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A Theory of Thermal Fluctuations in DNA Miniplasmids

Irwin Tobias
Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854 USA

ABSTRACT A recent analysis of the normal modes of vibration of a ring formed by bringing together and sealing, with or
without the addition of twist, the ends of rods that are straight when stress free is taken as the basis for a theory of the
statistical thermodynamics of a canonical ensemble of DNA minicircles with specified linking number difference AL, and
number N of base pairs. It is assumed that N corresponds to a circumference in the range of one or two persistence lengths.
For such an ensemble, the theory yields an expression for the average writhe (W,), which can be employed to calculate the
free energy, entropy, and enthalpy of supercoiling, AG,., AS.., and AH_.. The results obtained for the dependence of AG,,
on AL, and N are in accord with experimental observations of equilibrium distributions of topoisomers of plasmids with N ~
200 bp.

INTRODUCTION

Colleagues and | recently developed a theory of smallis slightly deformed from a circle. That makes it possible,
amplitude vibrations of circular elastic rings formed from once we identify the energy associated with each normal
naturally straight, inextensible, isotropic, elastic rods, withmode, to employ the methods of classical statistical me-
the possible addition of twist (Coleman et al., 1996). Herechanics to determine the canonical ensemble average of any
the methods of classical statistical mechanics are applied tquantity of interest. Here we concentrate on the canonical
the normal modes of vibration of such rings to obtain anensemble average of the writk/.) of a DNA topoisomer
expression for the free energy of a ring as a function of itsas a function of its linking differencAL,. We find that for
linking number difference. This free energy of supercoilingeach value ofAL,, (W,) is proportional to the absolute
AGq is the quantity measured in experiments on thermallfemperature and to the number of base pairsn the
fluctuating nicked DNA plasmids (Pulleyblank et al., 1975 njasmid. Our methods permit the derivation of an exact
Depew and Wang, 1975; Shore and Baldwin, 1983; Horow;g|ation between the variance in the WHtHAZ) — (WY,

iFZ and Wang, %984)' In so far as a DNA plasmid behavesdhd&(W,)/aALk, which we use to obtain an explicit formula
like an elastic ring, our results are relevant to those experg,, (W) for a plasmid withAL, = 0

iments. Because we treat only the case of small deviations Ther fact that the free energy éntropy and enthalpy of
from circularity, application of the results we present is supercoiling AG,, AS., andAHSO, can all b,e expressed in

limited to plasmlds_ having-200 bp and linking differences tﬁ:rms of(W,) enables us to calculate these thermodynamic
of magnitude not in excess of one. Measurements on suc - : .
uantities as functions afL,. In the last section, we com-

miniplasmids have been made by Shore and Baldwin (1983 . A
and by Horowitz and Wang (1984). These experiments hav are the results of our theory with experimental measure-
ments of the free energy of supercoiling of miniplasmids of

inspired theoretical work by Shimada and Yamakawa NA. We find that the th S d with th d
(1984, 1985), who gave an analytical treatment based on alR - wedin that the theory IS in accord with the assume
dratic dependence of the free energy\dp, and agrees

expression for ring-closure probability, and by Frank-3Y& S ent _
Kamenetskii et al. (1985), who gave a numerical treatmentVith the dependence &G, on N implied by experimental
In the next section, we assemble the mathematical corfl@ta obtained by Horowitz and Wang (1984) for plasmids
cepts employed to describe the nearly circular conﬁguraW'th N ~ 200 bp.
tions of a straight rod that has been twisted and bent to have
its ends joined. A discussion of the dynamical equations of
the Kirchhoff-Clebsch theory of rods (See, e.g., Dill, 1992,THE CONFIGURATION OF NEARLY
_Colt_'-zman et al., 1993), the form they assume upon “nearCIRCULAR RINGS
ization, and the nature of the normal modes implied by the
linearized equations follows. Given these modes, we aré\t each timet the points on the axis of the rod making up
able to generate all ring configurations in which the rod axisthe ring form a closed curv€(t), which we describe by
giving the location of its points in space as a functids t)
of t and arc lengtls. The unit tangent vectors f@(t) aret

. . o = t(s, t) = 9x/as = X, The configuration of the ring at a
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ration, theny(s, t) is defined by the function

Y80 = 5 [ds X dis Dt~ 3O X & Tl (1)
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it (1/2m)[d°(s) X d2(s) - t9) is also constant. We choose this
constant to be zero, i.e., in the reference configuratiordthe
vectors do not twist about the axial curve. Then, from Egs.
1 and 2, we get foATy, the value ofAT,, in the reference

i.e., it is the difference between tangential components Ogonflguratlon,

the rate of rotation with respect to movement al@gf the

imbedded vectors in the configuration in question, and this
rate of rotation in the stress-free configuration. The integral

of the excess twist density over the entire lengthf the rod
is called theexcess twisAT,,

AT, = f (s, t)ds. 2

To define thdinking number differencelL, (also called

delta linK), for a closed rod formed from a rod that is straight

1t . ~ ~
ATy = —5 J (d(s) X dys) - t)ds, 4)
0
and, because a circle has zero writhe, from Eq. 3,
ATS = AL,. (5)

It follows from Egs. 4 and 5 that the constant value of
d(s) X d{s) - t in the stress-free configuration is now fixed
at —AL, /R, whereR is the radius ofC°.

The linking number differencdL,; the radiusR of the

when stress-free, let us suppose that such a rod has begpstic ring in the reference configuration; afid the ratio

brought into a configuration in which the axial cur@elies

of the coefficient of torsional rigidityC of the rod to its

in a plane, and that its two end points have been brough{pefficient of flexural rigidity A, completely parameterize

together in such a way tha(0) = x(L), t(0) = t(L), with
v(s) = 0 for 0= s = L. If one then rotates the end with=

the closed elastic rod. We shall be concerned with how the
values of these parameters affect the time evolution of the

L through¢ turns about(L), while continuing to hold the ~ configurations through which the ring passes. It is well
ends of the rod coincident with the tangents there parallelnown that the elastic rings we are considering have stable
and then cements the ends together, one produces a closgderence configurations, as long asv3/Q < AL, <

rod with AL, = ¢. By convention,AL, is taken to be
positive when the rotation of the cross sectionsat L
appears counterclockwise to an observer toward wt{an
is pointing. It follows from a now familiar theorem (White,
1969) that the sum of the excess twist,, for a configu-
ration, and a quantity called the writhé/, which depends
only on the shape of the cun for that configuration, is

always equal ta\L,,
AL, = AT, + W,. 3

The writheW, of a closed curve, to which we shall return

V3/Q (Zajac, 1962). Here we shall only consider rings for
which AL, falls within this range.

The motions we treat are such that for alandt, the
difference(s, t) — x°(s) andd(s, t) — d°(s) are sulfficiently
small in magnitude to permit linearization about the refer-
ence configuration of the governing partial differential
equations. We writei(s, t) for the small deviatiorx(s, t) —
X°(s), at timet, of the rod axis from a place on the circle
having an arc length It will be convenient to work with the
components ofu(s, t), and of other vectors, along the
directions of the right-handed Frenet-Serret triatf, p°,

in a later section, can be defined as the number obtained hLy), the principal normal, binormal, and tangent associated

averaging, over all orientations of a plaRgthe sum of the

with the reference configuration, unit vectors which are, of

signed self-crossings occurring in the planar curves resulteourse, functions of, but not oft. We orient the reference

ing from the perpendicular projection & on P (Fuller,
1971). In the case of a DNA plasmid, fAt, to be constant,

configuration so that the plane of the circle is perpendicular
to a space-fixed axis, which then becomes parallel to the

it must be assumed that the temperature remains constattinormalb®. Thus,
and that the electrostatic and chemical environment of the

DNA do not change.
The configurations in which the axial curézis a circle
C°, and, in addition, the excess twist densjtyis constant,

i.e., is independent &f is of particular importance, for each
of them is always an equilibrium configuration. We shall

refer to them collectively as theeference configuration
When y(s, t) is given, the function (1/2)[d(s_t) X
dg(s, t) - t] depends on the arbitrary choice of (#2d(s) X

d4(s) - t]. For convenience, we choose the orientation of the

vectorsd(s) so that (1/z)[d(s) X d4(s) - 1] is independent

u=un®+ uh°® + u’te. (6)
The derivative ofu(s, t) with respect to arc lengthyg(s, t),
in terms of its components, is

Us = Nn° + Bb°® + Tt°, (7
whereN = uf + k°u’, B = U andT = u? — k°U', because
the Frenet-Serret triad obeys the equations

©=kn° n=-kKL b2=0. 8)

of s. Given that the excess twist density is constant in thgyith k(= 1/R) the constant geometric curvature of the

reference configuration,
(2/27)[d(s) X d4s) - t] to be constant, it follows that
(2/27)[d(s) X dy(s) - t] in the reference configuration (call

and that we have chosensrcylar rod axis in the reference configuration. s x,,

us =t —t°

(9)
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and it can be shown (Coleman et al., 1996) that there is &rsional rigidity C of the rod to its coefficient of flexural
vectorw such that, to within terms of ordéw|?, rigidity A.
o o Coleman et al. (1996) have shown that the dynamical
t-t=wxt (10) equations (Eq. 15) can be linearized about an arbitrary
and equilibrium reference configuration. Here, with a circular
reference configuration, they take the form

d—d°=wxd° (11)
) ] w, X F° + AF, = uy a7
Equations 9 and 10 imply that the componenugélong
t° vanishes, and by Eq. 7, that We X M + AM, + t° X AF
o (18)
Us — k' = 0. (12) =1°X (Wy X N% + b° X (W X b),
Equatlons 7,9, and 10 imply, further, thtcan be written where F° and M, the stress resultant and the resultant
in the form . . ' .
moment in the circular reference configuration are
w = —Bn° + Nb° + Bt°, (13)

Fo = Q(K)ALbS, (29)
whereB = w - t°. It can be shown thags, the component of
w alongt® is a measure, in a certain sense, of a torsion M° = k%h° + QK°AL,t°, (20)
angle, i.e., of the angular rotation of the rod about the
tangent to its axial curve. In the present linear theory, séand

deformation from the reference configuration is character-
ized by 8 andu. AM = —(B, — k?B)n° + Nb° + Q(Bs + KB)t°. (21)

Equation 12, the condition of inextensibility, and Egs. 17
EQUATIONS OF MOTION and 18 the equations to be solved for the seven unknowns,

. _ u’, U%, u’, B, and the three componemi&’, AF?, andAF? of
In the Kirchhoff-Clebsch theory of the dynamics of rods, theF — (F° + w X F9), the vector denoted byF in Egs. 17

equations of motion, expressing balance of linear and an; 418

gular momentum, are The six components along, b°, t°) of Egs. 17 and 18

Fs = pSKq are
(14)
Mo+t X F=pl[d X dg + (d X t) X (d X t)], —O(K)?AL(Bs + K°B) + AF. + KAF? = uf,

wherep is the density of the material of which the rod is AFZ =
composedsS is the cross-sectional area of the rdds the , , .
moment of inertia of a cross section, aktdandF are the —Q(K)AL(Bs — k°B) + AFg — KAF" = uy

resultant moments and stresses acting on a cross section. V&?(O ALN
k

— — — 2(1 — — z
use units expressed in terms®mfS |, and the coefficient of s~ (Bos— QKBY — (K1 - )B — AF B

flexural rigidity A such that 92 is the unit of length, QRCAL (B, — KB) + Ng + AF" = Ny
I(p/SAY2 is the unit of time, and3Al) is the unit of force.
(In Appendix A the units of length, frequency, and energy Q(Bss+ kBy = 2By.  (22)

so defined are evaluated for the case of a rod modeling a ) ) o 0
DNA molecule.) In these units the equations of motion (Eq.Eduation 12, in effect, determinesin terms ofu’. We thus

14) become ngeq consider only the above six equati.on.s aftéras been
eliminated from them. One can also eliminate the compo-
Fs = Xq nents ofAF from the equations. We are then left with three

(15) i d
M.+ tXF = d X dg+ (dx 1) X (d X ). equations for the three unknowns, 3, andu’,

The moment has components only along the binorrbal (Ui + (1= @)U g — QAL(UG, + Uy — RQBy

and the tangertt and, in the new units, Kirchhoff's consti- = R(, — RW)
tutive relation for an inextensible, isotropic, elastic rod 0 !
becomes QAL(UGy + UP)gy + (Uggay + 2Ugy + U%) g9

M = K(s, t)b(s, t) + Q(d(s, t) X d4s, t)
-1(s, 1) + KPALYt(S, ),

= R¥(Ujppe + (2 — ROUG, + (1 + ROUY),

) . Q(RByy + Ufy) = 2R°By, (23)
wherek(s, t) is the curvature of the axial curv@(t), and(},
defined previously, is the ratidC/A, of the coefficient of  with the angled = s/Rreplacing the independent varialsle
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NORMAL MODES OF VIBRATION OF THE The cases ofi = 0 andn = 1 are special. When = 0,
ELASTIC RING there is no oscillatory motion, but the ring can show a
. . uniform torsional motion, while the rod axis remains circu-
F|rst_of all, we r_nake the gengral observation th"’.‘t Wheqar, that is, the angl@ is independent of, but can increase
A.Lk N ?, Fhe motion of the fing In the plane contammg.the or decrease linearly with time. This type of motion, which is
circle C 1€, the , 6) plane, is _mdependent of the m_o'qo_n excluded from consideration in the present context, because
perpendlcular o that plane. TW|st!ng the rod, before 10INING e have limited3 to small values, we recently discussed in
Its gnds, serves to couple the in-plane and OUt_Of'Planﬁreat detail for the case of a ring made from an intrinsically
motions. In fact, wherA_Lk # 0, there are no modes V.V'th curved rod when the torsional motion becomes oscillatory
n = 2 that are purely in-plane or out-of-plane vibrations; (Tobias et al., 1996). There is only one type of mode with
each of the modes acquires a chiral aspect. n = 1: the rod axis still remains circular, but the circle

\t/'vel now \:,'eek noErmaZI:;noS\t/a'tiolu;ucl)ns of fthe “nealr,td'ﬁer'undergoes an oscillatory rocking motion. During this rock-
ential equations (Eq. 23). Without loss of generality, Weing motion, the excess twist densityis no longer con-

take these solutions to be traveling waves; they are of thgtant—it varies with both arc length and time (Coleman, et

form al., 1996). However, the excess twiafl,,, remains fixed at
U = A%(*)cognd * (wt + a)) AT}, = AL,. This mode, like the other modes of smaller
wavelength (greatem), is doubly degenerate.
u’ = A’(+)codnb + (wt + a)) (24) Whenn = 2, the modes are flexural: the axial curve no

longer remains circular during the motion. The term on the
left-hand side of Eqg. 27, which is independent of the fre-
whereA%(+), A’(+), AP(+) are constant amplitudes;isa  quency, is
constant phasep is the frequency; and is zero or any -
positive integer related to the wavelengttby the expres- Mo = —Qn*(n® — DAn* — 1 - (QALYY).  (28)
sion We see that whem = 2, M, approaches zero aAL,
\ = 27RIN. (25) approaches the critical bucklling valuesjaf\/ﬁ. _Thus one
of the three modal frequencies associated with 2 ap-
Substitution of Eq. 24 into Eq. 23 yields three linear, ho-proaches zero as the linking number difference approaches
mogeneous, algebraic equations in the three unknown ams\/3/Q).
plitudesA?, A% AP: In the case of miniplasmids of DNAn may not be
) 0 6_ allowed to increase without limit. There must be a maxi-
A’ + apA" + a A" =0 mum value ofn, call it n,,, that corresponds to a wavelength

B = AP(+)codnb * (ot + a)),

ap A + Ay A’ + 2y AP = 0 (26) ©On the order of magnitude of the separatitg® between
base pairs of the DNA. If the wavelength is set exactly equal
agA? + agA” + ag AP = 0. to As’, thenn,,,, this cut-off value oh, equalsN, the number

of base pairs in the ring. It turns out that our final results are
quite insensitive to the precise value chosenrigr

Of course, Eq. 24 also determines the relative magnitudes
of the amplitudes associated with a given modgi), The
"amplitudesA?, and A, in terms ofAZ, are

The coefficientsa; of the unknowns are functions 61, R,
AL, w, andn. They are listed in Appendix B.

The equation obtained when the<33 determinant whose
elements areg; is set equal to zero is the dispersion relation
for it can be solved for the frequenaywhen(}, R, AL,, and
the wavelength, as given by the integerare specified. In Al = oAz
this problem, the determinant of the coefficients turns out to
be a cubic polynomial ins?, i.e., the dispersion relation is With

of the form (Coleman et al., 1996; Goriely and Tabor, 1997) QAL (M — 1)
k

0 _—
Mzw® + Myo* + Myw? + My = 0. @7) "= 17— 2R — 12 + R + 1))’ (29)
(Appendix B also shows explicitly the coefficient4.) and
We only consider cases for which the roa#$ of the
polynomial of Eq. 27 are positive. Generally, for each mode AL = TRA
numbem, there are three distinct frequencies, wherei = with
1, 2, or 3. We establish the convention thal < w,, <
whz One can label any mode, therefore, by specifying the Qn?
two integers 1, i). Each mode so specified is doubly de- rh= m (30)

generate; the traveling wave can propagate in either of two

directions around the circle. These two degenerate modes It is convenient to classify the three modes for a given
are distinguished, when necessary, with thenotation  wavelength according to the nature of that mode in the limit
introduced in Eq. 24. of zero linking number difference. In that limit, the motion
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associated with one of the modes is nontorsional and ertions to the twist energy can be further distinguished. The
tirely in the plane of the circular reference configuration, term 7k°Q(AL,)? in V° is the twist energy of the reference
i.e., A” = 0,AP = 0,A’ # 0, whereas the other two have a state. The twist energy term iV that is proportional to
torsional component and are entirely of the out-of-planeAL, arises from that part of the excess twist density that is
type, i.e.,A* # 0, A® # 0, A’ = 0. The two out-of-plane independent of arc length, whereas the remaining term is
modes further distinguish themselves in that for 0A8,>>  associated with that part of the excess twist density that is
|A?|, which means that between bending and torsion, bendehanging with arc length. (See the next section for further
ing is predominant, whereas for the other, torsion is prediscussion of this point.)

dominant, becaus@’| > |A7. The energyH (= E — V°) associated with an arbitrary
deformation from the reference configuration can be ex-
pressed, it turns out, as twice the time average of either the
ENERGY OF THE DEFORMED ANNULAR ROD potential energyAV or the kinetic energyK,. (For the

If one integrates along the entire length of the rod the scalagalculations carried out here, the former was chosen.) In
product of Eqg. 18 with the vectar,, and use is made of Eq. addition,H is in the form of a sum of separate contributions
17, it can be shown (M. Lembo, private communication)from each normal mode,

that for any solution of those equations, a quantity

defined as follows, is time independent: hm 3
= . Z 2 Z(_)\2
H =K.+ AV, (31) H E E Mol (AG(H)? + (AG(=)7], (37)
where

where one can show with the help of Egs. 24, 29, 30, and 35
1 that
Ke=>5 dqu;-u + |w X b2+ [w, x n%?%], (32)
mn?
o 2 _ 2 1\2(r0)2 _ 2 0
and hoi = g [(0° = 1) + (0" = *(ry)” — 20AL(0° — Dy
1 + Q1+ RrE)?. (38)
AV = 2% dgw,: (AM +w X M°) — (w-t%)(w-F].
We pointed out above that &3AL, approaches-\/'3,
B3  the frequencyw,, approaches zero. Here we note that, given

We can interpret as the constant energy associated withthe significance of the buckling point, in this same i

the time-dependent deformation from the reference configMust and, it may be readily verified, does, indeed, also
uration. It is the sum of the kinetic enerdy, and the approach zero.

potential energy chang&V from that,V°, in the reference

configuration, where

Vo = 7k + mQ(ALY, (34) WRITHE OF THE DEFORMED ANNULAR ROD

The first t inV® is the bendi in the ref The writhe is a property of a closed curve, here the axial
€ firstterm inv - 1S the bending energy in the reterence curvex(s, t) of the ring. We defined it in an earlier section

configuration, and the second term is the twist energy there, ) .
i ) f th r. It can al fin integral
The total elastic energk is thusV® + H. 0f the paper. It can also be defined as a Gauss integral,

The energiedV andK,, written out in full in terms of the
displacements and the torsion angleare W) = 1L ts ) X (s, D [x(s, D) = X(s, D]
T A IX(s, t) — x(s', )|

dsds'.

AV = ;fﬁ [(NJ? + (B)? — (K%B)2 — 20K°AL,NB, (39)
(35)  Inalater section we calculate its ensemble avetsige To
+ Q(Bs + k°B)*]ds proceed with such a calculation, it will be necessary to
expresdN,(t) in terms of the variables introduced in the first
section. These variables, it will be recalled, lead to expres-
Ke= 2§; (b uct (N + (B)°+ 28)71ds. (36) sions correct to terms linear in the vecter We are imme-
diately faced with a problem, for it can be shown that the
The collection of three terms in the total potential energyfirst term in an expansion of the writhe about the reference
V° + AV of the configuration, which are proportional to the configuration is of ordew?. To find the appropriate second-
ratio ), make up the twist energy of the configuration, the order expression for the writhe, we examine that part of the
remaining terms, the bending energy. The various contributotal potential energyy® + AV (see Eqgs. 34 and 35), which
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corresponds to the twist enerdyj, modes. Classical, as opposed to quantum equilibrium, me-
chanics may be used for any mode of frequeacas long
as the ratichw/kg T, wherekg is Boltzmann’s constanty is
Vr = kCO(ALY? ~ QKOALk4) NBds Planck’s constant divided by andT is the temperature
(not to be confused with the symbdlintroduced in Eq. 7),
1 is small compared to 1. Because, in the present case, for the
+ 5 Q % (Bs + k°B)?ds.  (40)  mode of highest frequency, found among those withn,,,,
this ratio is~0.2 whenT = 300 K, we use the classical

formalism.
The significance of each term is clear. The first two are the \ynen the energy, in ordinary units, is expressed as a

first two terms in the expansion function of all of the canonical momenta and coordinates, a

TRQ(AT,)? = TCQ(AL, — W))? pair P,;, Q,; for each normal modg, the ensemble average
(41) (f), at the temperatur€, of any functionf of these canonical
~ 7k°Q(AL)? — 27k°QAL W, variables is calculated according to the formula

of the expression for the twist energy of a ring in a config- #P. O)exd —H(P. OV/k.T1dP d
uration with constant excess twist density. The third term in fy = JITP. Qexit—H(P. QksTIdP dQ

Eq. 40 is the contribution to the energy associated with that JIexd —H(P, Q)/ksT]dP dQ

part of the excess twist density that varies with arc length. ) o ) )
Comparison of Egs. 40 and 41 implies that Although in Eq. 44 we have indicated integration only over

a single pair of canonical variables, it is understood that in

(44)

1 the actual calculation, one must integrate over all such pairs.
W, = 277% NBgs. (42)  The limits of integration depend on the specific choicéof
andQ.

We have already mentioned that whah, — 0, each When one is dealing with a linear harmonic oscillator, a
kK — ) . . . . .
normal mode is either an oscillation purely in the plane ofconven}ent choice of canonical mome.ntum 'S one thgt 'S
the circleC® defined by the reference configuration, or an proportlonal to the square of .the a.mplltude of the oscilla-
oscillation purely perpendicular to that plane. It is evidentlion- The corresponding coordinate is the phase- « (see,
from the expression for the writhe as given in Eq. 42 that€:9~ Goldstein, 1981). Then the energy depends linearly on

during the motion associated with the excitation of any sucif® @nd is independent @. The constant of proportionality
mode, W, is always zero. in the definition of P must be chosen so th&t = wP.

It will also prove useful to have an expression for the Because, as we have already mentioned, the normal modes
writhe analogous to Eq. 37 for the energy, i.e., in the formof the elastic ring are formally identical to a collection of
of a sum over normal modes. In the case of the energy, eadinear harmonic oscillators, the same choice of canonical
mode makes a time-independent contribution to the totalvariables can be made. In terms of these canonical mo-
The situation is a bit more complicated here in that time-menta, Eq. 37 becomes
dependent cross-terms appear. The equation for the writhe

analogous to Eq. 37 is o 3
L , H=2 Z @ni(Pri(+) + Pri(—)), (45)
WD) = e S PP = 1) 3 rif[AG(H)A5(+) o
n=2 h=1 where
+ AL(—)AL(—)]cod (wn — wp)t + ani — ayl N
43 LI 2
+ [A(HAL(=) + A(-AL(H)] (43) Pu(*) = o (An(2))?%, (46)

- cog(wn + oyt + oy + gy} _ _
with h,; as in Eq. 38. As expected, the average energy of

each normal mode,
THERMAL FLUCTUATIONS: THE ENSEMBLE
AVERAGE OF THE WRITHE [0 PreXt] — wnPuke TP, dO,
00

We have now assembled the apparatus needed to apply t@gnipm> — , (47)
methods of equilibrium statistical mechanics to a canonical I [?"exf — wniPulks T]dP, dQy:

ensemble of elastic rings undergoing small-amplitude vibra- 00

tions. We are formally dealing here with a collection of

linear harmonic oscillators, one for each of the normalis kgT.
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The dependence of the writhe on the canonical coordiature; Hagerman, 1988), we may write Eqg. 53 in the form
nates is seen from Eq. 43 to be

W) = k) e NQAL 54
1 ™ 3 W) =— 145 ks (54)
_ T 2(n2 — 1)r{[AZ z
WD) = 2R? z‘z E‘l (= Do A(+H)A(+) whereAs® = 3.4 A is the separation between adjacent base
’ pairs.
+ Asi(—)AL(—)]cogQn — Q) (48) As QAL, approaches the critical buckling val_ues of
+V/3, h,, approaches zero, whereas, does not vanish. It
+ [ALG(HAY(—) + AL(—)A%(+)]cogQy + Q. follows that Eq. 52 predicts that in this limiyV.) increases

. . without bound, clearly a nonphysical result. This is not
During the computation of the ensemble average of th y Pny

ith int i th dinates. Th it nexpected, because the present theory is limited to the
writhe, oné Integrates over these coordinates. The resull Qe 5yment of nearly circular configurations, and so cannot be

that i_nt_egration Is zero for many of the term-s. In fact, it is used to describe the buckling phenomenon correctly.
not d!f‘fICU|t to deduce thqt aftgr the integration over all of In Fig. 1 we have plottedW,) versusQAL, (Eq. 52) for
the Q's, Eq. 48 for the writhe is of the form values ofQAL, between—1.6 and+1.6 at a temperature of
- 298 K, with N = 200, and withn,, = 20. The straight
A z 2 20 W2 broken line in the figure is a graph ¢#\,) as given by Eq.
W= 2 2w+ A (49) 5% e is valid whernQAL,| < 1.
In the sum overn in Eq. 52, the terms decrease in
where magnitude sufficiently rapidly that it matters little whether
the maximum value of, n,, is chosen to be infinity, or 20,
W — ne(n? — 1)r" (50) as has been done here, corresponding to a minimum wave-
nme Rz N length of 10As”. When|QAL,| << 1, the values ofW,) for
these two cases differ by 7%, given thato(20) = 0.701
When the canonical momenta are introduced into Eq. 49, ifng o() = 3/4. With increasing values ofAL,, the
becomes percentage difference can only be less because then, in the
sum ovem, the single term witn = 2 andi = 1 increases
_ in magnitude and dominates.
W= 2 _E(w"iwni/h"i)[P"i(+) +Pu(2)] (51 We also note that it follows from the form of Eq. 44, and
et from the nature of the dependence of the elastic enidrgy

Finally, after integrating over the momenta, we obtain forAL« that

n=2i=1

m 3

the ensemble average of the writhe, N /AL\/dInz
o W = 4#9( a )(aAL.)’ (5%)
Whi
(W) = 2ksT > X o (52)  where
n=2i=1 "
nm 3 o 2
We find that in addition to being proportional to the Inz=In]] H(J exr[—wmpni/kBT]de) .
absolute temperatur@yV,) is also proportional to the radius n=2i=1\J
of the ringR, or, equivalently, to the number of base pairs
N in the DNA plasmid. FurthermorgW,) is an odd function 03 <W>
of the productQAL,. It vanishes only whedL, = 0. That r
is, (W,) is not zero, even when the stable equilibrium state 02
of lowest energy, for the value @fL, considered, is circu-
lar, and hence of zero writhe. 01
When|QAL,| < 1, we have found that 1 T
o nm T -1.5 ----:}"_ = 0.5 1 1.5

(W) = - )k%RQALk, (CX) R o1 QAL
where 02

i 3 2nm +1 0.3

oy = (M- 1)t = 47 .+ 1)
n=2 FIGURE 1 Graph of the ensemble average of the writh& plotted

) . versusQAL, for a miniplasmid of 200 bp at a temperature of 298 K. The
(See, fOIj example, Jolley, 1925.) Because the raigT is straight broken line is a graph 6#,) as given by Eq. 54, which is valid
the persistence lengthof DNA (~500 A at room temper-  when|QAL,| < 1.
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Differentiating Eq. 55 with respect tAL, yields an equa-
tion for the variance of the writhe:

A’
a
Hence, for the miniplasmid that is torsionally relaxed in its

equilibrium circular reference configuratioal(, = 0), by
Egs. 54 and 56, the root mean square writhe is given by

(o

THE THERMODYNAMIC FUNCTIONS
OF SUPERCOILING

It has been shown that the Gibbs free energy of supercoi

N
41°Q)

W)

(We2) — (W2 = AL,

(56)

1 [o(ny)

2\ 2

(W2 (57)

ing, AG,, defined as the free energy of a plasmid having a
given delta link, relative to the free energy of that plasmid
when delta link is zero, has the property that its derivative

with respect to the delta link is simply related to the ensem
ble average of the writhe (Gebe et al., 1995),

kT
N

9AG,,

9AL,

a

a0l )

(AL — (WD). (58)

A

(We are again using conventional units for the energy here
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COMPARISON OF THEORY AND EXPERIMENT

The various experimental studies of thermal fluctuations in
nicked DNA plasmids lead to values for the free energy of
supercoilingAG,, which is often written in the form

AG,. = K(ALYA (65)
with AGSC = AG.JKgT, and withK assumed to be indepen-
dent of AL,. Certainly in the case of plasmids with many
base pairs, the data confirm thatis independent ofAL,.
For the smallest plasmids studied, those hav##§0 bp, it
is more difficult to measure directly the dependenc& ain
delta link. We have found that witN = 200 bp and)) =
1.4, over the rang®AL,| = 1, the theory predict& to be
constant to within 3%. Shimada and Yamakawa (1985)
I§imilarly found the distribution oAAL, to be close to Gaus-
sian for smallN.
For plasmids having many base pals all measure-
ments indicate thalNK is virtually independent oN. For
small values olN, the case for which the present theory is

valid, there has been some disagreement about the observed
dependence oK on N. The data of Horowitz and Wang
(1984) imply that, in this cas&K decreases with increasing
N, whereas those of Shore and Baldwin (1983) haNe
independent oN. The present theory supports the observa-
_tjons of Horowitz and Wang (1984). Of the two terms

Equation 58 implies that each of the thermodynamic func/aking up the free energy of supercoiling,,, Eq. 59, the

tions of supercoilingAG,, as well as the entropy of super-
coiling, AS,, and the enthalpy of supercoilingH,, are
also known oncéW,) is known. That is,

a \ksT[1 Al
AGSC: 47729 E W é(ALk)Z - j <VV,>dALk> (59)
0
g BT [* o)
AS, =4 Q(ASO)N o7 dALy (60)
0
AH,. = AG,, + TAS.. (61)

first is positive and varies inversely witN, whereas the
second, which is negative, is independeni\pfgiven that

(W) is itself proportional toN. It follows that the theory
predicts thaNK (= NAG.J/(AL,)?) decreases linearly with
increasingN. For the caséQAL,| << 1 (see Eq. 64),

a

AS (66)

NK = 2#9( ) — a(n,) ON.

The theory of Frank-Kamenetskii et al. (1985), valid for all
values ofN, also has\K decreasing with increasingwhen

N is small. Equation 66 becomes identical to the expression
given by Shimada and Yamakawa (1985) i, correct to
terms linear inN, whena(n,,,) is set equal t&4, its maxi-

In the present case, because the average writhe is Propqfi,m value. The latter workers note that the decreadéin

tional to the temperature, we have for the entropy of supe
coiling,

a kB AL
0
and, hence, for the enthalpy of supercoiling,
a \ksT 5
AHg. = 27TZQ<ASD>N(ALI<) . (63)

From Eq. 54 it follows that whetQAL,| << 1,

AS. = kBO'(nm)(QALk)Z- (64)

r-

with increasingN whenN is small “arises from the fluctu-
ation inW..” The formalism of this paper suggests that the
phenomenon can also be related to the difference il\the
dependence of the enthalpic and entropic contributions to
the free energy of supercoiling. As Egs. 63 and 64 show, the
enthalpy of supercoiling varies inversely with whereas
the entropy of supercoiling is independenthfHence one
can also say that it is the increaseTinS,; relative toAH,
asN is increased that accounts for the decread¢lrwhen
N is small.

Among the smallest of the plasmids studied by Horowitz
and Wang (1984) was one wibth= 210 bp. With this value
of N, and the values for the elastic modAlandC assumed
by the experimenter€Y = 1.4,a = 500 A), Eq. 66 predicts
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thatNK is 3.8 X 10° at room temperature. The correspond- + QR + ) + 2(R + n)(n* — 1))n’R*
ing measured value is 3910.
We also note thaNK in the limit of N becoming zero, M= (("* — 1’2(* — 1 + Q) + Q(R? + )

(NK)o, is the first term of Eq. 66, i.e. + O — (M — 1)2 + R + 1)) — 2(QAL,)?

(NK), = Z#Q(Aaso), (67) - (n? — 1)?)n'R2

_ 6(1~2 2(2 2
which, withQ = 1.4,a = 500 A, andA<® = 3.4 A, equals Mo = —n°(n" = DAn* — 1 — (QALY").
4.1 % 10°.

The author is grateful to Bernard Coleman, Marzio Lembo, and David
Swigon for reading the manuscript and making valuable suggestions. This
paper was a research contribution presented at the DIMACS/MBBC/
PMMB Workshop on DNA Topology, Rutgers University, April 1997.
This research was supported by the United States Public Health Service
under grant GM34809.

APPENDIX A

To present the equations of motion in the form of Eq. 15, we chidSg'¢
as the unit of lengthl, (o/SA*? as the unit of time, andSAl) as the unit
of force. Here we give the values of the units of length, frequency,
I~Y(SAp)*? and energyA(S/1)*2 for the case of a DNA molecule mod-
eled as an elastic rod.
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