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ABSTRACT Explicit solutions to the equations of equilibrium in the theory of the elastic rod model for DNA are employed
to develop a procedure for finding the configuration that minimizes the elastic energy of a minicircle in a mononucleosome
with specified values of the minicircle size N in base pairs, the extent w of wrapping of DNA about the histone core particle,
the helical repeat h0

b of the bound DNA, and the linking number Lk of the minicircle. The procedure permits a determination
of the set 6(N, w, h0

b) of integral values of Lk for which the minimum energy configuration does not involve self-contact, and
graphs of writhe versus w are presented for such values of Lk. For the range of N of interest here, 330 , N , 370, the set
6(N, w, h0

b) is of primary importance: when Lk is not in 6(N, w, h0
b), the configurations compatible with Lk have elastic energies

high enough to preclude the occurrence of an observable concentration of topoisomer Lk in an equilibrium distribution of
topoisomers. Equilibrium distributions of Lk, calculated by setting differences in the free energy of the extranucleosomal loop
equal to differences in equilibrium elastic energy, are found to be very close to Gaussian when computed under the
assumption that w is fixed, but far from Gaussian when it is assumed that w fluctuates between two values. The theoretical
results given suggest a method by which one may calculate DNA-histone binding energies from measured equilibrium
distributions of Lk.

INTRODUCTION

The research reported here is part of an ongoing effort
toward the attainment of insight into the relation between
the tertiary structure of a segment of duplex DNA and
geometric conditions imposed at the end points of the seg-
ment. In this research we employ the elastic rod model for
DNA and hence specify the configuration of a DNA mole-
cule by giving its duplex axis and the rate of twisting of one
of the two DNA strands about that axis. The use of explicit
and exact solutions to the equations of mechanical equilib-
rium for elastic rods can greatly simplify the problem of
calculating the dependence of the configuration and elastic
energy of an otherwise free segment of duplex DNA on
geometric conditions imposed at its end points (cf. Tobias et
al., 1994; Coleman et al., 1995). This method of exact
solutions is appropriate to cases in which the segment is
intrinsically straight, i.e., is such that its axis is straight in
the stress-free state. We here apply the method to the
extranucleosomal loop5f in a small DNA plasmid, called a
minicircle, that has formed a mononucleosome with a his-
tone core particle (see Fig. 1 below). The equilibrium con-
figurations of5f depend on the following parameters: (1)
the numberN of base pairs in the minicircle, (2) the amount
w of wrapping of DNA around the histone core particle
(called thewrap), (3) the twist-related helical repeath0

b of
that part of nucleosomal DNA that is tightly bound to the

core particle, and (4) the linking numberLk of the mi-
nicircle. Our analysis of configurations of5f enables us to
develop a procedure for finding a configuration that mini-
mizes the elastic energy of the minicircle when these four
parameters have been specified, and we employ that proce-
dure to derive properties of equilibrium distributions of
topoisomers in mononucleosomes.

As the parametersN, w, h0
b, andLk suffice to determine a

minimum energy configuration of the minicircle, in formu-
lating the elastic elastic rod model, we do not refer to such
aspects of histone-DNA interactions as the relative impor-
tance of site-specific binding and long-range electrostatic
forces, or the manner in which nucleotide sequences differ
in their affinity for the octamer. However, as a change in the
overall wrapping of DNA about the core particle results in
a (positive or negative) increment in the free energy of the
mononucleosome and this increment is the sum of two
quantities, an increment in the configuration-dependent free
energy of5f (which our theory permits us to calculate) and
an incrementG in the total DNA-histone binding energy, the
theory suggests a method by which one eventually may be
able to obtain information about DNA-histone binding en-
ergies from measurements of equilibrium distributions of
topoisomers. Several of the difficulties associated with the
problem of relating the results of relaxation experiments to
binding energies are discussed at the end of this introduction.

Our calculations are confined to cases in whichN is in the
range 330–370 bp, and the length of5f is less than two
persistence lengths (i.e., less than 282 bp). We make the
assumption that the incrementDG in the free energy of a
mononucleosome due to a change inLk from Lk

(A) to Lk
(B),

with N, w, andh0
b assumed constant, can be equated to the

difference in the elastic energies of the minimum energy
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configurations corresponding to (N, w, h0
b, Lk

(A)) and (N, w,
h0

b, Lk
(B)). This assumption, which appears appropriate for

the range ofN considered, is employed to develop a theory
of the equilibrium topoisomer distributions obtained when
minicircles in mononucleosomes are relaxed with, say, to-
poisomerase I. (Some justification for the assumption is
provided by a paper (Tobias, 1998) on thermal fluctuations
in protein-free DNA plasmids appearing in this issue of the
Biophysical Journal. Expressions given in that paper imply
that when a segment of DNA shorter than two persistence
lengths is free along its length from external forces and
moments, as is5f, and, in addition, has the form of a closed
circle, the entropy contribution to the free energy of super-
coiling is less than 11% of the elastic energy contribution.)
Our assumption aboutDG differs from that made by Le Bret
(1988), who used a Monte Carlo method to calculate aver-
age values ofLk for equilibrium mixtures of minicircles in
mononucleosomes withw fixed. Le Bret’s seminal paper,
although based on a different approach to the problem,
influenced the present research.

Our procedure for finding minimum energy configura-
tions and calculating their properties (e.g., elastic energy,
writhe) as functions ofN, w, h0

b, andLk is explained in the
next section of the paper. There we give figures showing
such configurations for two values ofN.

For givenN, w, andh0
b, our theory enables us to determine

the set6(N, w, h0
b) of integersLk for which the minimum

energy configuration is without self-contact. Graphs of
writhe versus wrap are presented for values ofLk in 6(N, w,
h0

b); the calculation of these graphs was facilitated by new
results in the theory of rods that are presented in Appendix
B (Eqs. B1 and B6–B12). In the range ofN for which we do
calculations, whenLk

# is a linking number not in6(N, w, h0
b),

the minimum energy configuration for the quadruple (N, w,
h0

b, Lk
#) not only shows self-contact, but has an elastic energy

C# that exceeds the elastic energyC* of the minimum
energy configuration for eachLk in 6(N, w, h0

b) by an
amount sufficient to preclude the occurrence of an observ-
able concentration of topoisomerLk

# in an equilibrium dis-
tribution of topoisomers.

Equilibrium distributions of topoisomers are discussed in
the final section of the paper. We treat two mathematical
cases. For the first, the case in which all of the nucleosomes
are assumed to have the same wrap, we give expressions for
the concentration of topoisomers with integral linking num-
ber Lk and present calculated graphs of the dependence on
N of the average value ofLk. We show that the probability
density function for the corresponding continuous distribu-
tion of Lk departs only slightly from a Gaussian probability
density function characterized by two parameters,L#k andK,
that can be calculated from first principles. The dependence
of these parameters onh0

b andN is discussed.
Once a theory of topoisomer distributions for mononu-

cleosomes with a specified wrap is in hand, one can con-
struct a more general theory in which transitions between
various amounts of wrapping are possible. We do this for
the simplest case, in whichw is allowed two values,w(1) and
w(2) . w(1), and derive a formula (Eq. 41) giving the
DNA-histone binding energy for the transition fromw(1) to
w(2) as a function of the ratio of equilibrium concentrations
of two topoisomers. Our development of the two-state
model shows that it can yield probability density functions
for continuous distributions ofLk that are far from Gaussian
and, in some cases, bimodal. For that model an expression
is obtained relating the difference in binding energyG(w(1),
w(2)) for the two states of wrap to the ratio of equilibrium
concentrations of any two distinct topoisomers.

For N 5 341, 354, and 359 bp, Zivanovic et al. (1988)
have published results of relaxation experiments for mono-
nucleosomes. (For reasons discussed in the second section
of the present paper, the published topoisomer distribution
for N 5 354 is not useful for our purposes.) WhenN 5 359,
a single topoisomerLk 5 33 predominates at equilibrium.
WhenN 5 341, our calculations indicate that the equilib-
rium mixture contains two topoisomers,Lk 5 31 andLk 5
32, and from the experimentally measured ratio of their
concentrations a value ofG can be derived. We illustrate the
way such a calculation proceeds, but we do not propose that
one accept as definitive the value ofG that we obtain.
General principles in the theory of rods and recent Monte
Carlo calculations of Katritch and Vologodskii (1997) for
protein-free DNA plasmids suggest that equilibrium distri-
butions ofLk can be sensitive to small departures from the
assumption that the DNA is intrinsically straight, and we do
not know how close to that assumption were the DNA
fragments used to form the 341- and 359-bp minicircles of
published experiments. (As those fragments were prepared
by MboI cleavage of pBR322, which has a known nucleo-
tide sequence (Sutcliffe, 1978, 1979; Watson, 1988), one
can, in principle, calculate the detailed distribution of in-
trinsic curvature along the fragments, but we are not aware
of that having been done.) Of course, even if it be shown
that the minicircles studied are made of DNA that is close to
intrinsically straight, in the comparison of theory and ex-
periment there remain difficulties associated with uncer-

FIGURE 1 Schematic drawing of the axial curve# of a DNA minicircle
5 and the histone core particle. The core particle is shown as a cylinder.
The axial curve#b of 5b, the nucleosomal part of5, is drawn as a heavy
curve that is solid in front of the core particle and dashed behind it.#f, the
axial curve of the extranucleosomal loop,5f, is represented by a succes-
sion of circles that are open when behind the particle and solid otherwise.
In the figure the relative lengths of#b and#f correspond to a minicircle of
359 bp that is wrapped about the core particle for 1.45 turns.
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tainty in the assigned values ofw(1), w(2), andh0
b, the present

lack of data for other values ofN, and the possibility that the
two-state model is an oversimplification of a more appro-
priate multistate model.

The emphasis in this paper is on the theory of the elastic
rod model and the development of methods for its eventual
application to DNA-protein interactions, not on numerical
results for specific experiments. We find that a two-state
model for fluctuations inw can yield topoisomer distribu-
tions that differ not only quantitatively but also qualitatively
from the nearly Gaussian distributions implied by a model
in which w is fixed. One can construct other hypothetical
models for fluctuations in the extent of binding of DNA to
the histone octamer, and we expect that the methods pre-
sented here can be used to search for distinguishing quali-
tative characteristics of their implications.

CONFIGURATIONS AND ELASTIC ENERGY

As in earlier studies in which the elastic rod model is
employed for a plasmid in a mononucleosome (e.g., Le
Bret, 1988; Zhang et al., 1994), a DNA molecule here is
represented by an inextensible, homogeneous, transversely
isotropic, intrinsically straight rod5 whose axial curve# is
the curve in space occupied by the duplex axis. This curve
is described by giving the radial vectorr from an originO
to a point on# as a function of arc-lengths. For a closed
DNA minicircle of lengthL that is wrapped about a histone
core to form a mononucleosome,5 is a closed rod made up
of (1) nucleosomal DNA, i.e., a bound segment5b with
axial curve#b and lengthLb, which is in contact with the
core particle; and (2) the free segment5f (or extranucleo-
somal loop) with axial curve#f and lengthLf 5 L 2 Lb.
(In this paper lengths that are denoted by the symbolsL, Lf,
Lb when measured in nanometers are denoted byN, N f, Nb

when measured in base pairs (with 1 bp5 0.34 nm).)
We consider the case in which the core particle is the

histone octamer formed from the histone proteins H2A,
H2B, H3, and H4, and the linker histone H1 is not present,
as was the case for the mononucleosomes of experiments of
Zivanovic et al. (1988) that we shall discuss later in the
paper. In accord with currently available structural informa-
tion (Richmond et al., 1984; Arents and Moudrianakis,
1993), we suppose that#b is, as in Fig. 1, a left-handed
helix with a pitchp of 2.7 nm and a diameterd of 8.6 nm.

(Note added after submission of the paper: A recently
published announcement of the x-ray structure of the nu-
cleosome core at 0.28-nm resolution (Luger et al., 1997)
gives values of 2.39 nm forp and 8.36 nm ford in the
optimal helical approximation to the duplex axis of the
nucleosomal DNA. Our recent calculations indicate that the
reduction in the values ofp and d called for by the new
structural data will not have a major effect on the results
reported here.)

The amount, in turns, that#b is wrapped about the core

particle (i.e., the wrap) is denoted byw. The assumption that
#b is a helix yields

Lb 5 wÎp2d2 1 p2. (1)

The configuration of5f is calculated using Kirchhoff’s
theory of elastic rods (Kirchhoff, 1859, 1876; Dill, 1992)
and boundary conditions that follow from the assumption
that bothr(s) andt(s) 5 r9(s) 5 dr (s)/ds are continuous for
all values ofs, including the two,sA, sB, characterizing the
places where5b and5f meet. Of the various configurations
for 5f that are compatible with this assumption and preas-
signed values of the wrap and the linking number of5, we
select the one that minimizes elastic energy.

We write Lk for the linking number of the DNA mi-
nicircle 5, i.e., the number of times the duplex axis# is
linked with either one of the DNA strands of the minicircle.
(The topologically invariant integerLk was introduced by
Gauss and is discussed in several modern texts, among them
that of Courant (1936); see also Calugareanu (1961).) By a
now familiar result (White, 1969), the topological constant
Lk is the sum of the twistTw of either DNA strand about the
duplex axis and the writheWr of that axis:

Lk 5 Tw 1 Wr . (2)

For a DNA molecule of lengthL, whether open or closed,

Tw 5
1

2p E
0

L

V~s!ds, (3)

whereV, the twist density, is the rate of wrapping of either
strand about the duplex axis and is expressed in units of
radians per unit length. When the molecule is in a straight
stress-free configuration,V equalsV0 5 2p/(0.34h0), the
intrinsic twist density of duplex DNA. The numberh0,
which depends on the temperatureT, the solvent composi-
tion, and the nucleotide sequence, is the helical repeat of
stress-free DNA. The writheWr of the closed curve# is
given by the double integral

Wr 5
1

4p E
0

L E
0

L t~s! 3 t~s* ! z @r~s! 2 r~s* !#

ur~s! 2 r~s* !u3 ds ds* (4)

and equals the number obtained by averaging, over all
orientations of a plane3, the sum of the signed self-
crossings occurring in the planar curves resulting from
perpendicular projection of# on 3 (Fuller, 1971). In Ap-
pendix B we describe our method of evaluatingWr and
show that exact solutions we obtain for#f, and hence#,
yield essentially explicit expressions forWr.

A configuration ] (or mechanical state) of a rod is
specified by giving the axial curve of the rod and the twist
densityV(s) along that curve.

We first discuss5b. As the axial curve#b of 5b obeys
the assumptions stated above Eq. 1, once we have assigned
a value to the wrapw, not only the lengthLb of #b, but #b
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itself will be specified, and the configuration of5b will be
determined when the twist densityV(s) is given along#b.
Recent measurements of Hamiche and Prunell (1992) of the
dependence onN andT of the average twist density of DNA
minicircles in mononucleosomes are compatible with the
assumptions that (1) a subsegment50

b of 5b, with a length
N0

b that they found to be 1096 25 bp, has a twist densityV0
b

that appears to be independent not only ofN andLk, but also
of T; and (2) when50

b is not all of5b, the remaining bound
DNA, of length Nb 2 N0

b, is in torsional equilibrium with
5f. It is natural to assume that whenNb exceedsN0

b, the
segment50

b is centrally located in5b, which implies that
one can regard the bound segment5b as a union of three
abutting segments,52

b , 50
b, and 51

b , with the two outer
segments,52

b and51
b , of equal length, (Nb 2 N0

b)/2. For
the total twist of50

b we have

Tw
b,0 5

1

2p
L0

bV0
b 5 N0

b /h0
b; (5)

h0
b is the twist-related helical repeat of the central segment

of the nucleosomal DNA. We shall present results concern-
ing the influence ofh0

b on equilibrium distributions of to-
poisomers with fixed values ofw.

The crystal structure determination of Richmond et al.
(1984) indicates that the maximum value ofw is in the range
1.7 to 1.8. In the calculations to be presented, two values of
w are emphasized: 1.70 turns and an alternative value of
1.45 turns, which is not far from an average of values
observed by electron microscopy for minicircles in mono-
nucleosomes in aqueous media at low ionic strength
(Zivanovic et al., 1988). It is not only convenient for us, but
also in accord with the range of observations of Hamiche
and Prunell (1992), to assume that the length of50

b corre-
sponds tow 5 1.45 turns. Then the DNA that is added to the
core particle whenw is increased from 1.45 to 1.70 turns
constitutes the two outer segments,52

b , 51
b , that one ex-

pects to be more loosely bound than the central segment.
Our calculations of configurations and elastic energies of

mononucleosomes give results that are not sensitive to the
assumed length of50

b, throughout the range compatible
with the data of Hamiche and Prunell (1992). As we have no
information about the values of torsional rigidityC and
intrinsic twist densityV0 for 52

b and51
b , we assume thatC

andV0 are the same for those two segments as for the free
segment5f. Hindsight has shown that calculated values of
elastic energies would have differed by no more than 1%
from those that we shall report here, if we had assumed that
even whenw 5 1.70, all of the bound DNA has a fixed twist
densityV0

b 5 2p/(0.34h0
b). In other words, by allowing for

the possibility that there are two outer segments,52
b , 51

b ,
that have properties different from those of50

b, we have
introduced a small complication that does not appear to
have been necessary. As the emphasis here is on methods,
however, we have chosen to describe our model at a level of
generality that may be useful if subsequent experiments

show in a convincing way that the length of50
b should be

taken to be significantly less than the one we have employed.
For a given total lengthL and linking numberLk, once

the wrapw is specified, the assumptions just stated about the
bound segment5b can be combined with solutions in the
theory of the elastic rod model to find an appropriate equi-
librium configuration of5f under the assumption that the
only external forces and moments acting on5f or any
subsegment of5f are those applied at the segment’s end
points. When this assumption, which implies that5f is free
from self-contact, is granted, the laws of balance of forces
and moments, as expressed in the theory of rods, reduce to
the assertion that the resultantF 5 F(s) of the internal
stresses on a cross section of5f and the net momentM 5
M(s) of those internal stresses obey the equations

F9 5 0, (6)

M9 5 F 3 t. (7)

When the minicircle under consideration, and hence5f, is
formed from intrinsically straight DNA that is homoge-
neous in its mechanical properties, Kirchhoff’s constitutive
equation forM yields

M 5 A~t 3 t9! 1 CDVft, DVf 5 Vf 2 V0, (8)

where the coefficients of flexural rigidityA and torsional
rigidity C are constants, andVf is the twist density present
in 5f. The system of equations obtained by combining Eqs.
6, 7, and 8 will here be called Kirchhoff’s equations of
equilibrium. By Eq. 8,M z t 5 C DVf, and hence Eq. 7
implies that the excess twist density,DVf, is constant along
5f and hence on51

b ø 5f ø 52
b . In view of Eqs. 3 and 5,

the total twistTw of 5 is

Tw 5
N0

b

h0
b 1

1

2p
~L 2 L0

b!Vf. (9)

We now discuss the problem of finding, for given values
of the quadruple (L, w, h0

b, Lk), the configuration]* of 5
that satisfies the following four conditions: (I) Kirchhoff’s
equations of equilibrium hold on5f, and hence5 is free
from self-contact; (II) Eqs. 3 and 4 yield values ofTw and
Wr for 5 with Tw 1 Wr equal to the given value ofLk; (III)
r(s) and t(s) are continuous at the places where5b and5f

meet; and (IV) of all configurations compatible with (I)–
(IV) and the specified quadruple (L, w, h0

b, Lk), ]* gives the
smallest value to the energyC, defined as the sum

C 5 Cf 1 C1
b 1 C2

b , (10)

in which

Cf 5
1

2E
#f

@Ak2 1 C~V 2 V0!
2#ds, (11)

(with k the geometric curvature of#f) is the elastic energy
of the free segment5f, and C1

b and C2
b are the twist

energies of the segments52
b and51

b .
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We note that in a state of mechanical equilibrium,

C1
b 5 C2

b 5
C

4
~Lb 2 L0

b!~DVf !2, (12)

andC in Eq. 10 is given by

C 5
A

2 E
#f

k2 ds1
C

2
~L 2 L0

b!~DVf!2. (13)

A method is available for finding exact and explicit
solutions of Eqs. 6, 7, and 8 for specified values ofr(sA),
t(sA), r(sB), t(sB), Lf, andDVf (Tobias et al., 1994; Coleman
et al., 1995). The method is explained and applied to the
present problem in Appendix A. There we make use of
geometric relations between the triples (p, d, w) and (r(sA)
2 r(sB), t(sA), t(sB)) to obtain a procedure for calculating,
for given values ofL andw, the dependence onDVf of the
curve#f and hence ofWr, which gives us the functionW̃r in
the relation

Wr 5 W̃r~DVf; L, w!, (14)

and, in view of Eqs. 2 and 9, yieldsLk as a function ofDVf:

Lk 5 W̃r~DVf; L, w! 1
N0

b

h0
b 1

1

2p
~L 2 L0

b!~DVf 1 V0!.

(15)

We can invert this function to obtainDVf as a function of
Lk. As the parametersL0

b andV0 are fixed throughout our
discussion, we are thus able to find the configurations] of
the minicircle that correspond to a specified quadruple (L,
w, h0

b, Lk) and obey the conditions (I)–(III). These config-
urations] form a set!(L, w, h0

b, Lk) that need not be finite.
Of interest to us is]*(L, w, h0

b, Lk), the configuration in
!(L, w, h0

b, Lk) that obeys the condition (IV), i.e., that
minimizes the elastic energyC in Eq. 13 over!(L, w, h0

b,
Lk). If !(L, w, h0

b, Lk) is not empty,]*(L, w, h0
b, Lk) exists

and is free from self-contact.
As we observe in Appendix A, the method of exact

solutions yields an elementary formula (Eq. A18) for the
elastic energyCf of Eq. 11 as a function of parameters that
can be related toL, w, andDVf and that uniquely charac-
terize each configuration in!(L, w, h0

b, Lk). Use of that
formula greatly facilitates the solution of the problem of
finding the minimizer]* of C over !. It also permits one
to evaluateC as a functionC̃of DVf for fixed L andw, i.e.,

C 5 C̃~DVf; L, w!, (16)

which is a matter of importance for a discussion of the
dependence ofC on h0

b to be presented in the following
section.

Suppose the triple (L, w, h0
b) has been specified, and let

6(L, w, h0
b) or 6(N, w, h0

b) be the set of integersLk such that
the configuration]*(L, w, h0

b, Lk), i.e., the configuration
that obeys the conditions (I)–(IV), gives a global minimum
to C in Eq. 10 over the set@(L, w, h0

b, Lk) of all configu-

rations with the indicated value of the quadruple (L, w, h0
b,

Lk) that obey the conditions (II) and (III), without regard to
whether these configurations are in mechanical equilibrium
or are free from self-contact. For short, we refer to]* as the
“minimum energy configuration.” For the value ofC at
]*(L, w, h0

b, Lk), we write

C 5 C*L,w,h0
b~Lk!. (17)

For Lk not in 6(L, w, h0
b), let ]# be the configuration that

minimizesC over the set@(L, w, h0
b, Lk). The configuration

]# obeys the conditions (II)–(IV), but not condition (I), and
hence is not free from self-contact. Thus]# cannot be found
by using the procedure described above. The authors re-
cently have extended the method of exact solutions to obtain
a procedure for calculating minimum energy configurations
when points of self-contact are present, and in yet unpublished
research have verified that, for the range of the parameters
(N, w, h0

b) for which results are reported in this paper, whenLk

is not in6(N, w, h0
b), the equilibrium configurations compatible

with Lk have elastic energies high enough to preclude the
occurrence ofLk at an observable concentration in an equilib-
rium distribution of topoisomers.

When Nf is of the order of magnitude of a persistence
length, for values ofLk in 6(N, w, h0

b) the configuration
]*(N, w, h0

b, Lk) may be considered thermodynamically
stable in the sense that it minimizes the free energyG over
the set@(N, w, h0

b, Lk). All of the calculations that we give
in this paper are for minimum energy configurations]*.
The ranges of parameters (N, w, h0

b) that we have investi-
gated have been selected for their possible application to the
interpretation of experimental results for mononucleosomes
formed from minicircles with 330–370 bp, and in each case
the set6(N, w, h0

b) was found to contain two elements.
For the calculations reported in this paper, we have cho-

sen a value ofA that corresponds to a persistence length
A/RT of 50.0 nm atT 5 298 K (cf. Hagerman, 1988), and
we have assumed thatC/A has a value 1.4, which is com-
patible with the results of relaxation experiments on protein-
free DNA plasmids (Horowitz and Wang, 1984). Toh0 we
have assigned a value of 10.53 bp/turn that Zivanovic et al.
(1988) (see also Goulet et al., 1988) reported to be appro-
priate for their relaxation experiments on minicircles in
mononucleosomes that were conducted atT 5 310 K in a
medium with an ionic strength of 125 mM.

Figs. 2 and 3 show minimum energy configurations for
N 5 341 and 359, whenw 5 1.45 and 1.70. Table 1
contains the corresponding computed values of the writhe
Wr, the elastic energyC*L,w,h0

b(Lk), and the distanceD of
closest approach of the axial curve#f to itself. For these
figures the twist-related helical repeath0

b of the tightly
bound segment50

b was chosen to be 10.40 bp/turn, a value
not far from the average of two proposed values: (1) 10.53
bp/turn, which is identical toh0; and (2) 10.31 bp/turn,
which corresponds (under the assumption that the core
particle surface is truly cylindrical) to a value of 10.18
bp/turn for the cleavage periodicity measured by nuclease
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digestion (Prunell et al., 1979; Lutter, 1979; Prunell, 1983)
and hydroxyl radical cleavage (Hayes et al., 1990, 1991).
Although calculated values of experimentally measurable
quantities dependent on elastic energy can be sensitive to
changes inh0

b, expressions can be derived for the depen-
dence of such quantities onh0

b, once their values are known
as functions ofLk for a single value ofh0

b; results of this type
will be presented later in the paper.

The distance of closest approach,D, tells us how near to
each other come sequentially separated segments of a DNA
molecule. Whenw 5 1.45 andN 5 341 or 359, for eachLk

in 6(N, w, 10.40), the minimum value ofur(s1) 2 r(s2)u for
sequentially separated pointss1 ands2 occurs whens1 and
s2 are the end pointssA andsB of 5f, and henceD 5 ur(sA)
2 r(sB)u. On the other hand, for the corresponding cases
with w 5 1.70, D is smaller thanur(sA) 2 r(sB)u. The
smallest value ofD in Table 1, namely 2.5 nm, corresponds
to N 5 341,w 5 1.70,Lk 5 32.

To characterize configurations that are “free from self-
contact,” we have followed a common practice and modeled
steric effects by considering a DNA molecule to be a tube of
diameter 2.0 nm. In this sense, the minimum energy con-

figuration]*(341, 1.70, 10.40, 32) is free from self-contact,
and Lk 5 32 is a valid member of the set6(341, 1.70,
10.40). However, at the low salt concentrations that are
employed in relaxation experiments on mononucleosomes,
electrostatic repulsion would cause the minimum energy
configuration to differ from]* and have a free energy that
is significantly larger than an estimate based on only the
elastic energyC*L,w,h0

b(Lk).
Zivanovic et al. (1988) observed that relaxation of mono-

nucleosomes withN 5 341 yields topoisomers withLk 5 31
and 32. We find that these values ofLk are in both6(341,
1.45, 10.40) and6(341, 1.70, 10.40) and are the only values
of Lk in those sets. The same experimenters observed that
gel electrophoresis indicates that the product of relaxation
of mononucleosomes withN 5 359 is the topoisomer with
Lk 5 33, and only traces of others are present. ForN 5 359,
we find that, in addition to the value 33 ofLk, 6(359, 1.45,
10.40) contains the value 34, and6(359, 1.70, 10.40) con-
tains the value 32. ForN 5 359, whenw 5 1.45,C*(Lk 5
34) . C*(Lk 5 33) 1 3 kcal/mol, and whenw 5 1.70,C*
(Lk 5 32) . C*(Lk 5 33) 1 1.5 kcal/mol, and hence the

FIGURE 3 DNA minicircles in mononucleosomes de-
picted as tubes of diameter 20 Å. The line of view is here
different from that of Fig. 2, but the values ofh0

b, w, Lk and
the configurations are as in that figure.

FIGURE 2 Calculated axial curves# for minimum
energy configurations. The line of view is parallel to the
axis of the core particle, andh0

b is chosen to be 10.40
bp/turn.
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topoisomer withLk 5 33 is expected to predominate. (The
small value ofD (3.8 nm) that we found forN 5 359,w 5
1.45,Lk 5 32 indicates that even if electrostatic effects were
taken into account, our conclusion to the effect that the
topoisomer withLk 5 33 predominates would be expected
to hold.) This conclusion about the predominance ofLk 5
33 for both values ofw holds not only forh0

b 5 10.40
bp/turn, but also forh0

b 5 10.31. In the case ofh0
b 5 10.53

bp/turn, forw 5 1.45 the conclusion holds again, but for
w 5 1.70 the energies forLk 5 33 andLk 5 32 differ by
only 0.02 kcal/mol.

Zivanovic et al. (1988) also observed that forN 5 354,
relaxation of mononucleosomes yields topoisomers with
Lk 5 32 and 33. We find that these two values ofLk are in
both6(354, 1.45, 10.40) and6(354, 1.70, 10.40), and they
are the only values in those sets. When, in the following

section, we discuss the implications of our theory for the
interpretation of measurements of concentrations of topoi-
somers resulting from relaxation, we shall not go into detail
for the caseN 5 354; for, as Ariel Prunell (Universite´ Paris
7, personal communication, 1997) pointed out to us, the data
of Zivanovic et al. (1988) for the distribution ofLk after
relaxation withN 5 354 cannot be taken to be reliable. As
their figure 7 indicates, in that particular case the topoiso-
mer distribution at the end of the relaxation experiment
depended on the initial distribution and thus did not describe
a state of equilibrium.

Fig. 4 contains graphs ofWr versusw at specified values
of N, h0

b, and values ofLk in 6(N, w, h0
b). The graphs shown

were calculated using first the procedure described above to
find ]*(L, w, h0

b, Lk) and then the explicit results forQ
given in Eqs. B6–B12 to obtainWr via Eq. B1. WhenN is
fixed at 341 or 359 andh0

b at 10.31, 10.40, or 10.53 bp/turn,
there is but one value ofLk that is in the sets6(N, w, h0

b) for
all w in the range 1.2# w # 1.9. That value,Lk

#(N),
corresponds to the topoisomer that Zivanovic et al. (1988)
found to have the highest concentration upon completion of
relaxation of mononucleosomes with the givenN. There is
a broad range ofN for which Lk

#(N) is the (unique) value of
Lk in 6(N, w, h0

b) for which the writhe of# is a continuous
monotone decreasing function of wrap withWr close to21
for smallw, close to21.7 for largew. WhenLk 5 Lk

#(N), a
change inh0

b from 10.31 to 10.53 at fixedw induces a
change inWr of at most 10%.

Now, let us recall that6(N, w, h0
b) is the set of values of

Lk for which there is no self-contact in the configuration that

TABLE 1 Calculated values of Wr, C*, and D for the
configurations shown in Figs. 2 and 3

N w Lk Lk 2 N/h0 Wr

C*
(kcal/mol)

D
(nm)

341 1.45 31 21.38 21.19 6.76 9.4
341 1.45 32 20.38 20.83 6.53 9.4
341 1.70 31 21.38 21.56 6.54 6.5
341 1.70 32 20.38 20.45 10.90 2.5

359 1.45 33 21.09 21.08 4.93 9.4
359 1.45 34 20.09 20.61 8.12 9.4
359 1.70 32 22.09 21.89 8.40 3.8
359 1.70 33 21.09 21.46 6.84 6.8

FIGURE 4 The writheWr for the configuration]* versus the wrapw for two values ofN and three values ofh0
b: 10.53 (• • • •), 10.40 (———), 10.31

(– – –) bp/turn. Each triple of solid, dotted, and dashed curves is for a topoisomer with the indicated value ofLk in 6(N, w, h0
b).
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minimizesC over the class of all configurations with the
specified parameters (N, w, h0

b, Lk). For Fig. 4, as for Figs.
2 and 3, the triplets (N, w, h0

b) are such that6(N, w, h0
b)

contains two elements; one isLk 5 Lk
#(N), and the other is

Lk
#(N) 1 1 or Lk

#(N) 2 1. An exceptional case occurs when
the quadruple (N, w, h0

b, Lk) characterizes the special point
sJ on the curve,* discussed in the Remark of Appendix A.
Such a special point occurs at critical valuewJ of w at which
one sees a jump of22 in Wr (and hence inLk) as one moves,
in the direction of increasingw, along otherwise continuous
curves in Fig. 4 on whichWr is monotone increasing inw.
When we calculateWr in a neighborhood ofwJ, we ignore
the constraint that]* be free from self-contact, and we find
that the geometry of the axial curve#f for the minimum
energy configuration is such that whenw 5 wJ, the curve
passes through itself, causingWr to make a jump. Thus there
is a sense in which, for each pair (N, h0

b), the two separate
continuous graphs on whichWr increases withw can be
regarded as segments of one graph that contains a point of
discontinuity and gives, as a function ofw, the writhe of the
minimum energy configuration for the elementLk

{ of 6(N,
w, h0

b) that is not equal toLk
#(N); whenN andh0

b are fixed,
Lk
{ can vary withw, and the jump inWr equals the corre-

sponding jump inLk
{.

Having seen the strong dependence onLk of graphs ofWr

versusw, one may ask about the form of such graphs for
cases in which the DNA in the extranucleosomal loop has
been nicked, i.e., has had one of its duplex strands severed.
For nicked DNA,Wr is independent of assumptions about
h0

b, and its calculation for minimum energy configurations is
more easily performed. Tobias et al. (1994) and Coleman et
al. (1995) have given a detailed account of the use of the
method of exact solutions to obtain explicit expressions for
equilibrium configurations of nicked DNA segments subject
to boundary conditions of the type that occur here whenN
andw are specified (see Eqs. A20–A26). To obtainWr from
their formulae givingr(s), one can, for nicked DNA, use
Eqs. B6–B12 withv set equal to 0 in Eqs. B9–B11; for, in
the theory of mechanical equilibrium, nicked DNA can be
regarded as a special case of Kirchhoff’s theory in which
M z t has been set equal to 0, which is here equivalent to
putting DVf 5 0. The resulting graphs ofWr versusw are
given in Fig. 5. As that figure makes clear, for mononu-
cleosomes containing nicked DNA withN in the range
330# N # 370, graphs ofWr versusw are nearly indepen-
dent of N and, not surprisingly, have the monotonicity
property of the corresponding graphs for cases in which the
DNA is not nicked and hasLk 5 Lk

#(N).

EQUILIBRIUM DISTRIBUTIONS OF
TOPOISOMERS

For the values ofw andN for which we report calculations,
the sizeNf of the free segment is between 178 and 274 bp.
At the temperature at which measurements have been made
of equilibrium distributions of topoisomers in mononucleo-

somes (Zivanovic et al., 1988), the persistence lengthap

corresponding to the value ofA employed for the calcula-
tions reported here is 141 bp, which implies thatNf is less
than 2ap. With this observation in mind, we now make use
of the assumption that the increment in the equilibrium free
energyG of a mononucleosome due to a change inLk at
fixed w (and, of course, at fixedN andh0

b) can be equated to
the increment inC*N,w,h0

b, i.e., that

G~N, w, h0
b, Lk

~2!! 2 G~N, w, h0
b, Lk

~1!! 5 C*N,w,h0
b~Lk

~2!!

2 C*N,w,h0
b~Lk

~1!!.
(18)

In the previous section we assembled the results that permit
us to use this assumption to calculate equilibrium distribu-
tions of topoisomers.

If we suppose that all of the minicircles are in mononu-
cleosomes with the same wrapw, then at equilibrium the
fraction PN,w,h0

b(Lk) of isomers with integral linking number
Lk will be given by the equation

PN,w,h0
b~Lk! 5 QN,w,h0

b
21 exp$2C*N,w,h0

b~Lk!/~RT!%, (19)

in which

QN,w,h0
b 5 O

Lk

exp$2C*N,w,h0
b~Lk!/~RT!%. (20)

Although in the most general case the sum in Eq. 20 would
be taken over all integers, in accord with the discussion
following Eq. 17, we here assume that only values ofLk in
6(N, w, h0

b) make a significant contribution toQN,w,h0
b.

FIGURE 5 Writhe versus wrap for cases in which the extranucleosomal
loop is nicked:N 5 330 ( • • •) andN 5 370 (———). The corresponding
graphs forN 5 341 and 359 lie between the two curves shown.
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For the average valuêLk&N,w,h0
b of the integerLk, we have

^Lk&N,w,h0
b 5 O

Lk

LkPN,w,h0
b~Lk!, (21)

with the sum again over6(N, w, h0
b). Implications of Eq. 19

for the relation between̂Lk&N,w,h0
b andN are shown in Fig. 6

for wraps of 1.45 and 1.70 turns. The graphs given there for
h0

b 5 10.31, 10.40, 10.53 show a repetitive structure of
intervals on which^Lk&N,w,h0

b is approximately linear inN
separated by intervals in whicĥLk&N,w,h0

b is approximately
constant at a value close to an integer (e.g., 30, 31, etc.).

The dependence ofPN,w,h0
b(Lk), and hence of̂Lk&N,w,h0

b, on
h0

b is determined by the following useful fact: when Eq. 15
is solved forDVf with N andw fixed, DVf is a function of
Lk 2 (N0

b/h0
b) alone, and hence Eqs. 16 and 17 tell us that for

each pair (N, w) there is a functionĈN,w that (1) is inde-
pendent ofh0

b, (2) is defined for noninteger arguments, and

(3) for each integerLk in 6(N, w, h0
b) obeys the relation

C*N,w,h0
b~Lk! 5 ĈN,w~Lk 2 ~N0

b /h0
b!!. (22)

As the mathematical treatment that in the previous section
enabled us to characterize minimum energy configurations
remains valid (under an appropriate modification of the
definition of the set6(N, w, h0

b)) whenLk is taken to be a
nonintegral number, our procedure for calculatingC*N,w,h0

b

can be applied to determine the functionĈN,w on an inter-
val.

For each triple (N, w, h0
b) the functionPN,w,h0

b, giving the
fraction PN,w,h0

b(Lk) of topoisomers with integral linking
number, is determined by the following probability density
functionrN,w,h0

b for a continuous distribution of linking num-
ber:

rN,w,h0
b~Lk! 5 qN,w

21 exp$2ĈN,w~Lk 2 ~N0
b /h0

b!!/~RT!%. (23)

Here the normalizing coefficient,

qN,w 5 E exp$2ĈN,w~Lk 2 ~N0
b /h0

b!!/~RT!%dLk ,

(24)

is independent ofh0
b. The integral in Eq. 24 is taken over all

Lk in the interval I(N, w, h0
b) defined in the Remark of

Appendix A. WhenLk is an integer,

PN,w,h0
b~Lk! 5 ~qN,w /QN,w,h0

b!rN,w,h0
b~Lk!. (25)

In cases in which all of the bound (i.e., nucleosomal) DNA
has twist densityV0

b 5 2p/(0.34h0
b), and hence no bound

DNA is torsionally equilibrated with5f, N0
b in Eqs. 22–24

is to be replaced byNb.
The continuous distributionrN,w,h0

b is expected to be ap-
propriate to mononucleosomes for which the extranucleo-
somal loop5f has been nicked. For nicked plasmids one
can use Eq. 2 as a definition ofLk, andrN,w,h0

b is then the
probability density function for thermal fluctuations inLk.
(Once again, we assume thatNf is such that the free energy
change associated with a change inLk at fixed w can be
identified with the difference inC-values for the corre-
sponding minimum energy configurations; this assumption
is crucial if a distribution computed using Eq. 24 is to be
identified with one due to thermal fluctuations.)

Despite the chiral bias that one might expect to result
from the helicity of5b, when we put into Eq. 23 precisely
calculated results forĈN,w, we find thatrN,w,h0

b shows no
apparent skewness and departs only slightly from a Gauss-
ian probability density functionrG of the type employed in
analyses of relaxation experiments on protein-free circular
DNA (cf. Shore and Baldwin, 1983; Horowitz and Wang,
1984):

rG 5 ÎK/p exp$2K~Lk 2 L# k!
2%. (26)

FIGURE 6 Results of a calculation of the dependence onN of the
average,̂Lk&, of the integral values ofLk present in an equilibrium mixture
of topoisomers obtained by relaxation of DNA minicircles in mononucleo-
somes. This calculation is based on the supposition that the wrapw is fixed
with w 5 1.45 (E) or w 5 1.70 (3).
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In Eq. 26,L#k is the value ofLk that minimizesĈN,w(Lk 2
(N0

b/h0
b)) at fixed (N, w, h0

b), and K is proportional to the
corresponding second derivative ofĈN,w:

ĈN,w~L# k 2 ~N0
b /h0

b!! 5 min
Lk

ĈN,w~Lk 2 ~N0
b /h0

b!!, (27a)

K 5 K~N, w! 5
1

2RT

2

Lk
2 ĈN,w~Lk 2 ~N0

b /h0
b!!uLk5L# k ; (27b)

K is measured in units ofRT. As L#k, the value ofLk at which
the (continuous) density functionrN,w,h0

b has its maximum
value, turns out to be very close to the average value of the
distribution with densityrN,w,h0

b, we shall identifyL#k with
that average;L#k should not, however, be confused with^Lk&,
the average of an appropriate sampling of integral values of
Lk. (Of course,L#k is precisely the average value of the
(continuous) Gaussian distribution approximating that of
rN,w,h0

b.) Graphs ofrN,w,h0
b and its approximationrG are shown

in Fig. 7 for N 5 341 and 359 withw 5 1.45 and 1.70.
Table 2 contains the corresponding computed values ofL#k

andK.
Fig. 8 shows the dependence onN of calculated values of

NfK, L#k, andL#k 2 (N/h0) (for h0
b 5 10.40 and fixedw). We

note thatNfK, which is here the analog of the quantityNK
occurring in discussions of the free energy of supercoiling
of protein-free plasmids, is approximately linear inN with a
slope that depends onw and is positive forw 5 1.45 and
negative forw 5 1.70. In particular, asN increases from 330
to 370,NfK decreases by 6% whenw 5 1.45 and increases
by 2% whenw 5 1.70. As expected, the variation ofL#k with
N is very close to linear, and most of that variation is
accounted for byN/h0. The results shown in Fig. 7 can be
summarized as follows: To within the precision of our
calculations,

NfK~N, 1.45! 5 27312 4~N 2 330!, (28a)

L# k~N, 1.45, 10.40! 5 N/h0 2 0.87; (28b)

NfK~N, 1.70! 5 23451 ~N 2 330!, (29a)

L#k~N, 1.70, 10.40! 5 N/h0 2 1.422 1.23 1023~N 2 330!.
(29b)

As our notation indicates,K is independent ofh0
b. It is not

difficult to show that Eq. 27a implies that, for any two
valuesh0

b(1), h0
b(2) of h0

b,

L# k~N, w, h0
b~2!! 5 L# k~N, w, h0

b~1!! 2
N0

b

h0
b~1!

1
N0

b

h0
b~2!

. (30)

Here, once again, when all of the nucleosomal DNA has
twist density 2p/(0.34h0

b), N0
b is to be replaced byNb.

The dependence ofrN,w,h0
b(Lk) on h0

b (expressed in Eq. 23)
and its consequences, namely Eq. 30 and the conclusion that
K is independent ofh0

b, all follow from Eqs. 15 and 16. One
may ask if the dependence ofrN,w,h0

b(Lk) and related quan-

tities onN can be rendered explicit. The answer is yes if one
is content with approximations; for a careful examination of
the calculation ofW̃r(DVf; L, w) andC̃(DVf; L, w) tells one
that there are functionsFw such that approximation formu-

FIGURE 7 Probability density functionsr 5 rN,w,h0
b for hypothetical

continuous distributions of linking number at fixed wrap for DNA mi-
nicircles in mononucleosomes (see Eqs. 23 and 24). For eachN, the wrap
w is 1.70 for the bell-shaped curve on the left and 1.45 for the one on the
right. The dashed curves are graphs of the Gaussian probability density
functionsrG that for given (N, w, h0

b) approximaterN,w,h0
b are in accord with

Eqs. 26 and 27. The density functions shown were calculated supposing
thath0

b 5 10.40 bp/turn; a change inh0
b results in a translation of each curve

along theLk axis, in accord with Eq. 23.

TABLE 2 Calculated values of parameters of the Gaussian
probability density functions, shown as dashed lines in Fig. 7

N w L#k L#k 2 N/h0

K
(RT)

Nf K
(RT)

341 1.45 31.52 20.87 7.35 2687
341 1.70 30.94 21.44 7.07 2357
359 1.45 33.22 20.87 6.62 2617
359 1.70 32.63 21.46 6.55 2375
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lae of the type

N f ĈN,w~Lk 2 ~N0
b /h0

b!! > Fw~Lk 2 ~N0
b /h0

b! 2 ~N/h0!!
(31)

are useful for sufficiently small ranges ofN, the length of
which depends on the value ofw. This result implies, in
turn, the existence of functionsr̆w such that

rN,w,h0
b~Lk! > r̆w~Lk 2 ~N0

b /h0
b! 2 ~N/h0!!. (32)

If this approximate expression forrN,w,h0
b were taken to be

exact, one would conclude that there is a functiongw such
that Eq. 21 can be written aŝLk&N,w,h0

b 5 gw((N0
b/h0

b) 1
(N/h0)), and thatNfK is independent ofN and thatL#k is
given by a relation of the form

L# k 5 N/h0 2 L̆~w, h0
b! , (33)

with L̆(w, h0
b) independent ofN. (By coincidence, as we see

in Eq. 28b, Eq. 33 is very close to an exact relation for
330 # N # 370 whenw 5 1.45.)

Electron micrographs published by Zivanovic et al.
(1988) forN 5 359 indicate that when a minicircle of the
size we are considering here is in a mononucleosome,w can
have various values. We are now in a position to derive
implications of the present theory about the effect of fluc-
tuations inw on equilibrium distributions ofLk. Although,
for simplicity of presentation, we shall confine our discus-
sion to a case in whichw fluctuates between two values,
w(1), w(2), with w(2) . w(1), the generalization of our prin-
cipal results to a multistate model with an arbitrary number
of possible values forw will be evident. In the discussion
that follows, we generally do not render explicit the param-
eters (i.e.,N andh0

b) that are assumed to be the same for all
the mononucleosomes in an equilibrium mixture.

For a mononucleosome with a given value ofLk, a change
in w from w(1) to w(2) induces a incrementDG(w(1), w(2), Lk)
in the free energyG of Eq. 18. LetG be that part ofDG(w(1),
w(2), Lk) that is not accounted for by the change in the elastic
energyC*:

G 5 G~w~2!, Lk! 2 G~w~1!, Lk! 2 ~C*w(2)~Lk! 2 C*w(1)~Lk!!.
(34)

As Eq. 18 implies that for each pair (w, Lk)

G~w, Lk! 5 G0~w! 1 C*w~Lk!, (35)

G is independent ofLk, i.e.,

G 5 G~w~1!, w~2!! 5 G0~w~2!! 2 G0~w~1!!. (36)

Let P(Lk) (i.e., PN,h0
b(Lk)) be the fraction of the mononu-

cleosomes that have integral linking numberLk in a mixture
of topoisomers for which the wrap is fluctuating between
w(1) andw(2). When equilibrium is established with respect
to bothLk andw,

P~Lk! 5 Q21SexpH2C*w(1)~Lk!

RT J
1 expH2C*w(2)~Lk! 2 G~w~1!, w~2!!

RT JD,
(37)

Q 5 O
Lk

SexpH2C*w(1)~Lk!

RT J
1 expH2C*w(2)~Lk! 2 G~w~1!, w~2!!

RT JD;
(38)

here the sum is to be taken over those values ofLk that are
in either one or both of the two sets6(w(1)), 6(w(2)), with
C*w(i)(Lk) set equal to1` for anyLk not in the correspond-
ing 6(w(i)).

The probability density functionr for a continuous dis-
tribution that, by a formula analogous to Eq. 25, determines

FIGURE 8 Results of calculations of the dependence onN of the pa-
rametersK andL#k of Eq. 27 forw 5 1.45 (E) andw 5 1.70 (3). In each
case,h0

b 5 10.40 bp/turn.
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P(Lk) for integerLk is

r~Lk! 5 q21SexpH2Ĉw(1)~Lk 2 ~N0
b /h0

b!!

RT J
1 expH2Ĉw(2)~Lk 2 ~N0

b /h0
b!! 2 G~w~1!, w~2!!

RT JD,
(39)

q 5 ESexpH2Ĉw(1)~Lk 2 ~N0
b /h0

b!!

RT J
1 expH2Ĉw~2!~Lk 2 ~N0

b/h0
b!! 2 G~w~1!, w~2!!

RT JDdLk ;

(40)

the integral in Eq. 40 is taken over the union of the intervals
I(w(1)) andI(w(2)), with Ĉw(i)(Lk 2 (N0

b/h0
b)) set equal to1`

for Lk not in I(w(i)).
It follows from Eq. 37 that when one knows the ratio,

P(Lk
(A))/P(Lk

(B)), of the equilibrium concentrations of any
two topoisomers with linking numbers in the union of
6(w(1)) and 6(w(2)), one can calculateG(w(1), w(2)) as
follows:

G~w~1!, w~2!! 5

2RTlnSFexpH2C*w(1)~Lk
(A)!

RT J2
P~Lk

(A)!

P~Lk
(B) expH2C*w(1)~Lk

(B)!

RT JGY
FP~Lk

(A)!

P~Lk
(B)!

expH2C*w(2)~Lk
(B)!

RT J 2 expH~2C*w(2)~Lk
(A)!

RT JGD
(41)

Zivanovic et al. (1988) reported that their measurements
of ratios P(Lk

(A))/P(Lk
(B)) of equilibrium concentrations for

the relaxation with topoisomerase I of minicircles in mono-
nucleosomes gave the following results: forN 5 341,P(32)/
P(31) 5 0.25; for N 5 359, P(33) > 1. Takingw(1) to be
1.45 andw(2) to be 1.70, assuming thath0

b is 10.40, and
using the calculated values ofC*N,w,h0

b given in Table 1, we
find that a value of 0.75 kcal/mol for2G(1.45, 1.70) is in
accord with their observations, for it yields 0.25 forP(32)/
P(31) whenN 5 341. (It yields 0.99 forP(33) whenN 5
359, but at that value ofN a broad range of values ofG
would yield a value close to 1 forP(33).) This estimate of
0.75 kcal/mol for the two segments52

b , 51
b , i.e., of 0.04

kcal/mol of base pairs, is smaller than the value 0.1–0.15
kcal/mol bp that is consistent with results that Polach and
Widom (1995, 1996) obtained using restriction endonucle-
ase probes to measure the accessibility of sites within a
nucleosome core particle as a function of distance from the
ends (see the review of Felsenfeld, 1996).

The severity of the difficulties accompanying the use of
the available measurements of topoisomer distributions to
obtain binding energies was discussed at the end of the
Introduction. Despite these difficulties, to have examples to
examine, we offer in Fig. 9 graphs ofr and P calculated

with G(1.45, 1.70)5 20.75. As those graphs show, multi-
state models for equilibrium distributions of linking number
can yield probability density functions that are not Gauss-
ian, but instead are far from symmetric and, in extreme
cases, bimodal, and thus very different from what one
would find if all of the mononucleosomes had the same
value ofw during relaxation.

If we add to the rough approximations we have made in
discussing the binding energy termG the further assumption
that the functionG0 in Eq. 35 is linear inw, i.e., that to
within an added constant (which we can identify with
G0(w(1))),

G0~w! 5
G~w~1!, w~2!!

w~2! 2 w~1! ~w 2 w~1!!, (42)

then we can employ our method of calculatingC*N,w,h0
b(Lk) to

make graphs ofG(w, Lk) as a function ofw for fixed Lk.

FIGURE 9 Probability density functionsr for hypothetical continuous
distributions of linking number for DNA minicircles in mononucleosomes
with two possible states of wrap,w(1) 5 1.45 andw(2) 5 1.70 (see Eqs. 39
and 40). The heights of the shaded columns are proportional to the
probability P(Lk) that a topoisomer has linking numberLk in equilibrium
(Eqs. 37 and 38). For these calculations it was assumed thath0

b 5 10.40 and
G(1.45, 1.70)5 20.75.
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Such graphs are shown in Fig. 10 for the values ofLk for
which graphs ofWr versusw are seen in Fig. 4.

For the results shown in Fig. 10 we have putG(1.45,
1.70) 5 20.75 andh0

b 5 10.40. The gaps seen there in
otherwise smooth curves span neighborhoods of the values
wJ of w at which #f would pass through itself if the con-
straint that5f is to be free from self-contact were ignored.
It turns out that each local minimum in the plot ofG(w, Lk)
versusw occurs near one of the two values ofw, i.e., 1.45
and 1.70, employed for the two-state model.

APPENDIX A: DETERMINATION OF
EQUILIBRIUM CONFIGURATIONS

By making use of Eq. 6, which asserts thatF is constant ins, one may
integrate Eq. 7 to obtain the relationM 5 F 3 r 1 M0, in which the vector
M0 is a constant that depends on the choice of the originO for r. We
chooseO so thatM0 is parallel toF. For the explicit representation of
equilibrium configurations of DNA segments subject to geometric end
conditions (see, e.g., Tobias et al., 1994; Coleman et al., 1995), it is
convenient to employ a system of cylindrical coordinates (r, f, z) that was
introduced by Landau and Lifshitz (1986). Thez axis for that system is
parallel toF and contains the pointO.

The numberv, defined by

v 5
C

A Î2A

F
DVf, (A1)

whereF 5 uFu, is independent ofs and serves as a dimensionless measure
of the excess twist density.

In this appendix we shall use=2A/F as the unit of length. When this is
done, the relationM 5 F 3 r 1 M0 and Eq. 8 yield

r9 3 r0 1 vr9 5 2@k 3 r 1 lk#, (A2)

wherek is a unit vector in the direction of increasingz, andl is a constant.
For each choice ofl and v, Eq. A2 is a system of three differential

equations that one can solve to obtain the vector-valued function,r 5 r(s)
that describes the curve#f.

In the units we are using, the quantitiess, r, z, v, l, M, as well as the
curvaturek and geometric torsiont of #f, are dimensionless. For the
dimensionless length of#f we write S:

S 5 Lf ÎF/2A. (A3)

We take the midpoint of#f to be the point wheres 5 0, and hence at the
end points we have

sA 5 2S/2, sB 5 S/2. (A4)

Let (x, y, z) be Cartesian coordinates, with thezaxis as above and thex axis
containing the midpoint of#f. The relations

x 5 r cosf, y 5 r sin f (A5)

complete the definition of the coordinates (r, f, z). In terms of these
coordinates, the condition of inextensibility, (x9)2 1 (y9)2 1 (z9)2 5 1,
becomes

~r9!2 5 u~f9!2 1 ~z9!2, (A6)

whereu 5 r2. We note in passing (cf. Tobias et al., 1994) that Eq. A2
permits us to expressk a function ofl, r andv,

k2 5 4~r2 1 l2! 2 v2, (A7)

andt as a function ofk, l, v, and another constant of integrationa:

t 5
1

2
v 2 F4l 1

1

2
v3 2 2v~l2 1 a!Gk22. (A8)

Equation A8, which will be employed in Appendix B, is the form here
taken by a general “torsion-curvature” relation,k2(s)[t(s) 2 1

2
v] 5 f(v),

that holds for both equilibrium and traveling wave solutions in Kirchhoff’s
theory of rods (cf. Coleman et al., 1993).

When Eq. A2 is expressed in the cylindrical coordinates (r, f, z) and
combined with Eq. A6, the general solution of the resulting system is

FIGURE 10 The sumG(w, Lk) of
G0(w) and the elastic energyC*w(Lk)
(in kcal/mol of nucleosomes) as a
function of w at fixed Lk. These
graphs were constructed assuming
that h0

b 5 10.40, and using Eq. 42
with G(1.45, 1.70)5 20.75.
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(Tobias et al., 1994; Coleman et al., 1995):

r2 5 u3 2 ~u3 2 u2!sin2 c, (A9)

f 5 ls1
@~v/2! 2 la#P~n; cum!

u3Îu3 2 u1

, (A10)

z5 ~a 2 u1!s2 Îu3 2 u1 E~cum!, (A11)

wherea is as in Eq. A8,

sin c 5 sn~sÎu3 2 u1!, i.e.,s5 7
F~cum!

Îu3 2 u1

, (A12)

m5 ~u3 2 u2!/~u3 2 u1!, n 5 ~u3 2 u2!/u3, (A13)

and theui, with u1 # 0 # u2 # u3, are roots of the cubic polynomial

P3~u! 5 2Fu3 1 ~l2 2 2a!u2 1 ~a2 2 2al2 1 vl 2 1!u

1 Sv

2
2 alD2G

5 ~u 2 u1!~u 2 u2!~u3 2 u!. (A14)

In Eqs. A10–A12, sn is a Jacobi elliptic function with parameterm, and F,
E, P are the elliptic integrals,

F~cum! 5 E
0

c dz

Î1 2 m sin2 z
, (A15)

E~cum! 5 E
0

c

~1 2 m sin2 z!1/2dz, (A16)

P~n; cum! 5 E
0

c dz

~1 2 n sin2 z!Î1 2 m sin2 z
.

(A17)

It follows from Eqs. A9–A14 that because the three numbersa, l, v
determine the numbersu1, u2, u3, the four numbersa, l, S, v determine the
curve#f to within the scale factor=2A/F. In other words, for each choice
of v there is a three-parameter family of solutions. The three parameters to
be fixed are the integration constantsa andl, and the dimensionless length
S.

The elastic energyCf of the segment5f is defined in Eq. 11. A recent
result (Coleman et al., 1995) gives us the following useful formula forCf

at equilibrium:

Cf 5
2A S2

Lf Fa 1 l2 2 z 1
1

4SA

C
2 1Dv2G; (A18)

here,

z 5 @z~S/2! 2 z~2S/2!#/S. (A19)

The procedure we employ for finding the triplet (a, l, S) when there are
givenv and geometric boundary data,r(sA) 2 r(sB), t(sA), t(sB), makes use
of the fact that whenr(sA) 2 r(sB) andLf are known in conventional units,
one knows the ratio

h 5 ur~2S/2! 2 r~S/2!u/S, (A20)

and the vector

n 5
r~2S/2! 2 r~S/2!

ur~2S/2! 2 r~S/2!u . (A21)

In the present case the boundary data are symmetric in the sense that
t(2S/2) z n 5 t(S/2) z n, and it therefore is convenient to describe the
relative orientation of vectorst(2S/2), t(S/2), andn by giving the angles
a andb for which

cosa 5 t~S/2! z n, (A22)

sin b 5
t~S/2! z @n 3 t~2S/2!#

ut~2S/2! 2 t~S/2!u . (A23)

Our assumption thatr(s) and t(s) are continuous for alls implies that the
values ofr(2S/2), r(S/2), t(2S/2), and t(S/2) entering Eqs. A20–A23
pertain to the end points of the helical curve#b, and thus we can express
(h, a, b) in terms of the pitchp, diameterd, and wrapw of #b, and the
lengthL of #. We find that

h 5
Îd2sin2~wp! 1 p2w2

L 2 wÎp2d2 1 p2 , (A24)

cosa 5
~1/2!pd2sin~2wp! 1 p2w

Î~d2sin2~wp! 1 p2w2!~p2d2 1 p2!
,

(A25)

sin b 5
pd@sin~wp! 2 wp cos~wp!#

Î~d2sin2~wp! 1 p2w2!~p2d2 1 p2!
.

(A26)

As we have observed, whenv is specified, Eqs. A9–A14 permit one to
find the curve#f to within a scale factor and to determine the mapping (a,
l, S) ° (h, a, b); one can automate the procedure of inverting this
mapping to obtain (a, l, S) from boundary data. OnceS is determined,
knowledge of the lengthLf (5 L 2 27.2w) of #f in nm yields the scale
factor =2A/F 5 S/Lf and thus the coefficient of proportionality between
DVf andv. (Of course, the scale factor depends on the specified value of
v.) By further iterations in whichv is adjusted to correspond to a preas-
signed value ofDVf, one obtains the parameters (a, l, S, v) that determine
#f to within a scale factor, as well as that scale factor, from given data of
the form (DVf, h, a, b) for a segment of lengthLf. As, we observed in the
text of the paper, our ability to do this calculation permits us to obtain the
configuration] of 5f as a function of (L, w, h0

b, Lk). Moreover, in the
course of calculating], we obtain (a, l, S, v) andz, and hence, by Eqs.
A18, 10, and 12, the elastic energiesCf andC.

Remark about configurations corresponding to
fixed geometric boundary data

To obtain insight into the nature of the dependence of the parameters (a, l,
S, v) in Eq. A14 on the boundary data (h, a, b) for Eq. A2, we may
temporarily ignore restrictions that arise when excluded volume is taken
into account. Thus, for a given triple (h, a, b), we now consider the set$
of all values of the quadruple (a, l, S, v) that are such thatP3(u) has three
real roots that give rise to a curve#f compatible with (h, a, b). It turns out
that $ is a collection+ of closed curves in 4-space, each of which has a
continuous parameterization of the form (a(s), l(s), S(s), v(s)) with 0 #

s , 2p. For a curve, in +, let Wr(s; ,) be the writhe of the axial curve
# of 5 when5f is in the configuration] determined by (a(s), l(s), S(s),
v(s)). Within the range of values of the parameters (L, w, h0

b, Lk) that we
have studied, precisely one curve,* in + has the property that for each of
its points (a, l, S, v) the configuration corresponding to that point gives a
value to the elastic energyC of Eq. 10 that is smaller than the value ofC

2528 Biophysical Journal Volume 74 May 1998



for the configuration corresponding to any point on any other curve in the
set+. The functions ° Wr(s; ,*) is monotone and smooth, except at one
point sJ. At that point,Wr experiences a jump,Wr(sJ

1; ,*) 2 Wr(sJ
2; ,*),

of magnitude 2, because the parameters (a(sJ), l(sJ), S(sJ), v(sJ)) yield
an axial curve#f that intersects and passes through itself. We choose the
direction of increase ofs so thatWr(s; ,*) increases withs on each
interval that does not containsJ, and hence

Wr~sJ
1; ,* ! 5 Wr~sJ

2; ,* ! 2 2. (A27)

If we take the linking numberLk of 5 to be defined by Eq. 15 (so that it
need not be an integer), thenLk 5 Lk(s ; ,*) will be continuous ins where
s Þ sJ, and atsJ will experience the same jump asWr:

Lk~sJ
1; ,* ! 5 Lk~sJ

2; ,* ! 2 2. (A28)

Now, let L andw be compatible with (h, a, b), fix h0
b, and letI(L, w, h0

b)
be the open interval of values ofLk betweenLk(sJ

1; ,*) and Lk(sJ
2; ,*).

For eachLk in I(L, w, h0
b), the minimum value ofC in the class of all

configurations compatible with (L, w, h0
b, Lk), regardless of whether they

are in equilibrium, is attained at]*(L, w, h0
b, Lk), the configuration

determined by the unique point (a, l, S, v) on ,* that corresponds to (L,
w, h0

b, Lk).
As the set6(N, w, h0

b) defined in the text is a subset of the integers that
are members ofI(L, w, h0

b), the present remark explains why the calcula-
tions we have reported (which are restricted to cases in which self-contact
does not occur) yield for6(N, w, h0

b) a set with no more than two elements.
Calculated values ofWr for elementsLk of 6(N, w, h0

b) at selected values
of the triple (N, w, h0

b) are shown in Fig. 4.

APPENDIX B: CALCULATION OF WRITHE

The writheWr and geometric torsiont 5 t(s) of a closed curve# obey the
following relation, which was obtained by Calugareanu (1961) and is
discussed in papers of Pohl (1968) and White (1969):

Wr 5 Sk 2
1

2p
Q, Q 5 R

#

t~s!ds. (B1)

HereSk, the self-link, is an integer equal to the linking number of#, with
a closed curve#e giving the locus of points that lie on the normal vectors
n(s) 5 k(s)21 t9(s) of # at an infinitesimal distancee from #. HenceWr

differs from2(2p)21Q by an integer. AlthoughSk has several interesting
geometric interpretations (see Pohl, 1968), no easily evaluated expression
for that integer is known. Equation B1 is nonetheless valuable; if one
evaluates the torsion integralQ with precision and has in hand an approx-
imate value ofWr, one can use Eq. B1 to first obtain the integerSk and then
the precise value ofWr. We shall show below that the explicit expression
for r (s) obtained by the method explained in Appendix A permits us to
derive an analytical formula forQ, but first we present the approximation
scheme we have used to determine a value ofWr that is sufficiently precise
to fix the integerSk.

As # is rectifiable, it can be arbitrarily closely approximated by a
polygonal curve#p for which the writheWr

p is given by an exact analytic
expression. We take for#p a polygon ofM vertices,r1 5 r(s1), r2 5 r(s2),
. . . , rM 5 r(sM), that lie on# with usi 2 si21u independent ofi. In the
formulae that follow, we writed i21

i for the i’th segmentr i 2 r i21 (with r0

identified with rM) of #p; di for ud i21
i u; andd m

k for the vectorrk 2 rm. We
note that at each point of the interior of thei’th segment, the unit tangent
vector for#p (regarded as a curve) isti 5 d i21

i /di. In view of Eq. 4, the
writhe W r

p of #p is

Wr
p 5 2 O

i51

M O
j5i11

M

Wij , (B2)

whereWij is the contribution toW r
p from the segmentsd i21

i andd j21
j :

Wij

5
1

4p E
0

dI E
0

dj ti 3 tj z @~tisi 1 r i21! 2 ~tjsj 1 r j21!#

u~tisi 1 r i21! 2 ~tjsj 1 r j21!u3
dsj dsi .

(B3)

The double integral in Eq. B3 can be evaluated explicitly. To this end, let
m(ti, d m

k , tj) be the dihedral angle that the plane containingti andd m
k makes

with the plane containingd m
k and tj, i.e.,

cosm~ti , dm
k , tj! 5

@ti 3 dm
k # z @dm

k 3 tj#

uti 3 dm
k u udm

k 3 tju
; (B4)

m is taken to be in the range2p , m , p, with a sign equal to that of
[ti 3 tj] z dm

k . After some calculation we have found that Eq. B3 is
equivalent to

Wij 5
1

4p
@m~ti , d j21

i21, tj! 2 m~ti , d j21
i , tj! 2 m~ti , d j

i21, tj!

1 m~ti , d j
i , tj!#.

(B5)

(The equivalence can be verified by differentiatingm(ti, d j21
i21 1 tisi 2

tjsj, tj) with respect tosi andsj, and using Eq. B4.)
If # is the duplex axis of a mononucleosomal minicircle of the type

discussed in this paper,Q is given by the exact expressions derived below,
and, onceWr

p is calculated from Eqs. B2 and B5,Sk for insertion in Eq. B1
can be obtained by rounding offW r

p 1 (2p)21Q to the nearest integer.
When we compare the precise value ofWr so obtained withW r

p, we find
that if M 5 200,W r

p is equal toWr up to three significant figures. Thus the
approximation toWr given by Eqs. B2 and B5 can be a very good one and
is expected to be useful, even for curves for which the application of Eq.
B1 is not feasible, because of difficulties in evaluating the torsion integral
Q. In cases such as the present one, in whichQ is known, for use of Eq.
B1 to obtainSk it suffices to knowWr to within an error of60.4, and hence
smaller values ofM can be employed.

For the mononucleosome,

Q 5 E
#b

t~s!ds1 E
#f

t~s!ds1 jA 1 jB; (B6)

for I 5 A or B, jI is the dihedral angle that the osculating plane atsI
1 makes

with the osculating plane atsI
2 whensI is a boundary point of#b, i.e.,

jI 5 lim
e30

E
sI2e

sI1e

t~s!ds5 lim
e30

cos21~b~sI 2 e! z b~sI 1 e!!,

(B7)

whereb 5 t 3 n, and the sign ofjI is equal to that oflim
e30

b(sI 2 e) z

n(sI 1 e). Symmetry here yieldsjA 5 jB. For the helix #b, t, in
conventional units, is the constant,

tb 5
22pp

p2d2 1 p2, (B8)

i.e.,

E
#b

t~s!ds5 Lbtb 5
22pwp

Îp2d2 1 p2. (B9)
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For the free segment5f, Eqs. A7, A8, A9, and A12 yield, in dimensionless
units,

t~s! 5
v

2
2

4l 1 ~1/2!v3 2 2v~l2 1 a!

4~u3 1 l2! 2 v2 2 4~u3 2 u2!sn2~sÎu3 2 u1!
,

(B10)

from which one can obtain the following relation (which is independent of
the unit of length):

E
#f

t~s!ds5
Sv

2

2
4l 1 ~1/2!v3 2 2v~l2 1 a!

@4~u3 1 l2! 2 v2#Îu3 2 u1

2P~ñ; cfum!,

(B11)

where

ñ 5
u3 2 u2

u3 1 l2 2 ~1/4!v2,
S

2
5

F~cfum!

Îu3 2 u1

; (B12)

m, ui, S, etc., are as in Appendix A, and F andP are the elliptic integrals
defined in Eqs. A15 and A17. Equations B6–B12 give an essentially
explicit expression for the torsion integral of the duplex axis of a DNA
minicircle in a mononucleosome.
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