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The Elastic Rod Model for DNA and Its Application to the Tertiary
Structure of DNA Minicircles in Mononucleosomes
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ABSTRACT Explicit solutions to the equations of equilibrium in the theory of the elastic rod model for DNA are employed
to develop a procedure for finding the configuration that minimizes the elastic energy of a minicircle in a mononucleosome
with specified values of the minicircle size N in base pairs, the extent w of wrapping of DNA about the histone core particle,
the helical repeat h5 of the bound DNA, and the linking number L, of the minicircle. The procedure permits a determination
of the set (N, w, hb) of integral values of L, for which the minimum energy configuration does not involve self-contact, and
graphs of writhe versus w are presented for such values of L,. For the range of N of interest here, 330 < N < 370, the set
F(N, w, hS) is of primary importance: when L, is not in #(N, w, h5), the configurations compatible with L, have elastic energies
high enough to preclude the occurrence of an observable concentration of topoisomer L, in an equilibrium distribution of
topoisomers. Equilibrium distributions of L,, calculated by setting differences in the free energy of the extranucleosomal loop
equal to differences in equilibrium elastic energy, are found to be very close to Gaussian when computed under the
assumption that w is fixed, but far from Gaussian when it is assumed that w fluctuates between two values. The theoretical
results given suggest a method by which one may calculate DNA-histone binding energies from measured equilibrium
distributions of L,.

INTRODUCTION

The research reported here is part of an ongoing effortore particle, and (4) the linking numbéy, of the mi-
toward the attainment of insight into the relation betweemnicircle. Our analysis of configurations &' enables us to
the tertiary structure of a segment of duplex DNA anddevelop a procedure for finding a configuration that mini-
geometric conditions imposed at the end points of the segnizes the elastic energy of the minicircle when these four
ment. In this research we employ the elastic rod model foparameters have been specified, and we employ that proce-
DNA and hence specify the configuration of a DNA mole- dure to derive properties of equilibrium distributions of
cule by giving its duplex axis and the rate of twisting of one topoisomers in mononucleosomes.
of the two DNA strands about that axis. The use of explicit As the parametens, w, hS, andL, suffice to determine a
and exact solutions to the equations of mechanical equilibminimum energy configuration of the minicircle, in formu-
rium for elastic rods can greatly simplify the problem of |ating the elastic elastic rod model, we do not refer to such
calculating the dependence of the configuration and elastigspects of histone-DNA interactions as the relative impor-
energy of an otherwise free segment of duplex DNA ontance of site-specific binding and long-range electrostatic
geometric conditions imposed at its end points (cf. Tobias efprces, or the manner in which nucleotide sequences differ
al., 1994; Coleman et al., 1995). This method of exacin their affinity for the octamer. However, as a change in the
solutions is appropriate to cases in which the segment igyerall wrapping of DNA about the core particle results in
intrinsically straight, i.e., is such that its axis is straight in 5 (positive or negative) increment in the free energy of the
the stress-free state. f\/}/e here apply the method to thgononyucleosome and this increment is the sum of two
extranucleosomal loof” in a small DNA plasmid, called a = gyantities, an increment in the configuration-dependent free
minicircle, that has formed a mononucleosome with a h's'energy ofR (which our theory permits us to calculate) and
an increment” in the total DNA-histone binding energy, the
theory suggests a method by which one eventually may be
able to obtain information about DNA-histone binding en-
ergies from measurements of equilibrium distributions of
topoisomers. Several of the difficulties associated with the
problem of relating the results of relaxation experiments to
binding energies are discussed at the end of this introduction.
Our calculations are confined to cases in whitis in the
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tone core particle (see Fig. 1 below). The equilibrium con-
figurations of " depend on the following parameters: (1)
the numbeN of base pairs in the minicircle, (2) the amount
w of wrapping of DNA around the histone core particle
(called thewrap), (3) the twist-related helical repeb§ of

that part of nucleosomal DNA that is tightly bound to the
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Equilibrium distributions of topoisomers are discussed in
the final section of the paper. We treat two mathematical
cases. For the first, the case in which all of the nucleosomes
are assumed to have the same wrap, we give expressions for
the concentration of topoisomers with integral linking num-
berL, and present calculated graphs of the dependence on
N of the average value df,. We show that the probability
FIGURE 1 Schematic drawing of the axial cuf¢eof a DNA minicircle qenSity function for the gorreSponding Comi,nuous distr'ipu-
9 and the histone core particle. The core particle is shown as a cylindeion Of L departs only slightly from a Gaussian probability
The axial curve6® of ®°, the nucleosomal part 6k, is drawn as a heavy ~density function characterized by two parametkgsandK,
curve that is solid in front of the core particle and dashed behingf jthe that can be calculated from first principles. The dependence

axial curve of the extranucleosomal lodj', is represented by a succes- : .
sion of circles that are open when behind the particle and solid otherwisec.nc these parameters dlg andN is discussed.

In the figure the relative lengths &° and%' correspond to a minicircle of Once a theory of topoisomer distributions for mononu-

359 bp that is wrapped about the core particle for 1.45 turns. cleosomes with a specified wrap is in hand, one can con-
struct a more general theory in which transitions between
various amounts of wrapping are possible. We do this for

. . . - 1)
configurations corresponding tdl(w, hg, L) and (N, w, th%slnplwe(ls)t casg, (|jn wh|m|sfallowled tVEVO Vilfe%.'( . an(:h
hS, L{®)). This assumption, which appears appropriate for W, and derive a formula (Eq. 41) 9(')\;5?? €
the range oN considered, is employed to develop a theory\?l(lzlﬁ'h'smne binding energy for the transition from™ to

of the equilibrium topoisomer distributions obtained whenW @S & function of the ratio of equilibrium concentrations

minicircles in mononucleosomes are relaxed with, say, to9f two topoisomers. Our development of the two-state
poisomerase |. (Some justification for the assumption ignodel shows that it can yield probability density functions
provided by a paper (Tobias, 1998) on thermal fluctuationdor continuous distributions df, that are far from Gaussian

in protein-free DNA plasmids appearing in this issue of theand, in some cases, bimodal. For that model an expression
Biophysical Journal Expressions given in that paper imply is obtained relating the difference in binding enefy/",

that when a segment of DNA shorter than two persistenc&®) for the two states of wrap to the ratio of equilibrium
lengths is free along its length from external forces andconcentrations of any two distinct topoisomers.

moments, as ig', and, in addition, has the form of aclosed For N = 341, 354, and 359 bp, Zivanovic et al. (1988)
circle, the entropy contribution to the free energy of superhave published results of relaxation experiments for mono-
coiling is less than 11% of the elastic energy contribution.)nucleosomes. (For reasons discussed in the second section
Our assumption aboWG differs from that made by Le Bret of the present paper, the published topoisomer distribution
(1988), who used a Monte Carlo method to calculate averfor N = 354 is not useful for our purposes.) Whidn= 359,

age values ot for equilibrium mixtures of minicircles in 3 single topoisomek, = 33 predominates at equilibrium.
mononucleosomes withv fixed. Le Bret's seminal paper, \whenN = 341, our calculations indicate that the equilib-
glthough based on a different approach to the problemy,m mixture contains two topoisomets, = 31 andL, =
influenced the present research. 32, and from the experimentally measured ratio of their

Our procedure for finding minimum energy configura- ,ncentrations a value dfcan be derived. We illustrate the

tions and calculating their properties (e.g., elastic energyWay such a calculation proceeds, but we do not propose that
writhe) as functions oN, w, h5, andL, is explained in the

; i £ 1h Th Ve fi howi one accept as definitive the value bf that we obtain.
next section of the paper. 1here we give TIgures ShowiNgs o yq g principles in the theory of rods and recent Monte
such configurations for two values of.

For givenN, w, andh, our theory enables us to determine Carlo calculations of Katritch and Vologodskii (1997) for
the set#(N w Hg) of ir;tegerst for which the minimum protein-free DNA plasmids suggest that equilibrium distri-

energy configuration is without self-contact. Graphs Ofbutlons (_)ﬂ"‘ can be senS|.t|v_e t(.) small depa_rtures from the
writhe versus wrap are presented for valuek,gh (N, w assumption that the DNA is intrinsically straight, and we do

h9): the calculation of these graphs was facilitated by new/'°t know how close to that assumption were the DNA

results in the theory of rods that are presented in Appendiffagments used to form the 341- and 359-bp minicircles of
B (Egs. B1 and B6-B12). In the rangeNfor which we do published experiments. (As those fragments were prepared

calculations, wheh{ is a linking number not i(N, w, hg), By Mboal cleavage of pBR322, which has a known nucleo-
the minimum energy configuration for the quadrupie v, ~ tide sequence (Sutcliffe, 1978, 1979; Watson, 1988), one
hS, L) not only shows self-contact, but has an elastic energgan, in principle, calculate the detailed distribution of in-
¥* that exceeds the elastic energ§* of the minimum trinsic curvature along the fragments, but we are not aware
energy configuration for each, in (N, w, h}) by an  of that having been done.) Of course, even if it be shown
amount sufficient to preclude the occurrence of an observthat the minicircles studied are made of DNA that is close to
able concentration of topoisomef in an equilibrium dis- intrinsically straight, in the comparison of theory and ex-
tribution of topoisomers. periment there remain difficulties associated with uncer-
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tainty in the assigned valueswf?, w®, andhb, the present  particle (i.e., the wrap) is denoted by The assumption that

lack of data for other values of, and the possibility thatthe %P is a helix yields

two-state model is an oversimplification of a more appro-

priate multistate model. AP =w\md® + p. 1)
The emphasis in this paper is on the theory of the elastic The configuration of®' is calculated using Kirchhoff's

rod r_nodpl and the develqpment of methods for its eVe',f]tuatlheory of elastic rods (Kirchhoff, 1859, 1876; Dill, 1992)
application to D.N.A—protelln |nteract|on§, not on numerical and boundary conditions that follow from the assumption
results for specific experiments. We find that a two-state, . bothr(s) andt(s) = r'(s) = dr(s)/ds are continuous for

model for fluctuations inw can yield topoisomer distribu- ,/\,aiues ofs, including the twos,, Ss, characterizing the
tions that differ not only quantitatively but also qualitatively places wheré® and%' meet. Of the various configurations

from the nearly Gaussian distributions implied by a modek,. gt that are compatible with this assumption and preas-

in which w is fixed_. Ong can construct o_the_r hypothetical signed values of the wrap and the linking numbe#@iofwe
models for fluctuations in the extent of binding of DNA t0 gaject the one that minimizes elastic energy.

the histone octamer, and we expect that the methods pre- \ye write L, for the linking number of the DNA mi-

sented here can be used to search for distinguishing qualjcircle R, i.e., the number of times the duplex afsis

tative characteristics of their implications. linked with either one of the DNA strands of the minicircle.
(The topologically invariant integel, was introduced by
Gauss and is discussed in several modern texts, among them

CONFIGURATIONS AND ELASTIC ENERGY that of C_o_urant (1936); see also Calugareanu_ (1961).) By a
now familiar result (White, 1969), the topological constant

As in earlier studies in which the elastic rod model isL, isthe sum of the twisT,, of either DNA strand about the

employed for a plasmid in a mononucleosome (e.g., L&luplex axis and the writh®/, of that axis:

Bret, 1988; Zhang et al., 1994), a DNA molecule here is

represented by an inextensible, homogeneous, transversely Le=Ty + W. 2)

isotropic, intrinsically straight roék whose axial curvés is

. ) : . For a DNA molecule of length\, whether open or closed,
the curve in space occupied by the duplex axis. This curve 9 P

is described by giving the radial vectofrom an originO 1 (A
to a point on¢ as a function of arc-length For a closed T, = [ Q(s)ds, (3)
DNA minicircle of lengthA that is wrapped about a histone 2m o

core to form a mononucleosont,is a closed rod made up

of (1) nucleosomal DNA, i.e., a bound segméht with ~ where(), the twist density, is the rate of wrapping of either

axial curve®® and lengthA®, which is in contact with the strand about the duplex axis and is expressed in units of

core particle; and (2) the free segméhit (or extranucleo- radians per unit length. When the molecule is in a straight

somal loop) with axial curvé&' and lengthA" = A — AP.  stress-free configuratio) equals(, = 27/(0.34), the

(In this paper lengths that are denoted by the symhols', intrinsic twist density of duplex DNA. The numbér,,

AP when measured in nanometers are denotel By, N° which depends on the temperaturethe solvent composi-

when measured in base pairs (with 1 6p0.34 nm).) tion, and the nucleotide sequence, is the helical repeat of
We consider the case in which the core particle is theStress-free DNA. The writh&V, of the closed curvét is

histone octamer formed from the histone proteins H2A given by the double integral

H2B, H3, and H4, and the linker histone H1 is not present,

as was the case for the mononucleosomes of experiments gf _ 1 bR t(s) X t(st) - [r(s) = r(sh)]

Zivanovic et al. (1988) that we shall discuss later in the ' 4w [r(s) — r(s*)?

paper. In accord with currently available structural informa-

tion (RiChmond et al., 1984; Arents and MOUdrianakiS,and equa|s the number obtained by a\/eraging1 over all
1993), we suppose that" is, as in Fig. 1, a left-handed orientations of a plane?, the sum of the signed self-
helix with a pitchp of 2.7 nm and a diametet of 8.6 nm.  crossings occurring in the planar curves resulting from
(Note added after submission of the papérrecently  perpendicular projection 6& on @ (Fuller, 1971). In Ap-
published announcement of the x-ray structure of the nupendix B we describe our method of evaluatig and
cleosome core at 0.28-nm resolution (Luger et al., 19975how that exact solutions we obtain féf, and hencee,
gives values of 2.39 nm fop and 8.36 nm ford in the  yield essentially explicit expressions fo,.
optimal helical approximation to the duplex axis of the A configuration % (or mechanical state) of a rod is
nucleosomal DNA. Our recent calculations indicate that thespecified by giving the axial curve of the rod and the twist
reduction in the values gb andd called for by the new densityQ(s) along that curve.
structural data will not have a major effect on the results We first discussk’. As the axial curveé® of %P obeys
reported here.) the assumptions stated above Eg. 1, once we have assigned
The amount, in turns, that® is wrapped about the core a value to the wra, not only the length\° of €, but€°

dsds* (4)

0
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itself will be specified, and the configuration @° will be  show in a convincing way that the length @& should be
determined when the twist densi€)(s) is given along€®.  taken to be significantly less than the one we have employed.
Recent measurements of Hamiche and Prunell (1992) of the For a given total lengtt\ and linking numbet,, once
dependence oN andT of the average twist density of DNA the wrapw is specified, the assumptions just stated about the
minicircles in mononucleosomes are compatible with theéoound segmen#” can be combined with solutions in the
assumptions that (1) a subsegm@gtof %°, with a length  theory of the elastic rod model to find an appropriate equi-
N5 that they found to be 10& 25 bp, has a twist densifg  librium configuration of%:" under the assumption that the
that appears to be independent not onladL,, butalso  only external forces and moments acting @b or any

of T; and (2) wherti5 is not all of 2°, the remaining bound subsegment ofk" are those applied at the segment's end
DNA, of lengthN® — N5, is in torsional equilibrium with ~ points. When this assumption, which implies thtis free

R". 1t is natural to assume that wheiP exceedsNb, the  from self-contact, is granted, the laws of balance of forces
segmentRy is centrally located ir®, which implies that and moments, as expressed in the theory of rods, reduce to
one can regard the bound segm@ﬁ’[ as a union of three the assertion that the resultait = F(s) of the internal
abutting segmentsi®, %5 and ®°, with the two outer ~Stresses on a cross sectionZfand the net momert =
segmentsk® and®%, of equal length, N° — NY)/2. For M(s) of those internal stresses obey the equations

the total twist of%:5 we have =0 ©6)

1 M’ =F Xt. 7
THO= - ABOS= N © )
2 - . . .
When the minicircle under consideration, and he@idgis
formed from intrinsically straight DNA that is homoge-

b . . .
ho is the twist-related helical repeat of the central segmenheqys in its mechanical properties, Kirchhoff's constitutive
of the nucleosomal DNA. We shall present results concemgquation forM yields

ing the influence ofhf on equilibrium distributions of to-
poisomers with fixed values of. M =AtXxt)+ CAQt, AQ'=0'-Q, (8

1;:; c rg;tatl st:ac;t:rr]e dete.rmmatlo? of E |.chtrkr110nd et aI'Where the coefficients of flexural rigiditA and torsional
( ) indicates that the maximum valueis in the range rigidity C are constants, an@' is the twist density present

1.7t01.8.1n th_e calculations to be presented, tvyo valuesoI %', The system of equations obtained by combining Egs.
w are emphasized: 1.70 turns and an alternative value

1.45 hich i tar f ¢ val , 7, and 8 will here be called Kirchhoff's equations of
b turgst,) W|IC IS nqt ar romf an fi\{eraglye ot va ueSequilibrium. By Eg. 8M -t = C AQ, and hence Eq. 7
observed Dy electron microscopy for minicircles in mono'implies that the excess twist densityf)', is constant along

nucleosomes in aqueous media at low ionic strengthyr o4 hence oM U %' U %P . In view of Egs.3and 5
(Zivanovic et al., 1988). It is not only convenient for us, but the total twistT. o?@]i is B ’
w

also in accord with the range of observations of Hamiche

and Prunell (1992), to assume that the lengttgfcorre- NS 1 b f

sponds tav = 1.45 turns. Then the DNA that is added to the Tw= o + o (A = Ag)eY. (©)
core particle whemw is increased from 1.45 to 1.70 turns

constitutes the two outer segmeri#?, %2, that one ex- We now discuss the problem of finding, for given values

pects to be more loosely bound than the central segmentOf the quadruple 4, w, hg, L,), the configuratior?* of %
Our calculations of configurations and elastic energies ofhat satisfies the following four conditions: (1) Kirchhoff's

mononucleosomes give results that are not sensitive to tHzauations of equilibrium hold ofit!, and hence’: is free

assumed length oft5, throughout the range compatible from self-contact; (Il) Egs. 3 and 4 yield values Bf and

with the data of Hamiche and Prunell (1992). As we have no/V: for % with T,, + W, equal to the given value df; (|“)f
information about the values of torsional rigidiy and (S and(s) are continuous at the places whét€ and%:

intrinsic twist density, for #° and®?, we assume that ~ Meet; and (IV) of all configurations gompatible_ with (1)-
and(, are the same for those two segments as for the frefV) and the specified quadruplé\(w, ho, L), %* gives the
segmentk’. Hindsight has shown that calculated values ofSMallest value to the energl, defined as the sum

elastic energies would have differed- by no more than 1% W= PO 4 P (10)
from those that we shall report here, if we had assumed that

even wherw = 1.70, all of the bound DNA has a fixed twist in which
densityQ5 = 27/(0.34%). In other words, by allowing for

the possibility that there are two outer segmefit8, %°,

that have properties different from those @§, we have
introduced a small complication that does not appear to

have been necessary. As the emphasis here is on methodaijth « the geometric curvature ") is the elastic energy
however, we have chosen to describe our model at a level aff the free segmenti’, and W% and W° are the twist
generality that may be useful if subsequent experimentsnergies of the segmeri#® and 5.

pit f [Ak? + C(Q — Qy)?ds (11)
2 (o) d
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We note that in a state of mechanical equilibrium,

C
V=W = AT ADAR): (12)

andV in Eq. 10 is given by

A C
N4 5 k*ds + 5 (A — AD(AQN3. (13)
@f
A method is available for finding exact and explicit
solutions of Egs. 6, 7, and 8 for specified values (&),
t(sa), r(sa), t(sg), Af, andAQ' (Tobias et al., 1994; Coleman
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rations with the indicated value of the quadruple (, hg,
L,) that obey the conditions (I) and (llI), without regard to
whether these configurations are in mechanical equilibrium
or are free from self-contact. For short, we refefftoas the
“minimum energy configuration.” For the value oF at
F*(A, w, h5, L), we write
V=R (L) 17)

ForL, notin¥(A, w, hY), let%* be the configuration that
minimizesW over the sef(A, w, h5, L). The configuration
%* obeys the conditions (I)—(1V), but not condition (1), and
hence is not free from self-contact. TH#&cannot be found

et al., 1995). The method is explained and applied to thgy ysing the procedure described above. The authors re-
present problem in Appendix A. There we make use ofcently have extended the method of exact solutions to obtain

geometric relations between the triplgs @, w) and ¢(s,)

— 1(sg), t(Sa), t(Sg)) to obtain a procedure for calculating,
for given values ofA andw, the dependence ak)f of the
curve’ and hence ofV,, which gives us the functiow, in
the relation

W, = W(AQ'; A, w), (14)

and, in view of Egs. 2 and 9, yields as a function oAQ":

. NS 1
L, = WHAQT A, W) + 1 + — (A — AD(AQ! + Q).
hg 2w

(15)

We can invert this function to obtaidQ)’ as a function of
L.. As the parameterd$ and (), are fixed throughout our
discussion, we are thus able to find the configuratitnsf
the minicircle that correspond to a specified quadruple (
w, hS, L,) and obey the conditions (I)—(lIl). These config-
urations¥ form a set#(A, w, hb, L,) that need not be finite.
Of interest to us ig¥*(A, w, hg, L,), the configuration in
A(A, w, h5, L) that obeys the condition (IV), i.e., that
minimizes the elastic energy in Eq. 13 oversi(A, w, h,
L. If sd(A, w, hg, L) is not empty£*(A, w, hg, L,) exists
and is free from self-contact.

As we observe in Appendix A, the method of exact

solutions yields an elementary formula (Eq. A18) for the

elastic energyP’ of Eq. 11 as a function of parameters that
can be related ta\, w, and AQ" and that uniquely charac-
terize each configuration ind(A, w, hS, L,). Use of that
formula greatly facilitates the solution of the problem of
finding the minimizerZ* of ¥ over 4. It also permits one
to evaluatel as a functionVof AQ' for fixed A andw, i.e.,

v = V(AQ" A, w), (16)

a procedure for calculating minimum energy configurations
when points of self-contact are present, and in yet unpublished
research have verified that, for the range of the parameters
(N, w, h9) for which results are reported in this paper, when

is notin#(N, w, hS), the equilibrium configurations compatible
with L, have elastic energies high enough to preclude the
occurrence of, at an observable concentration in an equilib-
rium distribution of topoisomers.

When N; is of the order of magnitude of a persistence
length, for values oL, in (N, w, hY) the configuration
%#*(N, w, h, L) may be considered thermodynamically
stable in the sense that it minimizes the free en&@gyer
the setB(N, w, h, L,). All of the calculations that we give
in this paper are for minimum energy configuratid#s.

The ranges of parameters,(w, h) that we have investi-
gated have been selected for their possible application to the
interpretation of experimental results for mononucleosomes
formed from minicircles with 330—370 bp, and in each case
the set¥(N, w, h) was found to contain two elements.

For the calculations reported in this paper, we have cho-
sen a value ofA that corresponds to a persistence length
A/RT of 50.0 nm atT = 298 K (cf. Hagerman, 1988), and
we have assumed th&YA has a value 1.4, which is com-
patible with the results of relaxation experiments on protein-
free DNA plasmids (Horowitz and Wang, 1984). figwe
have assigned a value of 10.53 bp/turn that Zivanovic et al.
(1988) (see also Goulet et al., 1988) reported to be appro-
priate for their relaxation experiments on minicircles in
mononucleosomes that were conducted at 310 K in a
medium with an ionic strength of 125 mM.

Figs. 2 and 3 show minimum energy configurations for
N = 341 and 359, whew 1.45 and 1.70. Table 1
contains the corresponding computed values of the writhe
W, the elastic energyPi,W,hg(Lk), and the distancé\ of

which is a matter of importance for a discussion of theclosest approach of the axial curi to itself. For these

dependence of on hJ to be presented in the following
section.

Suppose the tripleA, w, hf) has been specified, and let
F(A, w, h) or F(N, w, hS) be the set of integells, such that
the configurationZ*(A, w, hg, L), i.e., the configuration
that obeys the conditions (I)—(1V), gives a global minimum
to W in Eq. 10 over the seB(A, w, h, L,) of all configu-

figures the twist-related helical repeb§ of the tightly
bound segmerfig was chosen to be 10.40 bp/turn, a value
not far from the average of two proposed values: (1) 10.53
bp/turn, which is identical tdy; and (2) 10.31 bp/turn,
which corresponds (under the assumption that the core
particle surface is truly cylindrical) to a value of 10.18
bp/turn for the cleavage periodicity measured by nuclease
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N =341bp N =359bp

w =145
FIGURE 2 Calculated axial curveégé for minimum
energy configurations. The line of view is parallel to the

axis of the core particle, ankf is chosen to be 10.40
bp/turn.

w =170

digestion (Prunell et al., 1979; Lutter, 1979; Prunell, 1983)figuration%*(341, 1.70, 10.40, 32) is free from self-contact,
and hydroxyl radical cleavage (Hayes et al., 1990, 1991)and L, = 32 is a valid member of the sé&f(341, 1.70,
Although calculated values of experimentally measurable10.40). However, at the low salt concentrations that are
quantities dependent on elastic energy can be sensitive mployed in relaxation experiments on mononucleosomes,
changes irhg, expressions can be derived for the depenwlectrostatic repulsion would cause the minimum energy
dence of such quantities di, once their values are known configuration to differ fron* and have a free energy that
aSHflE)”CﬁOHS Of-kéolraSiw'i value ofig; results of this type i significantly larger than an estimate based on only the
will be presented later in the paper. : *
The cFi)istance of closest appproswfh tells us how near to elasftlc engrgyPAlehg(Lk). -

i ' Zivanovic et al. (1988) observed that relaxation of mono-
each other come sequentially separated segments of a D%cleosomes withl = 341 yields topoisomers with, = 31
molecule. Wherw = 1.45 andN = 341 or 359, for each, : .

and 32. We find that these valueslgf are in both#(341,

in #(N, w, 10.40), the minimum value df(s,) = r(sp)| for -} "6 40 231 1.70, 10.40) and are the only values
sequentially separated poirgsands, occurs whers, and ) .

s, are the end points, ands, of %', and henca\ = [r(s) of L, in those sets. The same experimenters observed that
Z Hs)l. On the other hand. for the correspondingAcase96| electrophoresis indicates that the product of relaxation
with w = 1.70. A is smalle,r thanlr(sy) — r(ss). The of mononucleosomes with = 359 is the topoisomer with

smallest value oA in Table 1, namely 2.5 nm, corresponds L« = 33, and only traces of others are present.fer 359,
toN = 341,w = 1.70,L, = 32. we find that, in addition to the value 33 bf, ¥(359, 1.45,
To characterize configurations that are “free from self-10.40) contains the value 34, afff359, 1.70, 10.40) con-
contact,” we have followed a common practice and modeledains the value 32. Fdd = 359, wherw = 1.45,W*(L, =
steric effects by considering a DNA molecule to be a tube 084) > W*(L, = 33) + 3 kcal/mol, and whew = 1.70,¥*
diameter 2.0 nm. In this sense, the minimum energy contL, = 32) > W*(L, = 33) + 1.5 kcal/mol, and hence the

N =341 bp N =359 bp

- II45 Q @ Q
FIGURE 3 DNA minicircles in mononucleosomes de-

picted as tubes of diameter 20 A. The line of view is here
different from that of Fig. 2, but the valueslaff, w, L, and
the configurations are as in that figure.

w=170
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TABLE 1 Calculated values of W,, ¥*, and A for the section, we discuss the implications of our theory for the
configurations shown in Figs. 2 and 3 interpretation of measurements of concentrations of topoi-
v* A somers resulting from relaxation, we shall not go into detail

N w L L — N/h, W, (kcal/mol) — (nm)  for the caseN = 354; for, as Ariel Prunell (UniversitBaris

341 145 31 ~1.38 ~1.19 6.76 94  7,personal communication, 1997) pointed out to us, the data
341 145 32 —-0.38 —0.83 6.53 9.4  of Zivanovic et al. (1988) for the distribution df, after

341 170 31 —138 —1.56 6.54 65 relaxation withN = 354 cannot be taken to be reliable. As
sar 170 32 ~038 —0.45 10.90 25 their figure 7 indicates, in that particular case the topoiso-
359 145 33 109 —1.08 4.93 04  Mer distribution at the end of the relaxation experiment
359 145 34 —-0.09 —-0.61 8.12 9.4 depended on the initial distribution and thus did not describe
39 170 32 -2.09 —-1.89 8.40 3.8  a state of equilibrium.

359 170 33 —1.09 —1.46 6.84 68 Fig. 4 contains graphs k. versusw at specified values

of N, h5, and values of, in (N, w, h3). The graphs shown
were calculated using first the procedure described above to
topoisomer withL, = 33 is expected to predominate. (The find Z*(A, w, hg, L) and then the explicit results fad
small value ofA (3.8 nm) that we found foN = 359,w = given in Eqgs. B6—-B12 to obtaiw, via Eq. B1. WhernN is
1.45,L, = 32 indicates that even if electrostatic effects werefixed at 341 or 359 antig at 10.31, 10.40, or 10.53 bp/turn,
taken into account, our conclusion to the effect that thethere is but one value df, that is in the set§(N, w, hg) for
topoisomer withL, = 33 predominates would be expected all w in the range 1.2< w = 1.9. That value,Lj(N),
to hold.) This conclusion about the predominance pf= corresponds to the topoisomer that Zivanovic et al. (1988)
33 for both values ofw holds not only forh5 = 10.40 found to have the highest concentration upon completion of
bp/turn, but also fohS = 10.31. In the case dif = 10.53  relaxation of mononucleosomes with the givenThere is
bp/turn, forw = 1.45 the conclusion holds again, but for a broad range df for which L(N) is the (unique) value of
w = 1.70 the energies fdr, = 33 andL, = 32 differ by L, in $(N, w, hg) for which the writhe of6 is a continuous
only 0.02 kcal/mol. monotone decreasing function of wrap with close to—1
Zivanovic et al. (1988) also observed that fér= 354,  for smallw, close to—1.7 for largew. WhenL, = L¥(N), a
relaxation of mononucleosomes yields topoisomers witrchange inhg from 10.31 to 10.53 at fixedv induces a
L, = 32 and 33. We find that these two valueslgfare in  change inW, of at most 10%.
both ¥(354, 1.45, 10.40) an€f(354, 1.70, 10.40), and they ~ Now, let us recall tha##(N, w, h) is the set of values of
are the only values in those sets. When, in the followingL, for which there is no self-contact in the configuration that

N=341bp N =359 bp

FIGURE 4 The writhew, for the configuratiorf£* versus the wrapv for two values ofN and three values df: 10.53 (s++«), 10.40 (
(——-) bp/turn. Each triple of solid, dotted, and dashed curves is for a topoisomer with the indicated Jglue S{N, w, h3).

), 10.31
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minimizesV over the class of all configurations with the

0.0
specified parameter( w, hg, L,). For Fig. 4, as for Figs.

2 and 3, the tripletsN, w, h) are such that’(N, w, hY)

contains two elements; onelig = LZ(N), and the other is o5

LE(N) + 1 or L{(N) — 1. An exceptional case occurs when
the quadrupleN, w, hg, L,) characterizes the special point
o;0n the curvel* discussed in the Remark of Appendix A.
Such a special point occurs at critical valugof w at which
one sees a jump 6f2 in W, (and hence i, ) as one moves,
in the direction of increasing, along otherwise continuous
curves in Fig. 4 on whiclW, is monotone increasing .
When we calculat&V, in a neighborhood oiv,, we ignore
the constraint tha#* be free from self-contact, and we find
that the geometry of the axial cur&’ for the minimum 2.0
energy configuration is such that whan= w,, the curve

passes through itself, causiv¢ to make a jump. Thus there

is a sense in which, for each paM,(hY), the two separate

continuous graphs on whicW, increases withw can be

regarded as segments of one graph that contains a point of w
discontinuity and gives, as a functionwf the writhe of the
minimum energy configuration for the elemdrit of (N,
w, hb) that is not equal td.(N); whenN andh§ are fixed,
L, can vary withw, and the jump irW, equals the corre-
sponding jump in_y.

Having seen the strong dependencd_pof graphs ofW,
versusw, one may ask about the form of such graphs forsomes (Zivanovic et al., 1988), the persistence lergth
cases in which the DNA in the extranucleosomal loop hagorresponding to the value & employed for the calcula-
been nicked, i.e., has had one of its duplex strands severetions reported here is 141 bp, which implies thétis less
For nicked DNA, W, is independent of assumptions aboutthan Z,. With this observation in mind, we now make use
hS, and its calculation for minimum energy configurations is of the assumption that the increment in the equilibrium free
more easily performed. Tobias et al. (1994) and Coleman egnergyG of a mononucleosome due to a change.jnat
al. (1995) have given a detailed account of the use of théixed w (and, of course, at fixeM andhf) can be equated to
method of exact solutions to obtain explicit expressions foithe increment iy, .+, i.e., that
equilibrium configurations of nicked DNA segments subject
to boundary conditions of the type that occur here wNen G(N, w, h§, Li”) — G(N, w, h{, L) = Wy, (Li)
andw are specified (see Egs. A20—A26). To obtdipfrom (18)
their formulae givingr(s), one can, for nicked DNA, use = WD)

Eqgs. B6—B12 withw set equal to 0 in Eqs. B9-B11; for, in

the theory of mechanical equilibrium, nicked DNA can be In the previous section we assembled the results that permit
regarded as a special case of Kirchhoff's theory in whichus to use this assumption to calculate equilibrium distribu-
M -t has been set equal to 0, which is here equivalent taions of topoisomers.

putting AQ" = 0. The resulting graphs &, versusw are If we suppose that all of the minicircles are in mononu-
given in Fig. 5. As that figure makes clear, for mononu- cleosomes with the same wrayp then at equilibrium the
cleosomes containing nicked DNA witN in the range fraction Py, (L) of isomers with integral linking number
330= N = 370, graphs ofV, versusw are nearly indepen- |__will be given by the equation

dent of N and, not surprisingly, have the monotonicity

property of the corresponding graphs for cases in which the =0t . _ApE

DNA is not nicked and hak, = L{(N). Pttt = Qunry X = hu(LIRDE  (19)

1.2 1.4 1.6 1.8

FIGURE 5 Writhe versus wrap for cases in which the extranucleosomal
loop is nicked:N = 330 (*++) andN = 370 (: ). The corresponding
graphs forN = 341 and 359 lie between the two curves shown.

in which

EQUILIBRIUM DISTRIBUTIONS OF Quup = > exp{—Wh (LR (20)
TOPOISOMERS b

For the values oiv andN for which we report calculations, Although in the most general case the sum in Eqg. 20 would
the sizeN' of the free segment is between 178 and 274 bpbe taken over all integers, in accord with the discussion
At the temperature at which measurements have been madalowing Eq. 17, we here assume that only values pfn

of equilibrium distributions of topoisomers in mononucleo- (N, w, hg) make a significant contribution Q-
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For the average valug )y, Of the integer,, we have  (3) for each integet, in S(N, w, hS) obeys the relation

<|-k>N,w,hg = 2 I—kPN,w,hg(Lk)a

Lk

(21) (22)

WL = Pyl — (N3/hQ)).
with the sum again ove¥(N, w, hf). Implications of Eq. 19  As the mathematical treatment that in the previous section
for the relation betweefi )y, andN are shown in Fig. 6 enabled us to characterize minimum energy configurations
for wraps of 1.45 and 1.70 turns. The graphs given there fofemains valid (under an appropriate modification of the
hS = 10.31, 10.40, 10.53 show a repetitive structure ofdefinition of the set/(N, w, hg)) whenL, is taken to be a
intervals on which(Ly)n iS approximately linear ilN  nonintegral number, our procedure for calculathirg,,, s
separated by intervals in whicfiL )y is approximately — can be applied to determine the functidf,, on an inter-
constant at a value close to an integer (e.g., 30, 31, etc.).Val _ b _ o

The dependence @y,,(L,), and hence oLy, ON qu each triple l§, w, hp) .the funcnopPN,-W'hg, giving the
hg is determined by the following useful fact: when Eg. 15 fraction Py (L) of topoisomers with integral linking
is solved forAQ" with N andw fixed, AQ is a function of ~ number, is determined by the following probability density
L, — (N¥/hB) alone, and hence Egs. 16 and 17 tell us that fofunction py, for a continuous distribution of linking num-
each pair I, w) there is a function¥y,,, that (1) is inde-  ber:
pendent ohb, (2) is defined for noninteger arguments, and

(L) = GRAexp— Wy (L — (NS/R)(RT). (23)
] A=1031 400000022 Here the normalizing coefficient,
33 ooooooogs’lgxxxxxx .
A ° . Onw = f exp{—Wyu(Le — (N3/h)/(RT}dLy,
q'& 32 S ©0000009QR x X xxxX
v L h (24)
31 4 00000028 XxxxxXX
x is independent ofif. The integral in Eq. 24 is taken over all
oyeer L. in the interval (N, w, hY) defined in the Remark of
Appendix A. WhenL, is an integer,
b PN,w,rﬂ(Lk) = (qN,W/QN,W,tﬁ)pN,W,rﬁ(Lk)- (25)
34 h0=1040 00000008
O % In cases in which all of the bound (i.e., nucleosomal) DNA
33 4 6000002 R RN X0 has twist density)3 = 27/(0.345), and hence no bound
A, ] °o DNA is torsionally equilibrated witlgk, N§ in Eqs. 22-24
~ 32 oooooogg?xxxxx i b
V ° x is to be replaced biN®.
31 4 o0o0oogafxxxxx® The continuous distributiopy . is expected to be ap-
o x propriate to mononucleosomes for which the extranucleo-
%07 . . . . . somal loop%’ has been nicked. For nicked plasmids one
can use Eqg. 2 as a definition of, and py s is then the
probability density function for thermal fluctuations ix.
b (Once again, we assume thdltis such that the free energy
s h=1053 0°%°°°%° change associated with a changelijnat fixed w can be
a3 4 400000088 wxxxxx identified with the difference in¥-values for the corre-
A ° . sponding minimum energy configurations; this assumption
82 600000098 Kx00xx " is crucial if a distribution computed using Eq. 24 is to be
v o x identified with one due to thermal fluctuations.)
319 eeeeeegatoosod Despite the chiral bias that one might expect to result
30 4 2% from the helicity onYtbA, when we put into Eq. 23 precisely
. . . , . . calculated results fowy,,, we find thatpy,g shows no
330 340 350 360 370

apparent skewness and departs only slightly from a Gauss-
N ian probability density functiop® of the type employed in
analyses of relaxation experiments on protein-free circular
DNA (cf. Shore and Baldwin, 1983; Horowitz and Wang,
1984):

FIGURE 6 Results of a calculation of the dependenceNowf the
average{L,), of the integral values df, present in an equilibrium mixture
of topoisomers obtained by relaxation of DNA minicircles in mononucleo-
somes. This calculation is based on the supposition that thewigfixed

G _ W/ _ T
with w = 1.45 ©) orw = 1.70 (X). p® = Kimexp{—K(Ly — Ly?.

(26)



2524 Biophysical Journal Volume 74 May 1998

In Eq. 26,|:k is the value ofL, that minimizes\ifN’W(Lk — TABLE 2 Calculated values of parameters of the Gaussian
(Ng/hg)) at fixed (’\L w, hg), and K jS proportional to the probability density functions, shown as dashed lines in Fig. 7
corresponding second derivative g .. ) B K N K
N w L L« — N/t (R (R
Wy (L — (N§/HE)) = min Wy (L — (N§/hD)), (27a) 341 1.45 31.52 ~0.87 7.35 2687
L 341 1.70 30.94 —1.44 7.07 2357
) 359 1.45 33.22 -0.87 6.62 2617
~ 359 1.70 32.63 —1.46 6.55 2375
_ _ b b .
K - K(Nv W) - \I,N,W(Lk - (NO/hO))|Lk=Lk1 (27b)

2RTaL2

K is measured in units &T. AsL,, the value oL, at which

the (continuous) density functiopy, has its maximum tities onN can be rendered explicit. The answer is yes if one
value, turns out to be very close to the average value of thi content with approximations; for a careful examination of
distribution with densitypy,,;, we shall identifyL, with  the calculation ofV,(AQ; A, w) and¥(AQ"; A, w) tells one
that averagel,, should not, however, be confused With),  that there are function®,, such that approximation formu-
the average of an appropriate sampling of integral values of

L,. (Of course,L, is precisely the average value of the

(continuous) Gaussian distribution approximating that of

Prwie-) Graphs ofy,, and its approximatiop® are shown N =341bp

in Fig. 7 forN = 341 and 359 withw = 1.45 and 1.70.

Table 2 contains the corresponding computed valuds, of 2.0 1 A
andK. ]
Fig. 8 shows the dependence Nmof calculated values of 1.5 1

N'K, L, andL, — (N/hy) (for h§ = 10.40 and fixedw). We
note thatN'K, which is here the analog of the quantitiK o 10 4
occurring in discussions of the free energy of supercoiling
of protein-free plasmids, is approximately lineaiNrwith a

slope that depends om and is positive fow = 1.45 and 057
negative fow = 1.70. In particular, abl increases from 330
to 370,N'K decreases by 6% whem= 1.45 and increases 0.0 T o T T 1
by 2% whenw = 1.70. As expected, the variation lof with 80 81 82 33 34
N is very close to linear, and most of that variation is L,
accounted for byN/h,. The results shown in Fig. 7 can be
summarized as follows: To within the precision of our
calculations,
N =359 bp
N'K(N, 1.45 = 2731— 4(N — 330), (28a) 20 -
Ly(N, 1.45, 10.4D= N/h, — 0.87; (28b) is
N'K(N, 1.70 = 2345+ (N — 330), (29a)
Q 1.0 -
L(N, 1.70, 10.40= N/h, — 1.42— 1.2 X 10 3N — 330.
(29b) 05 -
As our notation indicates is independent dfi. It is not
difficult to show that Eq. 27a implies that, for any two 0.0 : T ' . - T ; T
valueshb(1), h§(2) of hb, 30 3 32 33 34
N LN B
Le(N, w, h3(2)) = Li(N, w, h§(1)) — 57~ + : 0
k( 0( )) k( O( )) hB(l) h8(2) ( ) FIGURE 7 Probability density functionp = pyws for hypothetical

. continuous distributions of linking number at fixed wrap for DNA mi-
Here, once again, when all of the nucleosomal DNA hasnicircles in mononucleosomes (see Egs. 23 and 24). For attte wrap

twist density 2r/(0.348), NS is to be replaced bi’. wis 1.70 for the bell-shaped curve on the left and 1.45 for the one on the

The dependence @k, (L)) on hb (expressed in Eq. 23) right. The dashed curves are graphs of the Gaussian probability density
dit wrg kl E 0 30 and th lusi thfunctionSpG that for given N, w, h%) approximatepy,, i are in accord with
andilts consequences, namely £q. an € conclusion é‘t&s. 26 and 27. The density functions shown were calculated supposing

o b
Kis Indep_endent oifig, all follow from Egs. 15 and 16. One  thaths = 10.40 bp/turn; a change h§ results in a translation of each curve
may ask if the dependence pf,,, (L) and related quan- along theL, axis, in accord with Eq. 23.
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lae of the type

N Wy (L — (N§/RS) = Dy (L — (NB/E) — (NIh)
(1)

are useful for sufficiently small ranges bf, the length of
which depends on the value ®f This result implies, in
turn, the existence of functiorjg, such that

(L) = Pullic — (Ng/hg) — (N/hg)).  (32)
If this approximate expression fgx,,; Were taken to be
exact, one would conclude that there is a funciignsuch
that Eq. 21 can be written &b nw = Gu((Ng/hG) +
(N/hy)), and thatN'K is independent oN and thatL, is
given by a relation of the form

L, = Ny — L(w, h)), (33)

2800 -
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Oo

2700 °°°ooo°°°

%0o0go
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%00
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Z 2500 -
2400
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00°
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31 H 0°
00
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x
30 4 xx
T T T T T
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00000000000000000000000000000000000000000
=) -1.0 +
1 1.2 _
| 2
1.4 XOKX XX KX KX KX KX X
HXXXHXXK XK XX KK XXX KX KK XX XK KX
1.6 - T T ] T T
330 340 350 360 370

N

FIGURE 8 Results of calculations of the dependenceNoof the pa-
rameterK andL, of Eq. 27 forw = 1.45 (O) andw = 1.70 (X). In each
case,h = 10.40 bp/turn.
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with L(w, hY) independent oN. (By coincidence, as we see
in Eq. 28b, Eq. 33 is very close to an exact relation for
330= N = 370 whenw = 1.45))

Electron micrographs published by Zivanovic et al.
(1988) forN = 359 indicate that when a minicircle of the
size we are considering here is in a mononucleosonoan
have various values. We are now in a position to derive
implications of the present theory about the effect of fluc-
tuations inw on equilibrium distributions ot.,.. Although,
for simplicity of presentation, we shall confine our discus-
sion to a case in whiclv fluctuates between two values,
wh W@, with w? > w®, the generalization of our prin-
cipal results to a multistate model with an arbitrary number
of possible values fow will be evident. In the discussion
that follows, we generally do not render explicit the param-
eters (i.e.N andh) that are assumed to be the same for all
the mononucleosomes in an equilibrium mixture.

For a mononucleosome with a given valud_gfa change
in w from w® to w® induces a incremetG(W», w®, L)
in the free energys of Eq. 18. Letl” be that part oAG(W),
w®, L) that is not accounted for by the change in the elastic
energyW*:

I'= G(W(Z>1 Lk) - G(W(D7 Lk) - (\I,tv(z)(Lk) - ‘I"\fvw(Lk))-

(34)
As Eqg. 18 implies that for each paiw(L,)
G(w, L) = G(w) + Wi(Ly), (35)
I' is independent ok, i.e.,
I =T w?, w?) = G(W?) — Go(w?). (36)

Let P(Ly) (i.e., Pyr(Ly)) be the fraction of the mononu-
cleosomes that have integral linking numbeiin a mixture
of topoisomers for which the wrap is fluctuating between
w® andw®. When equilibrium is established with respect
to bothL, andw,

—‘Q7®u)L
P(L) = Q1<exp{RT(k)}

(37)
~Whe(l) — T(w?, w?)
ot )
"‘VRQ)L
Q= E(ex R-r(k)}
b (38)
~Ple(l) — T(w®, w?)
+ exp{ RT })

here the sum is to be taken over those valuels, dghat are
in either one or both of the two setgw™), $(W?), with
W o(L,) set equal tot-« for anyL, not in the correspond-
ing $(WO).

The probability density functiop for a continuous dis-
tribution that, by a formula analogous to Eq. 25, determines
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P(L,) for integerL, is

p(L) = Q‘l<exp{

—‘i’w(l)(Lk - (N g/hg))

|

RT
) (39)
p{—‘PW@(Lk — (N§/hg) — I'(w?, w<2>)])
+ ex RT ,
j ( p{—‘ime(Lk - (NB/hB))}
g= |[|ex
RT (40)

— (Ng/hp) — T(w™, w?)
RT

k1

p{—‘i’w@>(Lk
+ ex

o
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N =341bp

the integral in Eq. 40 is taken over the union of the intervals

(WD) andl(wW®), with ¥,0(L, — (NYhD) set equal toro
for L, not in 1(w®).

It follows from Eq. 37 that when one knows the ratio,
P(LWY/P(L®), of the equilibrium concentrations of any
two topoisomers with linking numbers in the union of
FW) and Y(W?), one can calculatd' (W, w®) as
follows:

T(w®, w2) =
~Pral®))  PLY) o (R
e ] A )
P(LY) ~Wha(LP) (—¥heLd)
[P(LP) ex% RT }‘EX”{ RT H)

(41)

Zivanovic et al. (1988) reported that their measurement
of ratios P(L)/P(L®) of equilibrium concentrations for
the relaxation with topoisomerase | of minicircles in mono-
nucleosomes gave the following results: for= 341,P(32)/
P(31) = 0.25; forN = 359, P(33) = 1. Takingw¥ to be
1.45 andw® to be 1.70, assuming th&f is 10.40, and
using the calculated values ﬂfﬁ,,w,hf’ given in Table 1, we
find that a value of 0.75 kcal/mol forI'(1.45, 1.70) is in
accord with their observations, for it yields 0.25 #(32)/
P(31) whenN = 341. (It yields 0.99 forP(33) whenN =
359, but at that value ol a broad range of values df
would yield a value close to 1 fd?(33).) This estimate of
0.75 kcal/mol for the two segment&®, %°, i.e., of 0.04
kcal/mol of base pairs, is smaller than the value 0.1-0.1
kcal/mol bp that is consistent with results that Polach an
Widom (1995, 1996) obtained using restriction endonucle
ase probes to measure the accessibility of sites within
nucleosome core particle as a function of distance from th
ends (see the review of Felsenfeld, 1996).

The severity of the difficulties accompanying the use of

the available measurements of topoisomer distributions to

d

33 34
Lk
N =359 bp

2.0

15 H
Q 1.0 H

0.5 -

0.0 T

30 31

L,

FIGURE 9 Probability density functions for hypothetical continuous

gistributions of linking number for DNA minicircles in mononucleosomes

with two possible states of wrap/Y = 1.45 andv® = 1.70 (see Egs. 39
and 40). The heights of the shaded columns are proportional to the
probability P(L,) that a topoisomer has linking numbigg in equilibrium
(Egs. 37 and 38). For these calculations it was assumetkatl0.40 and
I'(1.45, 1.70)= —0.75.

with T'(1.45, 1.70)= —0.75. As those graphs show, multi-

state models for equilibrium distributions of linking number
can yield probability density functions that are not Gauss-
ian, but instead are far from symmetric and, in extreme
cases, bimodal, and thus very different from what one
would find if all of the mononucleosomes had the same

g/alue ofw during relaxation.

If we add to the rough approximations we have made in
discussing the binding energy teilfrthe further assumption

ghat the functionG® in Eq. 35 is linear inw, i.e., that to
within an added constant (which we can identify with

Gowmy),

rw®, w?)

W2 — W (w —w?),

G(w) = (42)

obtain binding energies was discussed at the end of the
Introduction. Despite these difficulties, to have examples tdhen we can employ our method of calculatiig,,»»(Ly) to
examine, we offer in Fig. 9 graphs efand P calculated make graphs o3(w, L,) as a function ofw for fixed L,.



Swigon et al.

Such graphs are shown in Fig. 10 for the valued pfor
which graphs olW, versusw are seen in Fig. 4.

For the results shown in Fig. 10 we have dut.45,
1.70) = —0.75 andh = 10.40. The gaps seen there in
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equations that one can solve to obtain the vector-valued funetien;(s)
that describes the curvé'.

In the units we are using, the quantitigs, z, o, A, M, as well as the
curvaturex and geometric torsiom of €, are dimensionless. For the
dimensionless length 6" we write 3::

otherwise smooth curves span neighborhoods of the values

w; of w at which¢" would pass through itself if the con-
straint that%:' is to be free from self-contact were ignored.
It turns out that each local minimum in the plot@tw, L,)
versusw occurs near one of the two valueswfi.e., 1.45
and 1.70, employed for the two-state model.

APPENDIX A: DETERMINATION OF
EQUILIBRIUM CONFIGURATIONS

By making use of Eq. 6, which asserts tirats constant ins, one may
integrate Eq. 7 to obtain the relatidh = F X r + M©, in which the vector
MPC is a constant that depends on the choice of the om@ifor r. We
chooseO so thatM° is parallel toF. For the explicit representation of

equilibrium configurations of DNA segments subject to geometric end
conditions (see, e.g., Tobias et al., 1994; Coleman et al., 1995), it is

convenient to employ a system of cylindrical coordinatesh( z) that was
introduced by Landau and Lifshitz (1986). Theaxis for that system is
parallel toF and contains the poir®.

The numberw, defined by
AQf
Fo

w = 5

A (A1)

whereF = |F|, is independent o and serves as a dimensionless measure

of the excess twist density.
In this appendix we shall use’2A/F as the unit of length. When this is
done, the relatioM = F X r + M° and Eq. 8 yield
r' Xr"+ or’ = 2[k X r + Ak], (A2)

wherek is a unit vector in the direction of increasiagandA is a constant.
For each choice o\ and w, Eq. A2 is a system of three differential

3 = A" (FI2A. (A3)
We take the midpoint 0%’ to be the point whers = 0, and hence at the
end points we have
S\= 32, s=3/2. (A4)

Let (x, y, 2 be Cartesian coordinates, with thaxis as above and theaxis
containing the midpoint o%'. The relations

X =T COSd, y=rsin¢ (A5)
complete the definition of the coordinates b, ). In terms of these
coordinates, the condition of inextensibilitys'? + (y')? + (Z)? = 1,
becomes

(r'y?=u(¢)’+ (z)%

whereu = r2. We note in passing (cf. Tobias et al., 1994) that Eq. A2
permits us to express a function ofA, r and w,

(A6)

K2 =47+ N2 — o (A7)

andr as a function ofk, A, w, and another constant of integratian

1
T=-w— |4\ + -0 — 20(\% + a) [k 2

5 5 (A8)
Equation A8, which will be employed in Appendix B, is the form here
taken by a general “torsion-curvature” relatiogf(s)[7(s) — i“’] = f(w),
that holds for both equilibrium and traveling wave solutions in Kirchhoff's
theory of rods (cf. Coleman et al., 1993).

When Eq. A2 is expressed in the cylindrical coordinatesp( z) and
combined with Eg. A6, the general solution of the resulting system is

N =341 bp N =359 bp
14 4 L, =30 14
12 12 o
FIGURE 10 The sumG(w, L,) of L =34
G%w) and the elastic energy?,(L,)
(in kcal/mol of nucleosomes) as a ~x 0] ~ 107
function of w at fixed L,. These ~ ~ L =32
graphs were constructed assuming % =
that h5 = 10.40, and using Eq. 42 8 - ) 8
with T(1.45, 1.70)= —0.75. ~—
6 6 -
L,=32 L=31
L,=33
4 1 4
T T T T T T T T
1.2 14 1.6 1.8 1.2 1.4 1.6 1.8
w w
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(Tobias et al., 1994; Coleman et al., 1995):

r2 - U3 - (U3 - Uz)sinz l!i, (Ag)
2) — Aajll(n;
= xa (02 AN i) A0
U3 VU3 - U]_
z=(a— u)s— Uz — u; E(yjm), (A11)
wherea is as in Eq. A8,
F
Siny = sn(s\Us — Uy, ie.,s= F Lﬂ (A12)
YUz — U
m= (U3 — W)/(Us —U), n=(Ug— Wus, (Al3)

and theu;, with u; = 0 = u, =< ug, are roots of the cubic polynomial

Py(u) = —|u®+ (A2 — 2a)u? + (a2 — 2aA®> + wA — 1)u

H(5-a)]

=(U—u)(u—w)(u; — u). (A14)

In Egs. A10—-A12, sn is a Jacobi elliptic function with parameteand F,
E, IT are the elliptic integrals,

P
F(ylm) = f dl—rrfisinzg’ (A15)

0

v
E(ym) = j (1 — msir? H)Y2d¢, (A16)

0

II(n; = ' o
(n jm) = . (1-nsirf Y1 —msirt{

(AL17)

It follows from Eqgs. A9-A14 that because the three numkera, o
determine the numbets, u,, U, the four numbera, A, X, w determine the
curve¢' to within the scale factok/2A/F. In other words, for each choice
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and the vector

(=32~ r(3/2)
VT (=22 = rER)

In the present case the boundary data are symmetric in the sense that
t(—2/2) - v = t(3/2) - v, and it therefore is convenient to describe the
relative orientation of vector§—=/2), t(2/2), andw by giving the angles

a and B for which

(A21)

cosa = t(2/2) - v, (A22)
_t(E2) - [v X t(=2/2)] (A23)

NB="h s )]

Our assumption that(s) andt(s) are continuous for al implies that the
values ofr(—2/2), r(2/2), t(—2/2), andt(2/2) entering Eqs. A20-A23
pertain to the end points of the helical cur¢g, and thus we can express
(m, @, B) in terms of the pitctp, diameterd, and wrapw of €°, and the
length A of 6. We find that

dsir(wa) + pw? Aoa
17 A - wyrdZ P (A29)

(1/2)md?sin(2wm) + pw

COSA =" [d?sirt(wm) + pw) (P + )’
(A25)
o pd[sin(w) — war cogwr)|
SINB = [dsint(wa) + pwd (w2 + )
(A26)

As we have observed, whenis specified, Eqs. A9—A14 permit one to
find the curve' to within a scale factor and to determine the mappimg (
A, 2) — (n, «, B); one can automate the procedure of inverting this
mapping to obtaind, A, 3) from boundary data. OncE is determined,
knowledge of the lengtiA’ (= A — 27.2w) of €' in nm yields the scale
factor V2A/F = 3/A" and thus the coefficient of proportionality between
AQ andw. (Of course, the scale factor depends on the specified value of
w.) By further iterations in whichw is adjusted to correspond to a preas-
signed value oAQ', one obtains the parametees §, 3, ) that determine
%" to within a scale factor, as well as that scale factor, from given data of
the form AQ', 1, «, B) for a segment of lengtA. As, we observed in the
text of the paper, our ability to do this calculation permits us to obtain the
configuration® of %' as a function of &, w, h, L,). Moreover, in the
course of calculatingf, we obtain &, A, X, w) and{, and hence, by Egs.

of w there is a three-parameter family of solutions. The three parameters t418, 10, and 12, the elastic energi&$ and .

be fixed are the integration constaatandA, and the dimensionless length

3.

The elastic energy’ of the segmenf:' is defined in Eq. 11. A recent
result (Coleman et al., 1995) gives us the following useful formulaifor
at equilibrium:

2A 32 1/A
wh= Af[a +N - 4<C - 1)(02]; (A18)
here,
{=[22/2) — 2(—32/12))/%.

The procedure we employ for finding the triplet &, X) when there are
givenw and geometric boundary datds,) — r(sg), t(sa), t(sg), makes use
of the fact that whem(s,) — r(sg) andA" are known in conventional units,
one knows the ratio

n = [r(=212) = r(Z/2)|I%,

(A19)

(A20)

Remark about configurations corresponding to
fixed geometric boundary data

To obtain insight into the nature of the dependence of the paramatevs (
3, w) in Eq. A14 on the boundary data),(«, B) for Eq. A2, we may
temporarily ignore restrictions that arise when excluded volume is taken
into account. Thus, for a given triple)(«, B), we now consider the sét

of all values of the quadrupley, X, w) that are such tha;(u) has three
real roots that give rise to a cur@ compatible with {, «, B). It turns out
that% is a collection® of closed curves in 4-space, each of which has a
continuous parameterization of the fora{«), A(0), (o), w(c)) with 0 =

o < 2m. For a curvel in &, let W,(o; €) be the writhe of the axial curve

% of 2 when%:' is in the configuratiori, determined byd(o), A(0), 2(0),
w(0)). Within the range of values of the parameteks @, hS, L,) that we
have studied, precisely one cur¢ein & has the property that for each of
its points @, A, X, ) the configuration corresponding to that point gives a
value to the elastic energy of Eq. 10 that is smaller than the valuebf
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for the configuration corresponding to any point on any other curve in thewhereW; is the contribution toN? from the segmentd!_, anddj:,l:
set¥. The functionos — W,(o; €*) is monotone and smooth, except at one
point o;. At that point,W, experiences a jump,(o;; €*) — W,(o5; €%), W,
of magnitude 2, because the parametefs fj, A(c;), 2(05), w(cy)) yield
; i ) )
an axial curve@' that intersects and passes through itself. We choose the 1 [d (d t; X tj . [(tio'i +r_y) — (th'j + rj—l)]

direction of increase obr so thatW,(o; €*) increases witho on each =— 3 do: do-.
interval that does not contaim, and hence 4w o Jo (o +1im) — (toy + rjfl)‘ P
Wi(oj; €) = Wiloy; €)= 2. (A27) (83)

If we take the linking numbet, of % to be defined by Eq. 15 (so thatit The double integral in Eq. B3 can be evaluated explicitly. To this end, let
need not be an integer), thep = Ly(o"; ¢*) will be continuous ino-where ,(t;, dX, t;) be the dihedral angle that the plane contairtjramndd , makes
o # o, and ato, will experience the same jump &%: with the plane containing, andt;, i.e.,

Li(oy; €%) = L(ay; €%) — 2. (A28) . [t < di]-[dy ¥ t]
oSt e B Ty e s x g

. (B4)

Now, let A andw be compatible with+, «, B), fix hg, and letl(A, w, h)
be the open interval of values b&f betweenL,(o7; ¢*) and L (a7 €*).
For eachL, in I(A, w, hB), the minimum value of¥ in the class of all
configurations compatible withA, w, h&, L,), regardless of whether they
are in equilibrium, is attained a#*(A, w, h5, L), the configuration
determined by the unique poirg, (A, =, w) on €* that corresponds toA, 1
W, hg’ L. b § X . X VVIJ = T [[.L(t,, dj!,%, tj) - I-L(tiv d]!,l, t]) - I‘L(tiv djl 1! tj)

As the set¥(N, w, hg) defined in the text is a subset of the integers that T
are members of(A, w, hY), the present remark explains why the calcula- ) (BS)
tions we have reported (which are restricted to cases in which self-contact + P«(tiv d,!- tj)]-
does not occur) yield fa¥(N, w, hS) a set with no more than two elements. . n ) L )

Calculated values oV, for elements., of #(N, w, h2) at selected values ~(The equivalence can be verified by differentiating;, di=1 + toy —
of the triple (N, w, h%) are shown in Fig. 4. to}, t;) with respect tas; and g, and using Eq. B4.)

If € is the duplex axis of a mononucleosomal minicircle of the type
discussed in this pape®, is given by the exact expressions derived below,
and, oncéM is calculated from Eqgs. B2 and BS, for insertion in Eq. B1
can be obtained by rounding o/ + (27) '@ to the nearest integer.
The writheW, and geometric torsion = 7(s) of a closed curvét obey the ~ WNen we compare the precise valueWfso obtained with\/?, we find

following relation, which was obtained by Calugareanu (1961) and isthat if M = 200,Wis equal tow, up to three significant figures. Thus the

discussed in papers of Pohl (1968) and White (1969): gpproximation taN, given by Egs. B2 and B5 can_be avery g_ood_ one and
is expected to be useful, even for curves for which the application of Eq.

1 Bl is not feasible, because of difficulties in evaluating the torsion integral
_ N 0. In cases such as the present one, in wificis known, for use of Eq.
W =S — 247 0, 0 =0 r(s)ds. (B1) B1 to obtainS, it suffices to knowW, to within an error of+0.4, and hence
@ smaller values oM can be employed.
For the mononucleosome,

w is taken to be in the range 7w < p < mr, with a sign equal to that of
[t; X t] - df. After some calculation we have found that Eq. B3 is
equivalent to

APPENDIX B: CALCULATION OF WRITHE

HereS,, the self-link, is an integer equal to the linking numbeféfwith

a closed curvé&s_ giving the locus of points that lie on the normal vectors

n(s) = k() * t'(s) of ¢ at an infinitesimal distance from 6. HenceW, O = 7(s)ds + T(s)ds + & + &; (B6)
differs from —(27) '@ by an integer. Althougl§, has several interesting
geometric interpretations (see Pohl, 1968), no easily evaluated expression
for that integer is known. Equation B1 is nonetheless valuable; if onefor | = A or B, & is the dihedral angle that the osculating plans'amakes

evaluates the torsion integr@l with precision and has in hand an approx- ith the osculating plane & whens is a boundary point ok®, i.e.,
imate value ofV,, one can use Eq. B1 to first obtain the inte§eand then

@b @f

the precise value dlV.. We shall show below that the explicit expression S+e

for _r(s) obtamed_ by the method expl_alned in Appendix A permlts us to &= lim T(S)ds = lim COSfl(b(S _ E) . b(a + E)),
derive an analytical formula fa®, but first we present the approximation 0 0

scheme we have used to determine a valu&/dhat is sufficiently precise S—e

to fix the integerS.. (87)

As € is rectifiable, it can be arbitrarily closely approximated by a
polygonal curveé, for which the writheWp is given by an exact analytic ] o s
expression. We take fo6,, a polygon ofM verticesr, = r(sy), r, = r(s), n(§ + €. Symmetry here yield€, = &. For the helix€>, r, in

. Tm = 1(sy), that lie on€ with |s — s_,| independent of. In the ~ conventional units, is the constant,
formulae that follow, we writed!_, for thei'th segment; — r;_, (with r

whereb = t X n, and the sign of, is equal to that ofim__ b(s — €) -

identified withr,,) of ,; d, for |d}_,|; andd X for the vectom, — r,,.. We . —2mp (B8)
note that at each point of the interior of thth segment, the unit tangent md? + p !
vector for¢, (regarded as a curve) fs= di_,/d.. In view of Eq. 4, the
writhe WP of €, is ie.,
Mo M bob —27wp
W=23% > W, (B2) T(s)ds = A°7 = N (B9)

i=1j=i+1 @
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For the free segmeft’, Eqs. A7, A8, A9, and A12 yield, in dimensionless Hayes, J. J., D. J. Clark, and A. P. Wolffe. 1991. Histone contributions to

units, the structure of DNA in the nucleosomBroc. Natl. Acad. Sci. USA.
88:6829-6833.
3 2
T(S) _ g B A + (1/2)“’ B 2w(/\ + a) Hayes, J. J., T. D. Tullius, and A. P. Wolffe. 1990. The structure of DNA
2 Au, + /\2) — W= 4(u; — uz)snz(s\/us _ Ul), in a nucleosomeRroc. Natl. Acad. Sci. USA7:7405-7409.

(BlO) Horowitz, D. S., and J. C. Wang. 1984. Torsional rigid@ty of DN_A and
length dependence of the free energy of DNA supercoilingylol. Biol.
from which one can obtain the following relation (which is independent of ~ 173:75-91.
the unit of length): Katritch, V., and A. Vologodskii. 1997. The effect of intrinsic curvature on
conformational properties of circular DNARiophys. J.72:1070-1079.

w Kirchhoff, G. 1859. Wer das Gleichgewicht und die Bewegung eines
7(s)ds = o (B11) unendlich dumnen elastischen Stabed.F. Reine Angew. Matt56:
« 285-313.
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4\ + (1/2)w® — 2w(A? + a) o Vorlesung 28. Tuebner, Leipzig.
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3 Vi Pergamon, Oxford.
where Le Bret, M. 1988. Computation of the helical twist of nucleosomal DNA.
; J. Mol. Biol. 200:285-290.
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m, u;, 3, etc., are as in Appendix A, and F ahbare the elliptic integrals  Lutter, L. C. 1979. Precise location of DNase | cutting sites in the nucleo-

defined in Eqs. A15 and A17. Equations B6-B12 give an essentially some core determined by high resolution gel electrophorékisleic

explicit expression for the torsion integral of the duplex axis of a DNA  Acids Res6:41-56.
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