), except thatKa 5 0.01K*a.
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Interdependence between energy components

One might expect that a specific energy component associ-
ated with a bilayer deformation should be completely de-
scribed by the associated mechanical modulus. This is not
the case, as already could be inferred from the results in
Figs. 4 and 5. Given the importance of this issue, it is further
examined in Fig. 9. The results are summarized in Table 6.

Fig. 9a showsDGCE as a function ofKc/K*c for s5 0. For
a constantKa, a variation inKc will affect the magnitude of
DGCE. Similarly, a variation inKa will affect the magnitude
of DGSD (Fig. 9b). In both cases the functional relations can
be described by power laws (see Table 6). Whens 5 smin,

these relations are preserved (Fig. 9c and d), but with a
decreased sensitivity ofDGCE to variations inKc and an
increased sensitivity ofDGSD to variations inKa (see Table
6). As for DGdef, m and n depend upon the boundary
conditions, but for each energy componentm 1 n ' 1.
Hence

DGSD , Kaj
2m 5 Kcj

22n (22)

DGCE , Kaj
2m 5 Kcj

22n. (23)

DISCUSSION

In this study we provide an analysis of the energetic con-
sequences of an inclusion-induced membrane deformation
using a continuum theory of smectic liquid-crystal defor-
mations as applied to lipid vesicle shapes (Helfrich, 1973),
which was extended to inclusion-induced deformations by
Huang (1986). We note that perturbations in the bilayer
thicknessm are expected to decay over a length scale that is

TABLE 4 Scaling parameters for DGdef

s m n m 1 n

s 5 0 0.334 0.667 1.001
s 5 smin 0.287 0.717 1.004

(DGdef ; Kc
m; DGdef ; Ka

n).

FIGURE 7 The phenomenological spring model. (a) DGdef whens 5 0 as a function ofu0 for different values of the compression-expansion modulus
relative toK*a. Standard parameter set. The points denote the calculatedDGdef values as a function ofu0. The curves are nonlinear least-squares fits to a
linear spring model.DG 5 Hu0

2 (the correlation coefficientr 5 1.000 in all cases). (b andc) The phenomenological spring constantH plotted as a function
of Kc/K*c andKa/K*a. The points denote calculated energy values and the curves are nonlinear least-squares fits to power lawsDH ; (Kc/K*c)

m or H ; (Ka/K*a)
n

(the correlation coefficientr . 0.996 in all cases). (d–f ): Same as in (a–c) but for s 5 smin (the correlation coefficientr . 0.997 in all cases).m, n values
are listed in Table 4.
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of order of the unperturbed thicknessd0, which is the largest
relevant length scale that characterizes a bilayer. Becaused0

is a microscopic length, the continuum elastic description of
the bilayer that we employ (Eq. 1) should be viewed as a
phenomenological model. The model thus is an approxi-
mate description of bilayer deformations at short length
scales (and fairly long time scales), which should capture
much of the relevant physics. The constantsKa, Kc, anda,
as well as the boundary conditions, are fitting parameters:
they need not bear a simple relation to the macroscopic
quantities that are measured experimentally.

Boundary conditions

The results of our analysis confirm and extend the findings
of Huang (1986) and Helfrich and Jakobsson (1990), as we
show that the seemingly contradictory results obtained by
these investigators arise simply from their different choices
of boundary conditions. In principle, however, these results
emerged as solutions to two quite different problems.
Huang (1986) used experimental data to determines and
concluded thats is close to zero. Helfrich and Jakobsson
used energy minimization to determines. Both approaches
assume perfect hydrophobic coupling between the inclusion
and the bilayer hydrophobic core. In both cases Eq. 4 was
solved by integrating from the inclusion-bilayer boundary to
infinity. The deformation energies, however, differ by
roughly a factor of two, the smaller values being obtained
by the Helfrich and Jakobsson approach. Thes 5 0 bound-
ary condition is in better accord with experimental results
(Huang, 1986), and the apparent failure of thes 5 smin

boundary condition could arise because the continuum pa-
rameters that are used in the model are inappropriate at the
short length scales that are of interest here or because there
are additional contributions toDGdef, which are neglected in
the model. One such component could be the tilt contribu-
tion to the deformation energy (cf. Helfrich, 1973). At the
present time, however, there is insufficient information to
establish the appropriate choice of boundary conditions at
the bilayer/inclusion boundary.

In a somewhat different approach Ring (1996) introduced
an apparent relaxation of the hydrophobic coupling in which
a non-zeros is taken to imply that the lipids slide outward
in a way that maintains strong hydrophobic coupling at the
bilayer/inclusion boundary. Under this boundary condition
the integration starts from the center of the lipids that
surround the inclusion. As expected, the deformation energy
in this model is less than that obtained by Huang (1986) or
Helfrich and Jakobsson (1990); but the formal development
is very similar to that of Helfrich and Jakobsson (1990, see
Appendix I).

The lack of experimental information about the nature of
the bilayer/inclusion boundary is problematic because the
length scales for which the continuum description is appli-
cable are determined by the residual, or time-averaged,
“texture” of the microstructure that remains after integrating

FIGURE 8 The deformation free energy and its components as a func-
tion of inclusion radius. (a) Results fors 5 smin. DGdef ; r0

d, whered 5
0.976 6 0.001 (mean6 SE from least-squares fit). (b): The minimum
contact slope as a function ofr0. (c) Results fors 5 0, d 5 0.8156 0.006.

TABLE 5 Effect of inclusion radius on DGdef

s r0/Å DGdef/kT DGCE/kT DGSD/kT DGST/kT

s 5 0 10 4.05 2.83 0.92 0.30
20 7.81 5.59 1.75 0.48
30 11.60 8.36 2.58 0.66
40 15.38 11.13 3.42 0.84
50 19.18 13.90 4.26 1.01

s 5 smin 10 11.86 7.54 4.08 0.24
20 19.12 12.93 5.83 0.36
30 26.44 18.34 7.62 0.48
40 33.77 23.76 9.41 0.60
50 41.11 29.18 11.21 0.72
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the molecular motions over the relevant time scale. To
examine length scales on the order of Å it is necessary to
average the molecular motions over time periods that are of
the order of ms (cf. Bloom et al., 1991), which is much
longer than the average residence time of a lipid molecule in
the inclusion-perturbed bilayer.

Energy components and membrane shape

The radial decomposition of the component energies (Fig.
6) show that splay-distortion contribution toDGdef energy
dominates at the bilayer/inclusion interface, whereas the
compression-expansion contribution is predominant further
away from the inclusion. Any inclusion-induced membrane
deformation will thus involve a complex interplay of com-
pression-expansion and splay-distortion of the surrounding
bilayer.

Importantly, but not surprisingly, the relative contribu-
tions of DGCE andDGSD to DGdef are similar. That is, the
bilayer deformation energy cannot be attributed solely to
either compression-expansion or splay-distortion, which has
implications for understanding how the lipid bilayer mate-
rial properties affect protein function. The bilayer responds

TABLE 6 Scaling of energy components

s Component m n m 1 n

s 5 0 DGSD 0.348 0.638 0.986
DGCE 0.328 0.652 0.980

s 5 smin DGSD 0.273 0.746 1.019
DGCE 0.244 0.739 0.983

Component; Kc
m; Component; Ka

n.

FIGURE 9 Free energy decomposition as a function ofKc/K*c and Ka/K*a. The points denote calculated energy values and the curves are nonlinear
least-squares fits to power lawsDGCE ; (Kc/K*c)

m or DGSD ; (Ka/K*a)
n (the correlation coefficientr . 0.995 in all cases). (a andb) s 5 0; (c andd) s 5

smin. (a) DGCE as function ofKc/K*c for different Ka/K*a. (b) DGSD as function ofKa/K*a for different Kc/K*c. (c) Same as in (a), but for s 5 smin (d) Same
as in (b), but for s 5 smin. (The m, n values are listed in Table 6.)
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to an imposed distortion by minimizing the overall defor-
mation energy by varying both the CE and SD components,
and the effect of this minimization can lead to a large
repertoire of shapes (Fig. 4). Taken together with the rela-
tive paucity of experimental values for the relevant mechan-
ical moduli in different lipid systems and variation in avail-
able values, this complexity has led to the development of
simpler approaches that may be used to explain specific
cases of protein-lipid interactions.

The linear spring model

In the case of gramicidin channels incorporated in planar
lipid bilayers, for example a phenomenological spring
model, e.g., the mattress model (Mouritsen and Bloom,
1984), appears to be a useful approximation (Andersen et
al., 1992; Durkin et al., 1993; Lundbæk and Andersen,
1994; Lundbæk et al., 1996). In the mattress model the
different contributions to the overall deformation free en-
ergy are combined and the problem is simplified to the
deformation of a linear (Hookean) spring. Somewhat sur-
prisingly, this simplification also applies in the case of
systems with energy contributions from both SD and CE
components. In the case of contact slopes5 0 ands5 smin,
the spring model constitutes an exact description of the
membrane deformation. This considerably simplifies the
use of elastic models that include both compression and
bending modes, but it does not alleviate the problem of
assigning appropriate values to the underlying mechanical
moduli.

Parametric interrelations

The separation of energy contributions in our elastic model
is problematic. Compression of a monolayer of lipid mole-
cules, for example, would be expected to alter the apparent
splay-distortion modulus of the monolayer.Kc andKa in the
formalism presented here, in fact, are not independent de-
scriptors of the mechanical properties of the bilayer in the
sense that both reflect the same fundamental parameters that
describe lipid-lipid interactions in a monolayer (or bilayer).
This dependence is already apparent in the shell model of
Evans and Skalak (1980) according to whichKc 5 Kad0

2.
One modulus therefore renormalizes the other: variations in
Ka lead to changes inDGSD, and variations inKc changes
DGCE. On the other hand, the interpretation ofKc as a true
bending modulus has been shown to be valid in HII phase
systems, where the work of deformation from this sponta-
neous radius of curvature is quadratic in curvature and
where the associated bending moduli are related to the
moduli measured on planar bilayers (Gruner et al., 1986).

The surface tension component of the total deformation
free energy, as formulated in Eq. 1, constitutes a negligible
part of the total deformation free energy in the solvent-free
membrane that is our reference system. If bilayer softness is
increased by two orders of magnitude, a substantial part of

the free energy of deformation will be due to surface ten-
sion. Thus, for thicker and softer (solvent-containing) bilay-
ers, surface tension could be a significant energy contribu-
tion to the total deformation free energy.

Scaling properties

For the chosen reference parameter set, the length scale of
the bilayer perturbationru (Fig. 5 a) depends on boundary
conditions (the contact slopes). The corresponding scale
property for the total deformation free energyrDG is fairly
independent ofs (Fig. 5 b).

Roughly two-thirds of the total deformation free energy is
due to the bilayer deformation within the first annulus of
lipid molecules surrounding the inclusion. With increasing
softness both length scales become more sensitive to
changes ins (Fig. 5, a and b, curves 2 and 3). A relative
decrease in the compression-expansion modulus will in-
creasej, but ru andrDG scale differently. For example, in
the case ofs ' 0 andKa 5 0.01K*a the maximalrDG is just
about half ofru, the former being comparable to 2b*21/4.
The different scaling is a reflection of the manner in which
the bilayer adapts to the inclusion induced perturbation. The
system can tolerate long-range perturbations (meaning
b*21/4 .. d0) as far as they are associated with a minimal
energy cost. An increase in inclusion radius will increase the
energies (DGdef, DGCE, DGSD, andDGST), but the increase
is a sublinear function of inclusion radius.

Biological implications

Implicit in the elastic membrane model is that there may be
a significant energetic penalty associated with even a mod-
est degree of hydrophobic coupling between an integral
membrane protein and its host bilayer. Integral membrane
protein function may be influenced by the host bilayer if the
hydrophobic interface between protein and bilayer is altered
as a result of protein activity, e.g., a conformational change
associated with an closedº open transition in ion channels.
Quarternary conformational changes have been described
for the nicotinic acetylcholine receptor and gap junction
channels (Unwin et al., 1989; Unwin and Ennis, 1984). For
gap junction channels (r0 5 30 Å) the openº close
transition involves a change in the membrane spanning part
of the channel, which results in a change in the hydrophobic
length of the channel from 30 Å to 29.7 Å. If the channel is
embedded in a bilayer with a thickness of 30 Å (perfect
hydrophobic match), and withs 5 0, an openº close
transition would result in a rather modestDGdef of 0.22 kT
(corresponding to a 25% change in the Boltzmann equilib-
rium distribution between the open and closed states). For a
bilayer thickness of 31 Å (ands 5 0), DGdef would be 2.3
kT (corresponding to a 10-fold change in Boltzmann fac-
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tor).6 The deformation energies can be larger if the sponta-
neous monolayer curvature is different from zero (Nielsen,
Goulian, and Andersen, unpublished observations).

The deformation profiles obtained using the elastic mem-
brane model marks the average hydrocarbon/headgroup
boundary. Thermal motion of the lipids perpendicular to the
bilayer will cause changes in thickness (Wiener and White,
1992). The implications of such thermal fluctuations in the
instantaneous thickness may in their own right affect prop-
erties, but these effects are difficult to determine because the
thickness changes depend on sample hydration levels and
lipid type.

Relatively modest changes in bilayer properties can
changeDGdef by 10–15 kJ/mol (Lundbæk et al., 1996,
1997), corresponding to 4–6 kT per molecule, indicating
that the bilayer deformation energy may be of sufficient
magnitude to affect protein function. In addition, even
though the deformation extends'30 Å from the inclusion,
most deformation arises in the region corresponding to the
annulus of lipid molecules that are in intermediate contact
with the inclusion. This implies that one should be able to
effect substantial changes in the bilayer deformation energy
by rather modest changes in the composition of this bound-
ary layer, which could have implications for understanding
how lipid-soluble, or amphipathic, substances affect the
conformational preference of (and function) of integral
membrane proteins. Conversely, the configuration of the
hydrocarbon chains in the boundary layer is affected by the
inclusion, the result being a (transient) lateral phase sepa-
ration. Such a separation will change the lipid density
around an inclusion and could trigger protein activity as
noted earlier by Sackmann (1984).

In conclusion, the present results extend previous work
on the coupling between the membrane elastic deformations
and protein function (cf. Mouritsen and Bloom, 1984; Sack-
mann, 1984; Gruner, 1991; Brown, 1994), and provide a
rationale for why the function of integral proteins is affected
by maneuvers that primarily affect either bilayer thickness
(Caffrey and Feigenson, 1981; Johannsson et al., 1981;
Criado et al., 1984) or propensity to form nonbilayer phases
(Navarro et al., 1984; Brown, 1994; McCallum and Epand,
1995). In either case, the manipulations of the bilayer en-
vironment alterDGdef, which in turn can affect the equilib-
rium distribution between different protein conformations
(Andersen et al., 1992; Gruner, 1991; Lundbæk et al.,
1997).

APPENDIX I

In the boundary conditions considered throughout the paper (s 5 smin and
s 5 0) there is strong hydrophobic coupling between the inclusion and the
immediately surrounding lipid molecules. If this condition is relaxed and

the lipid molecules at the inclusion hydrophobic surface are allowed to
“slide” outward (away from the bilayer symmetry plane), the overall
bilayer deformation will be less.

This is formulated in a set of boundary condition suggested by Ring
(1996) (see Fig. A1,a and b). In this model s is defined by energy
minimization but the lipid molecules closest to the inclusion are displaced
in a direction parallel to thez axis of the symmetry axis of the inclusion,
which reduces the contribution of acyl chain compression of the nearest-
neighbor lipids. The actual displacementr2sin(u) is supposed to be deter-
mined by factors such as the balance of forces between headgroups and
hydrophobic repulsion of the hydrocarbon-water contact, and is assumed to
be of the same order as the lipid-lipid separation (Ring, 1996). The formal
difference between thes 5 smin condition and this “relaxed” condition,
referred to in the following as thes 5 s9min boundary condition, is that
u(r90) 5 u0 1 r2sin(u), wherer90 5 r1 1 r2cos(u). In Fig. 1a s5 tan(u) ,
0, sou(r90) # u(r0) andr90 $ r0. For r1 5 10 Å r2 5 0 Å, the two sets of
conditions are identical. Fig. A1a shows the situation wherer1 5 7 Å and
r2 5 3 Å (Ring, 1996), whereas in Fig. A1b r1 5 10 Å andr2 5 4.5 Å.

Under these conditions the bilayer deformation energy will be less than
for s 5 smin [see Fig. A1c (curve labeleds 5 s9min)]. When the curve is
replotted [arrow (1) in Fig. A1c)] as a function of the “actual” deformation
u(r90) 5 u0 1 r2sin(u), however, the resulting relaxed minimum solution is
virtually identical to thes 5 smin solution. This is due to the fact that for
r1 5 7 Å and r2 5 3 Å, r0 ' r90, so the difference is primarily due to a
change in the effectiveu at the interface. The solution given by Ring (1996)
can thus be obtained from thes5 smin by simple scaling ofu. The distances
r1 5 7 Å andr2 5 3 Å are too low, however, to account for a gramicidin
channel incorporated in a phospholipid bilayer.r1 5 10 Å andr2 5 4.5 Å
might be more appropriate. For these parameters the energies, when plotted
as function ofu0, are less than fors 5 smin, even though the effective
inclusion radiusr1 is larger thanr0 (Fig. A1 b), u(r90) is less thanu0, the
result being overall less deformation. Again this curve can be plotted as a
function of the actual deformation,u(r90) [arrow (2) in Fig. A1c] resulting
in a steeper curve than for thes 5 smin situation. But when thes 5 smin

curves are scaled using the power law for inclusion radius illustrated in Fig.
8 [arrow (3) in Fig. A1c], these two solutions become almost identical.
That is, solutions obtained by ther1 5 10 Å, r2 5 4.5 Å boundary
condition can also be found by appropriate scaling of thes5 smin solution.

It should be noted that the interpretation ofr0 andr90 is different. Forr0,
as the lower boundary for the energy integral in Eq. 1, the integration
includes the total cross-sectional area of each of the lipid molecules in the
first annulus surrounding the inclusion (Fig. 1,b andc), whereas forr90 the
integration includes only half of the cross-sectional area for each of the
lipids in the first surrounding annulus (Fig. A1,a andb).

APPENDIX II

For physically acceptable deformation profiles the solutions to Eq. 6 must
be real-valued continuous functions of bounded variation in any interval
[a, b], 0 , a , b , 1`. Assuming radial symmetry (cylindrical coordi-
nates) and

E
0

1`

Îruu~r!udr (A1)

is finite, which should pose no restrictions on the solution,u can be
expressed using Hankel’s integral theorem (Lebedev et al., 1979):

u~z! 5 E
0

`

70~kz!kSE
0

`

u~s!70~kz!dzDdk

5 E
0

`

70~kz!A~k!dk

(A2)
6These estimates for the membrane deformations energy were obtained
using values forKa andKc in SOPC bilayers with 50 mol % cholesterol: a
situation we believe describes biological membranes better than the refer-
ence values used in previous studies (see Table 1).
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where the integral in the parenthesis is the Hankel transform ofu and70

is the zero-order Bessel function of the first kind (Abramowitz and Stegun,
1968).

The solutions of the quadratic expression Eq. 6 can be obtained as
solutions of the equation

¹2u 5 hu (A3)

where

h 5
1

2Sg

d0
6 ÎSg

d0
D2

2 S 2

jd0
D2D g 5 a/Kc, j 5 ÎKc

Ka

(A4)

For any argumentz

2¹270~kz! 5 k270~kz!. (A5)

and Eq. A2 can be used to solve Eq. A3. This leads to

2~k2 1 h!A~k! 5 0f u~z! 5 A170~iÎhz! 1 A270~2iÎhz!
(A6)

The solutions are real-valued functions,uw(z) 5 u(z), and u(z) can be
written as

u~z! 5 A@70~iÎhz! 1 70~2iÎhz!#

5 A@(0~Îhz! 1 (0~2Îhz!#
(A7)

where (0 is the modified zero-order Bessel function of the first kind
(Abramowitz and Stegun, 1968). For vanishingly smalla, u(r) has the form
f(r/=jd0) and using Eq. A4 and Eq. 7 we haveb21/4 5 =jd0 as a
characterizing length scale for the problem.

The solutions must satisfy the constraint of asymptotic convergency

lim
r3`

u~r! 5 0 (A8)

The modified zero-order Bessel functions of the first kind are divergent, so
to get the desired solution we expand in terms of zero-order Bessel
functions of the second kind=0 (Abramowitz and Stegun, 1968).

=0~iz! 5 i(0~z! 2
2

p
_0~z!, 2p , arg~z! # p/2 (A9)

FIGURE A1 See Appendix 1 for
details.
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and a constrained solution to Eq. 6 can be constructed as

u~z! 5 A@=0~iÎhz! 1 =0~2iÎhz!# , _0~Îhz! (A10)

where _0 is the modified first-order Bessel function of the first kind
(Abramowitz and Stegun, 1968).

Using Eq. 7, the expression for the energy (Eq. 1) is given by

DGdef 5 E
V

1

2 FKa

d0
2 u2 1 Kc~¹

2u!2 1 au¹W uu2GdV

5
Kc

2 E
V

~~¹2u!2 1 bu2 1 gu¹W uu2!dV. (A11)

This surface integral can be expressed as a contour integral around the
inclusion bilayer boundaryv (Landau and Lifschitz, 1986, p. 40):

DGdef 5
Kc

2 R
v

~~nW z ¹W u!¹2u 2 u~nW z ¹W ¹2u! 1 gu~nW z ¹W u!!dv

5 Kcpr0S2u

r
¹2u 1 u



r
¹2u 2 gu

u

rDUr 5 r0

5 Kcpr0S2s¹2uUr 5 r0 1 u0



dr
¹2uUr 5 r0 2 gu0sD

(A12)

Using Eqs. 8 and 10a and b,

¹2uur 5 r0 5 A1k1
2 _0~k1r! 1 A2k2

2 _0~k2r! (A13)



r
¹2uur 5 r0 5 A1k1

3 _90~k1r! 1 A2k2
3 _90~k2r! (A14)

Substituting A13 and 14 into A12 gives the result (Eq. 13).
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