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Evidence for a Novel Bursting Mechanism in Rodent Trigeminal Neurons
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ABSTRACT We investigated bursting behavior in rodent trigeminal neurons. The essential mechanisms operating in the
biological systems were determined based on testable predictions of mathematical models. Bursting activity in trigeminal
motoneurons is consistent with a traditional mechanism employing a region of negative slope resistance in the steady-state
current-voltage relationship (Smith, T. G. 1975. Nature. 253:450-452). However, the bursting dynamics of trigeminal
interneurons is inconsistent with the traditional mechanisms, and is far more effectively explained by a new model of bursting
that exploits the unique stability properties associated with spike threshold (Baer, S. M., T. Erneux, and J. Rinzel. 1989. SIAM
J. Appl. Math. 49:55-71).

INTRODUCTION

Neuronal bursting is produced as slow membrane process@sy (Benson and Adams, 1989; Canavier et al., 1991; Rinzel
dynamically modulate the activity of faster membrane pro-and Lee, 1987).
cesses responsible for action potentials. Specific mecha- Another mechanism for bursting has been proposed the-
nisms for bursting have been studied mathematically andretically (Av-Ron et al., 1993; Bertram et al., 1995; Honer-
can be differentiated based on mechanism and phenomendamp et al., 1985; Rinzel, 1987, Fig. 4; Wang, 1993b) but
ogy (Bertram et al., 1995). has not yet been identified experimentally. This novel
Traditional bursting systems require inactivation-resistantnechanism, which we will call type 3 bursting, based on
inward currents that create a region of negative slope resiBertram’s classification scheme (Bertram et al., 1995), does
tance (NSR) in the steady-state (or quasi-steady-state) cumnot require a region of NSR in the steady-stiatérelation-
rent-voltage ItV) relationship (Canavier et al., 1991; Li et ship, but rather exploits unique stability properties near
al., 1996; Schwindt and Crill, 1980; Smith, 1975). The spike threshold. The mechanistic framework also predicts
N-shapedI-V relationship provides the potential for two phenomenology that can be used empirically to identify
stable voltage states, one on each side of spike threshotgipe 3 bursting: 1) bursting evolves from intermittent dis-
(one state is quiescent and the other oscillatory). The celtharge as cells are depolarized by current bias, 2) bursts
then alternates between the two states during bursting (alnitiate with a slow linear voltage trajectory (as opposed to
though it need not be bistable). The regenerative region o& rapid voltage upswing in traditional bursting), 3) full-
inward current separating the stable states predicts phenoramplitude spikes emerge from subthreshold oscillations (as
enological features that can be used to identify traditionabpposed to a steady-state potential as in traditional burst-
bursting in the laboratory, where membrane potential isng), and 4) spike frequency may not decline at burst
frequently the only measurable variable: 1) cells can bdermination.
locked into quiescent or active states by sufficient current Bursting mechanisms in rodent trigeminal neurons con-
bias; 2) bursts initiate rapidly, in contrast to the slow tra-trolling jaw movements can be assigned based on the the-
jectory of the quiescent phase, with a marked upswing iroretical predictions above. Using experimental data, we
membrane potential; 3) spikes in the active phase emerge atentify, for the first time, type 3 bursting dynamics in a
full amplitude from the steady-state membrane potential obiological system: the neonatal rat trigeminal interneuron
the quiescent phase; and 4) burst termination is accompdT1). We contrast this new mechanism with the traditional
nied by a decline in spike frequency. Traditional burstingbursting that occurs in trigeminal motoneurons (TMNS)
has been observed in many experimental preparations. Cé-siao et al., 1998).
nonical examples include the pancreaficcell (Ashcroft
and Rorsman, 1989; Atwater et al., 1980) for bistable (or
type 1; Bertram et al., 1995) bursting aiglysids R15 MATERIALS AND METHODS
neuron for parabolic (or type 2; Bertram et al., 1995) burst-
Electrophysiological experiments were performed on Tls obtained from
300-um-thick transverse slices of neonatal rat brain stem (0-7 days).
| Slices were perfused (4 ml/min) at room temperature by oxygenated

solution containing (in mM) 124 NaCl, 3 KCI, 1.25 NaPiO,, 26
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Intracellular recordings from TMNs were obtained from 4&@-thick decreasing). The active phase begins when the system
transverse brain stem slices from adolescent guinea pigs (150-250 9) 8§ unds the left knee of the slow manifold, where the unsta-

shown previously (Hsiao et al., 1998). Slices were perfused in a gas . .
interface chamber at 33-34°C with oxygenated solution containing (inble middle branch (composed of saddle points) and the

mM) 130.0 NaCl, 3.0 KCI, 1.25 K5PO,, 20.0 NaHCQ, 10.0p-glucose, ~ IoWer stable branch meet in a saddle-node bifurcation
2.4 CaC}, and 1.3 MgSQ Microelectrodes were filled wit 3 M KCI (Hindmarsh and Rose, 1984). At the saddle node, the limit
(15-20 MY). Experiments were performed with an Axoclamp 2A amplifier cycle attractor surrounding the upper branch of the slow

(Axon Instruments). o _ manifold becomes globally attracting. Therefore, the system
Bursting dynamics were studied in minimal mathematical models by

exploiting the disparate time scales of fast and slow membrane processeg,{ag'ns Its O_SC.I||a.tOI’y phasg asymptotlcally close to ) but
these define the FAST and SLOW subsystems of full models (RinzelOutside of this limit cycle. This topology ensures that spikes

1987). All models have the same general form: emerge at full amplitude in the active phase (Figd)1
FAST: addt = F(x, 2), 1 qulng the active phasg, SLOW sweeps the periodic
solution through a hysteresis loop along the upper branch of
SLOW: dz/dt = aG(X, 2), (2) the slow manifold. Within this loop, stable oscillatory and

stable steady-state attractors coexist for given values of

where XeR?, zER", and 0< « << 1. Lo : : : . -
The FAST subsystem is a two-dimensional abstraction of action potentia-lrhe periodic solution continues until the spike oscillation

dynamics according to Fitzhugh and Hindmarsh-Rose (Fitzhugh, 1961_?0ntaCt3_ the unstable middle branch (EigA). At this
Hindmarsh and Rose, 1982). This treatment preserves the essential featuigdersection, the stable and unstable manifolds of the saddle
of spike trajectory and frequency while facilitating the geometric analysiSpoint converge with the limit cycle, resulting in a homo-
of FAST dynamics in planar state space. The steady-state and oscillator()’("mC orbit (Wang, 1993a). The homoclinic orbit signals
solutions of FAST were determined by allowing all FAST variables to tt inati 6 ’ h due to SLOW ultimatel
assume equilibrium values, with the SLOW variables treated as paramt,l-)urs ermination, becalse changes aue 0. ulimately
ters. Formally, withz as a vector of parameters, the steady-state solutionsause the system to cross the stable manifold of the saddle
of FAST satisfy (a separatrix) and return to the lower stable branch of the
0= F(xg 2) 3) slow manifold, thus beginning the quiescent phase. As
s mentioned, this type of traditional bursting exhibits hyster-
wherexis the equilibrium value fox at givenz. Oscillatory solutions of  esis-based bistability, because the FAST subsystem has two
FAST satisfy solutions (one quiescent, one oscillatory) zavalues en-
Xoolt + T2 2) = Xeedt; 2), (4) countered d_urlng burst cycle_s (Fig.A). _ _
If SLOW is planar i = 2 in Eq. 2), parabolic bursting
wherex, . represents th& values andr represents the period of the limit may result (Bertram et al., 1995; Butera et al., 1996; Rinzel

cycle. A bifurcation diagram of solutions to FAST can be generated usingalnd Lee, 1987). In the Chay-Cook model of parabolic
z as a control parameter, whexg is a continuous collection of stable and ! ) y P

unstable critical points and.is displayed by the maximum and minimum  0Ursting (Appendix), the slow manifold is a Z-shaped sur-
voltage amplitudes of the limit cyclex (., andx.,, respectively). The face (Fig. 1B). Active phase initiation similarly occurs via
collection of stable and unstable equilibrium points represents a slowg saddle-node bifurcation at the left knee of the slow man-
manif_old, because the system t'ravels'slowly along t_his stru_cture dur_iano|d, wherec values are low and is increasing. As the
bursting cycles when SLOW variables interact dynamically with FAST in . . .
the evolving system (e.g., Fig.A). The transitions between quiescent and active phase ensues, b‘-f’ih,”dc mcrease..Therefore, during
active phases of bursting occur at bifurcations of FAST. This analysisthe active phase, the limit cycle remains along the upper
pioneered by Rinzel (Rinzel, 1987; Rinzel and Lee, 1986), presumes thddpranch of the slow manifold, left of the left knee (FigB)L
in the fu_II m_od_el, FAST reIax‘es tq steady-stat‘e behavior a_lt every point OfAIthough c continues to grow throughout the burstgon-
SLOW, justifying the bifurcation diagram obtained by treating SLOW as a 5o ently declines, and the trajectory again contacts the left
parameter (which is reasonable if<0 « << 1). Simulations employed a . .
fourth-order Runge-Kutta, adaptive time-step integration method (maxi-knee of the slow manifold (at highervalues). Therefore,
mum accuracy parameter 1%) (ModelMaker 3.0; Cherwell Scientific, the active phase of parabolic bursting terminates via a
Oxford, UK). Physiological data were analyzed using Datapac Ill, v. 1.47homoclinic orbit when the spike oscillation contacts the
(Run Technologies, Irvine, CA). saddle-node singularity. There is no hysteresis-based bi-
stability (as in Fig. 1A) in parabolic bursting models. The
RESULTS bifurcations associated with phase transition are both
formed where a saddle-node singularity intersects a limit
cycle, called a saddle-node-on-an-invariant-circle (Bertram
Traditional bursting mechanisms utilize a Z-shaped slowet al., 1995; Guckenheimer et al., 1997). The unbounded
manifold whose structure is directly related to and generateg@eriod associated with these homoclinic transitions gives
by the region of NSR in the steady-stdt¥ relationship. rise to the characteristic parabola seen in the spike fre-
The simplest form of traditional bursting occurs when thequency-time plot for which parabolic bursting is named
SLOW subsystem is one-dimensional= 1 in Eq. 2) (Fig. (Rinzel and Lee, 1987, see their figure 6). However, the
1 A). The quiescent phase of bursting in the Hindmarsh-acceleration of spike frequency at burst onset is less obvious
Rose model (see Appendix) takes place on the lower stabli@ some bursting models (such as that in Fig)lwhere the
branch of the slow manifold; SLOW causes the evolvingfirst transition (burst initiation) occurs more rapidly than the
system to approach the left knee of the manifoldi{  second (termination).

Mathematical bursting models
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FIGURE 1 Topological and phenomenological features of minimal bursting mo#glEhé Hindmarsh-Rose model of bistable bursting (Hindmarsh and
Rose, 1984; Wang, 1993a). The Z-shaped slow manifold is illustratepvipgtate spacdéft). The lower branch of the slow manifolddlid lineg contains

all stable steady-state solutions to FAST)and connects to the unstable middle branch of saddle pdirdken line¥ at the left knee of the slow manifold.

The upper branch (unstable foci) connects with the middle branzh=at. The upper branch is surrounded by stable periodic solutions of FASJ (
representing action potentials (maximum and minimum voltageg,Qfare shown bw,,., and v,.,;,, respectively). The bursting trajectory obtained
numerically ¢hin solid ling travels clockwise along the slow manifoldrowhead indicating direction is shown on lower stable brgndthe saddle node
(SN) and homoclinic bifurcations (HC) associated with burst initiation and termination, respectively, are illustrated. A time series of hutiséing i
Hindmarsh-Rose model is showright, same voltage scale as state-space graph oleffie(B) Parabolic bursting in the Chay-Cook model (Bertram et
al., 1995; Chay and Cook, 1988). The slow manifdédt) is a Z-shaped surface with identical stable and unstable branchesAaA ioursting trajectory
obtained numerically (superimposed) moves clockwisesinv( c) space ¢ plotted in reverse order). The saddle-nodes-on-invariant-circles (SNIC)
bifurcations associated with phase transition (Bertram et al., 1995; Guckenheimer et al., 1997; Rinzel and Ermentrout, 1989) (see text)arthéocated
left knee of the slow manifold, and all share the sawalue. A time series of parabolic bursting is showiglt). (C) The Fitzhugh-Rinzel model of type

3 bursting. We adjusted the parameters to obtain a quiescent phase that settles into its steady-state voltage (compareAtinfigiunzel 1987). The
slow manifold, illustrated inZ, v) space left), is approximately lineartlick solid ling. At z= —0.5, the stable branch containimg, (center) destabilizes

via subcritical Hopf bifurcation (where the eigenvalues of the Jacobian matrix of FAS@ arbi anda = 0, b # 0) and is surrounded by a stable attracting
limit cycle (v,s, Shown by maximum and minimum voltages excursiaps, andv,,,, respectively). The stable branch of limit cycles intersects the branch
of unstable limit cycleskroken line} atz ~ —0.43, a saddle-node-of-periodics (labeled SNP in the figure) bifurcation associated with burst termination.
The dZdt nulicline is also illustrated (see text for explanation). A bursting trajectory obtained numerically is shown in statde$pabin (solid lines with
arrowheadsindicating direction) and as a time serieg/t).
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Traditional bursting neurons share the characteristics deperiodic attractor. The system spends time both above and
rived from a Z-shaped slow manifold, including saddle-below the d/dt nullcline during limit cycles in the active
node and homoclinic bifurcations mediating phase transiphase, the portion for whichzitit > 0 predominates during
tion. We classify trigeminal neurons &mditional if they  each spike, causing a net increase iBecause there is a net
exhibit the phenomenological features associated with thigncrease irz during each spikez increases throughout the
topology, but we do not distinguish whether the burstingactive phase. The spike oscillation ultimately terminates at
behavior is bistable or parabolic. a saddle-node-of-periodics bifurcation, where the stable os-

Type 3 bursting does not employ a Z-shaped slow maneillatory branch merges with the inner unstable branch of
ifold. Instead, the slow manifold is an approximately linearlimit cycles associated with the subcritical Hopf structure.
branch of stable foci that destabilize at a subcritical HopfThe intersection of stable and unstable oscillations annihi-
bifurcation. To initiate the active phase in the Fitzhugh-lates both periodic solutions, causing the system to return to
Rinzel model of type 3 bursting (Appendix), the SLOW the approximately linear, stable branch of the slow mani-
subsystem causes a slow passage through the Hopf poiritld. The cycle restarts asbegins to decrease again (be-
This transition occurs because the system, in its quiescemiause the system lies below thgdi nulicline) (Fig. 1C).
phase, lies below theztilt nulicline (Fig. 1C). In the region
of state space below thezdt nulicline, dZdt < 0; conse-
quently,z is decreasing and the system moves through th(;_
Hopf point. The system tracks the branch of unstable foci
(whose vectors are minimal in the vicinity of the bifurca- The Z-shaped slow manifold required for traditional burst-
tion) after passing the Hopf point, and later spins away fromng reflects, in the context of a bifurcation diagram, the
the unstable branch to join the outer stable limit cyclepresence of NSR in the steady-stdt¥ relationship. In
attractor (Fig. 1C). Phenomenologically this results in contrast, to produce the flat manifold characteristic of type
subthreshold oscillations that grow to full-amplitude spikes3 bursting, a region of NSR in the steady-stltérelation-
after a delay (Baer et al., 1989). ship is not necessary. Therefore, by observing the steady-

The subcritical Hopf bifurcation of the type 3 model statel-V curve in bursting neurons, we glimpse the topo-
allows stable point and stable oscillatory attractors to coextogical structure of their slow manifold.
ist near the Hopf point (Rinzel, 1987; Rinzel and Ermen- A region of NSR was observed in the steady-staté
trout, 1989) (Fig. 1C, left where —0.5 < z < —0.43). relationship of TMNSs that burst in the presence of serotonin
Therefore, during the active phase when SLOW moves théHsiao et al., 1998) (Fig. 20). Conversely, TIs never
oscillatory solution back through the Hopf poirt i€ in-  exhibited a region of NSR, regardless of protocols used to
creasing beyone-0.5; Fig. 1C), the system continues in its generate thé-V relationship (Fig. 2B). Thel-V curve of a
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FIGURE 2 The steady-state current-voltage relationship of trigeminal neurdnghd steady-statéV curve of a TMN in the presence of 1M
serotonin obtained by a slow voltage ramp protocol (7.5 mV/s). Regenerative inward currents underlying the region of NSR act2at@aftThe curve

is obscured at potentials more positive thad0 mV due to spike oscillations in unclamped regions of the soma-dendritic membrane. More complete
steady-staté-V curves for TMNSs, obtained in the presence ofilld serotonin and 0.M tetrodotoxin, are available (Hsiao et al., 1998). Bursts initiated
autonomously in this TMN, because the region of NSR was located in the region of net inward duetewtthe zero current axis, dotted lin®ursting

in this TMN is shown in the insetf0.1 nA holding current).R) Steady-statéV curve in a Tl in the presence of 2fM bicuculline and 5uM strychnine

to block spontaneous inhibitory synaptic noise. Three protocols were used: long-duration voltage step commapes (8gsiares slow voltage ramps

(10 mV/s,solid line), and fast voltage ramps (in the presence of @\b tetrodotoxin to block N& spikes) (100 mV/sgot9. The inset shows bursting in

this Tl (+65 pA holding current) (same cell as in Fig. 3).
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representative Tl was obtained in response to long-duratiohehaviors. A representative example of bursting in a TMN
voltage step commands (5 s), a slow voltage ramp (10s shown in Fig. 3A (middle tracg. When this cell was
mV/s), and a fast voltage ramp (100 mV/s). The fast rampbiased by hyperpolarizing current injection, it remained
protocol was performed in the presence of tetrodotoxinquiescent (Fig. 3, bottom tracg Conversely, when biased
Slow and fast ramps were used to assess the quasi-steadyith depolarizing current, the cell became tonically active
statel-V relationship, because in some traditional bursting(Fig. 3 A, top trace.

neurons the currents underlying the region of NSR can We expect type 3 bursting to differ from traditional
undergo inactivation (Benson and Adams, 1989; Canaviebursting in several ways. First, type 3 cells should be able to
et al., 1991). These data demonstrate that TMNs, whiclmaintain quiescence at more depolarized potentials than in
exhibit a region of NSR, can possess a Z-shaped slowraditional bursting neurons. This is predicted because the
manifold, whereas Tls cannot. negative slope region of tHeV curve in traditional bursting
creates a range of potentials that are inaccessible to the cell
under current-clamp conditions. The neuron is forced to
assume either the hyperpolarized (quiescent) or depolarized
The region of NSR expressed by traditional bursting neu{oscillatory) state, depending on the position of the NSR
rons implies that a stable steady state and a stable oscillatowith respect to the zero-current axis. Therefore, the tradi-
state can exist, separated by tens of millivolts, on either sidéonal burster can only be locked in the quiescent state at
of a spike threshold. These states in thé curve corre- subthreshold potentials more negative thanlthecurve’s
spond directly to the lower (quiescent) and the upper (osturning point (where the NSR begins, e.g52 mV in Fig.
cillatory) branches of the slow manifold. The system can2 A). Because the type 3 bursting system does not possess
reside at either state, depending on the position of the NSRISR, it does not destabilize at subthreshold potentials and
with respect to the zero-current axis. During bursting,can remain quiescent untii membrane potential exceeds
SLOW causes the system to alternate between states. Howspike threshold.

ever, the position of the NSR can also be experimentally However, we must consider the effect of noise in the
manipulated by constant current injection. Therefore, ifexperimental setting, and the fact that the unstable limit
TMNSs experience traditional bursting dynamics, then cur-cycle born at the Hopf point acts as a separatrix. As the cell
rent bias of sufficient magnitude and polarity should lockis biased toward spike threshold, the basin of attraction for
the neurons into nonalternating quiescent or tonic spikinghe stable focus point becomes smaller as the branch of

Behaviors in response to current bias

FIGURE 3 The behavior of trigeminal neurons in
response to current bias and trajectories of bursf
initiation. (A) 10 uM serotonin-induced bursting in
this TMN (middle trace —0.2 nA holding current)
could be converted to stable quiescent behavior (at
—70 mV) by increasing the hyperpolarizing current
injection to —0.8 nA (ower tracé, or to tonic spik-
ing activity by sufficient depolarizing current injec-
tion (+0.1 nA,upper tracg. (B) An example of burst
initiation in TMNs expanded from (boX. Note the
rapid upswing in voltage trajectoryC] Bursting
activity in Tls emerged as the cells were progres-
sively depolarized to potentials near and above spike
threshold (45 mV). This TI's resting potential was

-55

—65 mV (not shown). At the quiescent potentials 61

—50 and —47 mV, the bias current was20 and

+25 pA, respectively lower trace3. These quies- -70 -50 AT oo A
cent states were more depolarized than quiescent

potentials in TMNs:—47 (C) versus—70 mV (A). 12s 1s

Intermittent discharge occurred near threshold,; biasB
currents were+30 and +45 pA at near-threshold
potentials—45 and —43 mV, respectively rhiddle
trace9. Bursting occurred when Tls were biased to
suprathreshold potentials-@9 mV, +65 pA holding
current, top trace. This Tl was recorded in the
presence of 2(M bicuculline and 5uM strychnine

to block spontaneous inhibitory synaptic noisB) (
An example of burst initiation in Tls expanded from
C (boX. Note the linear voltage trajectory and grow-
ing subthreshold oscillations. Voltage calibration ap-
plies to all traces. Time calibrations are separate for
AandC.
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unstable limit cycles converges to the Hopf point (Fig21  more, the trajectory through a Hopf bifurcation is not ex-
left). Consequently, near spike threshold any noise sourcpected to illustrate a voltage upswing, because the slow
could cause the system to cross the separatrix and produoganifold is approximately linear, not Z-shaped. Consistent
spikes. Therefore we predict that type 3 bursting, in anwith this mechanism, Tls approaching the active phase
experimental setting (where noise is a factor), should evolvexhibit a linear voltage trajectory accompanied by growing
from intermittent spike discharge as the cell is depolarizedscillations (maximum amplitude 10 mV) preceding full-
progressively toward threshold. amplitude spikes (Figs. B and Fig. 4B).

Tls satisfy these criteria. The cells are quiescent at rest
(—65 mV for the cell in Fig. 3C, not shown), and remain Burst termination
quiescent at more depolarized potentials than TMNs (com-
pare the bottom rows of Fig. 3 andC). TIs discharged In traditional bursting neurons, the active phase terminates
intermittently when biased near threshold (approximatelyia homoclinic orbits. Phenomenologically, this produces a
—45 mV). Intermittent discharge increased with greatermonotonic spike frequency decline near burst termination.
depolarization (Fig. &, middle row, suggesting sensitivity To examine the spike frequency profile of TMNs during
to intrinsic and synaptic noise. When biased to suprathrestbursting, the intraburst instantaneous spike frequency was
old potentials 39 mV), bursting resulted (Fig. G). plotted below burst episodes in time series (FigA}
Frequency was highest near active phase initiation and
exhibited a quasimonotonic decay approaching termination.

A similar analysis of intraburst spike frequency in Tls
The membrane potential trajectory in traditional bursting isillustrates nearly constant spike frequency throughout the
slow during quiescent phases, governed by the slow menburst episodes (Fig. B). When declining spike frequency is
brane processes. However, progressing from the quiescenbt present as burst termination is approached, a homoclinic
to the active phase, the cell reaches the membrane potenti@echanism is impossible. The alternative for burst termina-
for activation of inward currents constituting the NSR (Fig. tion is the saddle-node-of-periodics bifurcation for which
2 A). The regenerative nature of the currents ensures thamtraburst spike frequency is indeterminate (Bertram et al.,
spike threshold is crossed in a rapid voltage upswing, whicl1995), though bounded (Guckenheimer et al., 1997; Rinzel
tracks the curvature of the slow manifold at its left knee andand Ermentrout, 1989). This mechanism is consistent with
underlies the prediction that spikes emerge at full amplithe spike frequency profile of Tls.
tude. TMN bursting, expanded near active phase initiation,
illustrates this characteristic transition (FigB3}.

In contrast, the active phase of type 3 bursting initiates aPISCUSSION
a Hopf bifurcation that predicts the emergence of subthresh¥e identify the mechanism of bursting in trigeminal neu-
old oscillations that grow to full-amplitude spikes. Further-rons based on phenomenological predictions of minimal

Burst initiation

-60
40 -
E 30 4 s t i : 30 A
>
§ 20 20
3 ”r o D Sy,
g 10 | ‘ 10| St R Py e
= H 1 ! :
0 0J
1 min 4s

FIGURE 4 The phenomenology of burst termination in trigeminal neur@nan( B) Bursting behavior is illustrated for a TMM\f and a Tl 8). The
instantaneous spike frequency was plotted synchronolshkef) with the same ordinate axis for frequency (Hz)ArandB. Voltage calibration applies

to A andB; time calibrations are separate. Holding currentéiandB were 0 nA and+18 pA, respectively. Records from the TMN Awere obtained

in the presence of 1M serotonin. Records from the TI iB were obtained in the presence of 20M bicuculline, 5 uM strychnine, 10uM
6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX), and Ml d,l-2-amino-5-phosphonovaleric acid (APV) to block all spontaneous synaptic
activity in this cell.
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models. These features include voltage trajectory, intraburgk novel bursting mechanism in Tls
spike frequency profile, and qualitative response to curren
bias, which is behavior related to the topology of the slow
manifold.

éurst initiation in Tls must occur via Hopf bifurcation,
because these neurons lack the region of NSR required for
a saddle-node bifurcation and exhibit a linear voltage tra-
jectory accompanied by growing subthreshold oscillations
Traditional mechanism in TMNs at burst onset. Hopf bifurcations in excitable membrane
models are generally subcritical (Fitzhugh, 1961; Rinzel
and Ermentrout, 1989). Because a subcritical Hopf bifurca-
tion surrounded by a stable limit cycle produces the topo-

curve is subthreshold and corresponds to the left knee of th'é’g'ﬁ’?' structu_re for a saddlg nodp of periodics, apd Tls
Z-shaped slow manifold. The voltage upswing that occursexh'b't no notlcgable decline in sp|ke. frequency'durlng the
during burst initiation is consistent with the trajectory pre- active phase (Fig. 4), burst termination in TIs is best ex-

dicted by this shape. Because the region of NSR is IocateBIe_lllﬂed by tthe sadgle-pode—o:-pre]rlodlcs rrplechamst:n.
in the area of net inward current (i.e., below the zero-curren% i Pi .ext;s. en((:jeto qwe;(]:en hpldalses ;N e mem _rgge po-
axis; Fig. 2A), membrane potential approaches this turning entialis biased 1o suprathresnold levels (e-g33 or
. : mV in Figs. 3 and 4, respectively) depends on the mathe-
point autonomously, albeit slowly. i fol h h the Hobf bif tion. Wh
The decline in spike frequency that precedes burst termj1atics of slow passage through the Hopt briurcation. en

— o : lowly, the excitable system destabilizes after the
nation in TMNs suggests an approach to a homoclinic orblt.r"’lmpe(j S ' . .
99 bp ontrol parameter exceeds the Hopf point predicted by

However, whereas homoclinic mechanisms of termination’; . . S
ifurcation analysis; this is due to a delay effect (Baer et al.,

require spike frequency decay, the spike frequency profil "

for burst termination through a saddle-node-of-periodics i51989)_ _'.” terms of our obser.vable quantity, voltage, the cell

indeterminate, though bounded. Theoretically, bursts ma estabilizes only after passing threshold (as determined by
' ' heobasic step commands).

initiate at a saddle-node bifurcation, yet terminate in a The bursti fivity | tal rat Tl ts th

saddle node of periodics (Bertram et al., 1995). Thereforef. tde urs Intg dac ity Iln nfegna; a r:’;\ lgsgge[f[)rese;bs te

the possibility that TMN bursts terminate in a saddle node >t documented exampie of bertram S ( ) ype urst-
g in a biological system. Although a type 3 mechanism

of periodics cannot be eliminated. Nevertheless, we favo

the homoclinic mechanism for TMNSs. First, the saddle-nod ochilﬁsiﬁ;srgggjr?i?]év}/r?g%inl:;:?)ti% fsgrigx_?aﬁétnglumnal
to saddle-node-of-periodics variation of bursting identified . N

by Bertram et al. (1995) was confined to a relatively smalllg.g.l) and rat.thalamus (Pmault and Dgschenes, 1992?’ the
region of parameter space. Second, the saddle-node-of-pgt'gmal experimental studies characterized the oscillations

riodics bifurcation in nerve models is usually connected toW'thOUt investigating the underlying dynamics from a topo-

a subcritical Hopf bifurcation by the branch of unstableIOgiCaI perspective. Fl.thh'ermore, a recent report iIIustratgs
limit cycles (Fig. 1C). Therefore, the stable branch of foci, such 30_40.'HZ osglllatlons, .v_vhose phgnomenology 'S
which emerge from the Hopf point and become gIobaIIyequa"y consistent with a traditional bursting mechanism

attracting at the saddle-node-of-periodics bifurcation, mus{Sterlade etal., 1998). Therefore, the Tl is the first bona fide

be located between the maximum and minimum voltageexample of type 3 bursting.

amplitudes of the stable limit cycle (see Fig.Cl left).
TMNs often hyperpolarize at burst termination to levels
more negative than the minimum voltage of the action
potential (e.g., Fig. 4); this is inconsistent with the topol- Type 3 bursting behavior is sensitive to intrinsic and syn-
ogy of a saddle node of periodics and favors a homocliniaptic noise. Perturbations during the quiescent phase can
mechanism such as that in Fig AL cause sporadic action potentials or prematurely initiate an
The responses of TMNs to current bias further supporibbreviated active phase by causing the system to cross the
the presence of a Z-shaped slow manifold, as suggested Isgparatrix created by the branch of unstable limit cycles
thel-V curve. TMNs were locked into silent or tonic spiking born at the subcritical Hopf bifurcation. Because the sepa-
behaviors when biased away from their “normal” burstingratrix converges at the Hopf point, effective perturbations
state by hyper- or depolarizing current injection (FigA)3  can be of extremely small amplitude in the vicinity of the
Topologically, maintained quiescence corresponds to corbifurcation. This explains why TIs discharged intermittently
fining the system to the lower stable branch of the slownear threshold (Fig. &). Noise sensitivity causes variabil-
manifold (to the right of the left knee). Conversely, tonic ity in the frequency and duration of burst cycles and may
spiking corresponds to the system confined to the uppeinterrupt the regularity of bursting rhythms. However, this
oscillatory branch of the slow manifold (left of the left sensitivity to perturbation may also facilitate phasic control
knee). The requisite current bias must be of sufficient magef Tls by small-amplitude synaptic inputs in the context of
nitude to override the tendency of the SLOW subsystem tametwork activity.
induce phase alternation by causing the system to cross theln contrast to type 3 bursting systems such as the TI,
left knee of the slow manifold. traditional bursting systems require larger perturbations for

Burst initiation in TMNs occurs via saddle-node bifurca-
tion. The region of NSR in TMNs activates neab2 mV
(Fig. 2 A) (Hsiao et al., 1998). This turning point of thé&/

Physiological implications
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phasic modulation. In bistable bursting (FigA}, the two  Time constants and activation functions are
stable states are separated by tens of millivolts inltkie _
curve (and reflect separate branches of the slow manifoldf.(‘”(v) =@ +exfdE—-vS) x=mn)
Therefore the perturbation required to move the syste _ -1
between basins of attraction is much larger than that rg%” (v, €)= (1 + ex2Av. 9]
quired to move a type 3 neuron across its separatrix. Al (y) = 7.1 + exf (v — E)/S,])
though parabolic bursting systems do not exhibit hysteresis-
based bistability (e.g., Fig. 1A), they do exhibit 7(v,c) = 7{2 coslA(v, c))]™:, A(v,c)
multistability among periodic attractors (Butera, in press;
Canavier et al., 1993), and are sensitive to phasic perturba- = (E+ Sin(cy) —VI2S,
tion (Demir et al., 1997). Again, the p'erturbationsf requir'edWith parameters, — c/(1 uM), g, = 250 pS.g. = 10 pS.gx = 1300 pS,
to move between basins of attraction in a parabolic bursting - 50 ps . = 0.6,a = 0.0015k, = 0.03 ms?, Ec, = 100 mV,E =
system are relatively large compared to type 3 neurons. —80mV,E, = —60 mV,C,, = 4524 fF,7,, = 9.09 ms,7yo = 10 S,E,, =

Itis believed that the intrinsic autorhythmicity of bursting —22 mV.E, = -9 mV,E;= —22mV,§, =7.5mV,§, =10 mV,§ =
neurons can contribute to the genesis of rhythmical motof0 MV andf = 5.727x 10°° uM fA"* ms ™. . _
behavior (Marder and Calabrese, 1996). Neural pacemake The Fltzhugh-Ran(_eI model of novel (t_ype 3) _burstlng (Rlnzel, _198_7)_|s.

. ) : . 5?30 abstracted to arbitrary voltage and time units for analytical simplicity:

are hypothesized to interact with a network to produce final

output patterns (for example, see Smith, 1997). Depending FAST: dvdt=w— 40\ —v) — z
on the need for modification of motor patterns, it may be
advantageous in some motor systems to incorporate pace- dw/dt = —(4v + 1 + w)

maker neurons with high sensitivity to perturbation of _ Wt |
phase. Whereas traditional bursting systems are less sensi- SLOW: t=a(1.25 — [z~ 2)/4]),
tive to perturbation (i.e., require large amplitude perturba- — 0.003 _

. X . =0. ands, = 1.33.
tions), the novel type 3 bursting behavior that we charac- “ %o

terize in TIs is profoundly sensitive to small-amplitude

phasic perturbation. We thank Marvin Z. Castillo for technical contributions.
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