Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2545–2553. doi: 10.1016/S0006-3495(98)77962-7

A theory of thermal fluctuations in DNA miniplasmids.

I Tobias 1
PMCID: PMC1299596  PMID: 9591680

Abstract

A recent analysis of the normal modes of vibration of a ring formed by bringing together and sealing, with or without the addition of twist, the ends of rods that are straight when stress free is taken as the basis for a theory of the statistical thermodynamics of a canonical ensemble of DNA minicircles with specified linking number difference deltaLk and number N of base pairs. It is assumed that N corresponds to a circumference in the range of one or two persistence lengths. For such an ensemble, the theory yields an expression for the average writhe (Wr), which can be employed to calculate the free energy, entropy, and enthalpy of supercoiling, deltaGsc, deltaSsc, and deltaHsc. The results obtained for the dependence of deltaGsc on deltaLk and N are in accord with experimental observations of equilibrium distributions of topoisomers of plasmids with N approximately 200 bp.

Full Text

The Full Text of this article is available as a PDF (100.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauer G, Anwand W, Nicht E, Kuriplach J, Sob M, Wagner N, Coleman PG, Puska MJ, Korhonen T. Evaluation of some basic positron-related characteristics of SiC. Phys Rev B Condens Matter. 1996 Jul 15;54(4):2512–2517. doi: 10.1103/physrevb.54.2512. [DOI] [PubMed] [Google Scholar]
  2. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V., Vologodskii A. V. Torsional and bending rigidity of the double helix from data on small DNA rings. J Biomol Struct Dyn. 1985 Feb;2(5):1005–1012. doi: 10.1080/07391102.1985.10507616. [DOI] [PubMed] [Google Scholar]
  4. Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gebe J. A., Allison S. A., Clendenning J. B., Schurr J. M. Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J. 1995 Feb;68(2):619–633. doi: 10.1016/S0006-3495(95)80223-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  7. Horowitz D. S., Wang J. C. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984 Feb 15;173(1):75–91. doi: 10.1016/0022-2836(84)90404-2. [DOI] [PubMed] [Google Scholar]
  8. Pulleyblank D. E., Shure M., Tang D., Vinograd J., Vosberg H. P. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4280–4284. doi: 10.1073/pnas.72.11.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shimada J., Yamakawa H. DNA-topoisomer analysis on the basis of the helical wormlike chain. Biopolymers. 1984 May;23(5):853–857. doi: 10.1002/bip.360230503. [DOI] [PubMed] [Google Scholar]
  10. Shimada J., Yamakawa H. Statistical mechanics of DNA topoisomers. The helical worm-like chain. J Mol Biol. 1985 Jul 20;184(2):319–329. doi: 10.1016/0022-2836(85)90383-3. [DOI] [PubMed] [Google Scholar]
  11. Shore D., Baldwin R. L. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983 Nov 15;170(4):983–1007. doi: 10.1016/s0022-2836(83)80199-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES