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ABSTRACT The origin of Ibnull, the Ca21 current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR)
b1a subunit, was investigated. The density of Ibnull was similar to that of Idys, the Ca21 current of myotubes from dysgenic mice
lacking the skeletal DHPR a1S subunit (20.6 6 0.1 and 20.7 6 0.1 pA/pF, respectively). However, Ibnull activated at
significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 6 1.1 mV and 11.7 6 1.0 mV for Ibnull and
Idys, respectively. Ibnull activated significantly more slowly than Idys. At 130 mV, the activation time constant for Ibnull was 26 6
3 ms, and that for Idys was 7 6 1 ms. The unitary current of normal L-type and b1-null Ca21 channels estimated from the mean
variance relationship at 120 mV in 10 mM external Ca21 was 22 6 4 fA and 43 6 7 fA, respectively. Both values were
significantly smaller than the single-channel current estimated for dysgenic Ca21 channels, which was 84 6 9 fA under the
same conditions. Ibnull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR a1

subunits underlying these currents are different. Ibnull is suggested to originate primarily from Ca21 channels with a DHPR a1S

subunit. Dysgenic Ca21 channels may be a minor component of this current. The expression of DHPR a1S in b1-null myotubes
and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.

INTRODUCTION

The dihydropyridine receptor (DHPR) of skeletal muscle
comprisesa1S, b1a, a2/d, and g subunits. This complex
serves as a voltage sensor for excitation-contraction (EC)
coupling and is responsible for the L-type Ca21 current
present in these cells. Functional expression of cDNAs in
dysgenic myotubes supports the view that thea1 subunit of
the DHPR determines, to a large extent, the properties of the
Ca21 current and the type of EC coupling expressed in the
muscle cell (Tanabe et al., 1988, 1990a,b, 1991; Adams et al.,
1990; Garcia-Martinez et al., 1994; Garcia-Martinez, 1994).
The dysgenic mutation consists of a single base deletion in the
murine gene encoding for thea1S subunit of the DHPR
(Chaudhari, 1992; Varadi et al., 1995). Dysgenic myotubes do
not have a functionala1S subunit, yet display a low-density
L-type Ca21 current that has been namedIdys (Adams and
Beam, 1989; Shimahara and Bournaud, 1991). Presumably,
Idys is encoded by a cardiac-typea1C subunit, although this
has not been entirely demonstrated (Chaudhari and Beam,
1993).Idys activates much faster than, and inactivates much
more slowly than, the normal L-type Ca21 current (Adams
and Beam, 1989). Under some conditions,Idys mediates
contractions that are dependent on external Ca21, suggest-
ing that this current may play a functional role in the fetal
stages of muscle development (Adams and Beam, 1991).

The function of theb subunit of the DHPR in skeletal
muscle has been investigated using gene targeting to inac-
tivate the murine gene encodingb1a, the most abundantb
subunit expressed in skeletal muscle (Gregg et al., 1996).
Quite surprisingly,b1-null myotubes displayed a phenotype
that is similar to that of dysgenic myotubes consisting of EC
uncoupling, a low density of charge movement, and a low-
density L-type Ca21 current namedIbnull (Strube et al.,
1996). Ca21 currents, charge movements, and intracellular
Ca21 transients are restored inb1-null myotubes after trans-
fection with b1a cDNA (Beurg et al., 1997). These results
suggest thatb1 has a critical function in modulating both the
functional expression of the DHPR voltage sensor and the
Ca21 current.

The low density ofIbnull, the L-type Ca21 current of
b1-null myotubes, may indicate that functionala1S subunits
are absent in these cells. If this is so,Ibnull could be similar
to Idys. Alternatively,Ibnull may represent a down-regulated
L-type Ca21 channel due to the specific absence ofb1afrom
the skeletal DHPR complex. In this case,Ibnull should differ
qualitatively from Idys. To clarify the molecular origin of
Ibnull, in the present study we analyzed conductive and
gating properties of the L-type Ca21 current of dysgenic and
b1-null myotubes under identical conditions in primary cell
cultures. Part of this work has appeared previously in ab-
stract form (Strube et al., 1997).

MATERIALS AND METHODS

Cell cultures

Mouse myotubes homozygous for themdg allele (mdg/mdg) or the b1

mutationcchb12/2 are called dysgenic andb1-null, respectively. Collec-
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tively they are called mutant cells. Mouse myotubes with a normal phe-
notype were heterozygous for either mutation (mdg/1 or cchb12/1) or wild
type. All experiments were performed on primary cultures as previously
described (Beurg et al., 1997). The hind limbs of 18-day-old fetuses were
dissected free of skin and bones and washed in Ca21-Mg21-free Hanks’
buffer. The tissues were incubated for;10 min at 37°C in Ca21-Mg21-free
Hanks’ buffer containing 0.125% trypsin and 0.05% pancreatin (from
porcine pancreas; Sigma Chemical Co., St. Louis, MO). After mechanical
dispersion, the cell suspension was filtered through sterile gauze. After
centrifugation of the filtrate and resuspension of the pellet in plating
medium, the cells were preplated into 100-mm Falcon plastic dishes for 1 h
to enrich the myoblasts. Final plating was done in 35-mm Falcon plastic
petri dishes covered with 1% gelatin at 1–43 104 cells/plate in 2 ml
plating medium. Cells were grown in 8% CO2 for 5–7 days and later in 5%
CO2 in fetal bovine serum-free medium. The plating medium was com-
posed of 78% Dulbecco’s modified Eagle medium, 10% horse serum, 10%
fetal bovine serum, 2% chick embryo extract, 10 UI/ml penicillin, and 0.01
mg/ml streptomycin. The fetal bovine serum-free medium was composed
of 88.75% Dulbecco’s modified Eagle medium, 10% horse serum, 1.25%
chick embryo extract, 10 UI/ml penicillin, and 0.01 mg/ml streptomycin.

Immunostaining

Cells were fixed and processed for immunostaining as described (Flucher
et al., 1991). The DHPRa1Smonoclonal antibody (Upstate Biotechnology,
Lake Placid, NY) was used at a dilution of 1:50. The secondary antibody
was a fluorescein conjugated polyclonal goat anti-mouse IgG (Cappel, IGN
Pharmaceuticals, Irvine, CA) and was used at a dilution of 1:100. Fluo-
rescence confocal images of 512 by 512 pixels (0.1–0.3mm/pixel) were
obtained on a BioRad 1000 confocal microscope (BioRad Instruments,
Hercules, CA), using the 488-nm spectral line from an argon laser. Images
were converted to a 16-level gray scale with National Institutes of Health-
Image software.

Ca21 currents

The standard patch-clamp technique was used in the whole-cell recording
configuration. Ca21 current was recorded as previously described (Strube
et al., 1996). The external solution for current recording was (in mM) 130
tetraethylammonium methanesulfonate, 10 CaCl2 or 10 BaCl2, 1 MgCl2,
1023 tetrodotoxin, and 10 HEPES-tetraethylammonium(OH), pH 7.4. The
pipette solution consisted of (in mM) 140 Cs aspartate, 5 MgCl2, 5 EGTA,
10 3-[N-morpholino]propane sulfonic acid-CsOH, pH 7.2. Standard patch
electrodes had tip resistances between 2 MV and 5 MV when filled with
the pipette solution. Recordings were made with an Axopatch 1D and a
headstage with a 50-MV feedback resistor (Axon Instruments, Foster City,
CA). The effective series resistance was compensated up to the point of
amplifier oscillation with the analog circuit provided by Axopatch. Three
linear capacitive components and a leak component were canceled with a
tunable analog circuit. Data acquisition was performed with a TL1 DMA
interface controlled by pCLAMP software (Axon Instruments). The data
were digitized at 50–400ms/point and filtered at 1–3 kHz with an analog
8-pole Bessel filter. All experiments were performed at room temperature.

Variance analysis

The ensemble variance ofIdys andIbnull was estimated from the ensemble
average of the squared difference between consecutive current records
(Heinemann and Conti, 1992). A set of 50 pulses to120 mV was delivered
to the same cell at a rate of one pulse every 5 s. The pulse cycle was
delivered from a holding potential of280 mV and consisted of a step to
230 mV for 750 ms, followed by the test pulse to120 mV, followed by
a step to230 mV, followed by a step to the holding potential. Test pulse
duration and sampling frequency were 25 ms and 40 kHz or 50 ms and 20
kHz for dysgenic cells. Test pulse duration and sampling frequency were
50 ms and 20 kHz or 100 ms and 10 kHz forb1-null and normal cells. All

records were low-pass-filtered at 4 or 2 kHz at the moment of acquisition
with an 8-pole analog Bessel filter. Amplifier gain was set at 5 mV/pA, and
the A/D resolution was 0.5 pA per bit. The set of 50 pulses was repeated
several times, and one or two sets per cell were selected for analysis. Pairs
of consecutive records {Xi21(t), Xi(t)} within a selected set were subtracted
in an overlapped manner to generate 49 difference records, {Xi(t) 2
Xi21(t)}. A maximum of 10 difference records were discarded. The en-
semble variance,s2 (1), for the remaining records,n, was calculated
according to Eq. 1 (Noceti et al., 1996):

s 2~t! 5 2/n O
n51

i

~Y~t!i 2 m~t!!2

wherem(t) was the mean value ofY(t)i andY(t)i 5 1/2 {Xi(t) 2 Xi21(t)}.
The variance at the holding potential was estimated in the same manner and
was time-averaged for 10 ms before the voltage pulse. The resting variance
was subtracted froms2(t), and the latter plotted against the ensemble mean
current,I(t), of the same set of current records. The mean-variance rela-
tionship was fit by a nonlinear least-squares method according to Eq. 2
(Neher and Stevens, 1975; Sigworth, 1980),

s 2~t! 5 iI ~t! 2 I2~t!/NF

where i is the single-channel current andNF is the number of functional
channels activated by the voltage pulse. Some difference records were
discarded from the analysis because of deterioration of the pipette seal
resistance or excess of current run-down during the acquisition of one or
both of the original current records. To discard these records objectively,
i.e., without assumptions concerning the time courses2(t), we ranked
difference records as suggested by Heinemann and Conti (1992). We
calculated the variance of the time-averaged current in three segments of
each difference record, a few milliseconds before the pulse, immediately
after the onset of the pulse, and immediately before the ending of the pulse.
Traces with the highest numerical score in each of these time segments, up
to a total of 10 traces, were discarded. In these time segments, the traces
with the highest scores were the most likely to be contaminated by,
respectively, an increase in resting leak, a mismatch in the cancellation of
residual capacitance transients, and an increase in leak or rundown during
the pulse. Variance calculations were verified using pseudomacroscopic
ensemble currents generated by a single-channel simulation program
(CSIM, Axon Instruments).

Data and curve fitting

The density of the Ca21 current of normal and mutant myotubes is
approximately constant from days 8 to 16 of cell culture (Beurg et al.,
1997). In the present study, we pooled and averaged data from cells
between days 8 and 17 of culture. Curve fitting was done with Marquardt-
Levenberg algorithms provided by Sigmaplot (Jandel, San Rafael, CA) and
pClamp (Axon Instruments). The time constantt1, describing activation of
the Ca21 current, was obtained from a fit of the pulse current at each
voltage according toI(t) 5 K[1 2 exp(2t/t1)]exp(2t/t2) (Eq. 3), whereK
is a constant andt2 describes inactivation. All averages are presented as
mean6 SEM.

Chemicals

Deionized glass-distilled water was used in all solutions. All salts were
reagent grade. Bay K 8644 was made as 5 mM stocks in absolute ethanol
and stored in light-resistant containers. TTX was from Sigma Chemical Co.
Bay K 8644 was from Calbiochem (La Jolla, CA).

RESULTS

Fig. 1 shows Ca21 currents in normal,b1-null, and dysgenic
cells in culture. The transient component was in response to
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a pulse to220 mV from a holding of280 mV and was
identified as T-type current (Adams and Beam, 1989; Strube
et al., 1996). The sustained component shown in the bottom
trace was in response to a pulse to140 mV and was
identified as L-type current in all cases. The sustained
currents of the two mutant cells, here identified asIbnull and
Idys, were much smaller than the L-type current of normal
cells. This result is in agreement with previous studies
performed separately in dysgenic andb1-null myotubes in
culture (Bournaud et al., 1989; Beurg et al., 1997). L-type
and T-type components were not always present in each
cell. This is shown in the right panels of Fig. 1, in which the
density of L-type current is plotted in the abscissa, and the
density of T-type current in the same cell is plotted in the
ordinate. The open symbols correspond to cells without a
detectable T-type current, whereas the filled symbols cor-

respond to cells in which T-type currents were obvious. The
population average density of the L-type current was com-
puted separately for cells with or without T-type currents
and is indicated in each graph. The presence or absence of
T-type currents did not influence the L-type Ca21 current
density, except in the case ofb1-null cells, where the L-type
current was lower in the subpopulation of cells without
T-type current. This correlation was weak, and it did not
extend to other properties of the L-type current ofb1-null
cells, such as the kinetics of activation and sensitivity to Bay
K 8644 described below. L-type Ca21 currents were present
in all normal cells (61 cells), about two-thirds ofb1-null
cells (48 of 67 cells), and about two-thirds of dysgenic cells
(52 of 67 cells). L-type and T-type Ca21 currents were
present in about one-third of all normal cells and about
five-sixths of all mutant cells. In the remainder of this study,

FIGURE 1 Density of L-type and T-type cur-
rents in normal and mutant myotubes in culture.
(Left) Traces of Ca21 current for pulses to220
mV and140 mV from a holding potential of280
mV. The pulse duration was 300 ms, and the cell
capacitance was 314, 592, and 510 pF for normal,
b1-null, and dysgenic, respectively. (Right) Den-
sity of L-type current and T-type current for each
cell. Open symbols are for cells without measur-
able T-type currents (,50 pA). All other cells are
shown with filled symbols. Mean6 SEM is shown
separately for the two groups of cells. Current
densities were computed at the peak of theI-V
curve of each cell (110 mV to130 mV for L-type
current and220 mV for T-type current). The L-
type current densities of cells with and without
T-type currents were27.46 6 0.44 pA/pF (44
cells), 20.62 6 0.05 pA/pF (31 cells), and
20.696 0.1 pA/pF (28 cells) for normal,b1-null,
and dysgenic cells, respectively. The L-type cur-
rent densities of cells with T-type currents were
27.02 6 0.73 pA/pF (14 cells),20.63 6 0.06
pA/pF (25 cells), and20.56 6 0.11 pA/pF (20
cells) for normal,b1-null, and dysgenic cells, re-
spectively. The L-type current densities of cells
without T-type currents were27.666 0.55 pA/pF
(30 cells), 20.55 6 0.07 pA/pF (6 cells), and
21.016 0.18 pA/pF (8 cells) for normal,b1-null,
and dysgenic cells, respectively.
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recordings were made either from a holding potential of
250 or 240 mV to inactivate the T-type current, or from
280 mV in cells without T-type currents.

Fig. 2 shows L-type Ca21 currents in response to 1-s
pulses from a holding potential of250 mV in a normal, a
b1-null, and a dysgenic myotube. Currents were normalized
to the cell capacitance, and it should be noticed that scales
for normal and mutant cells are different. At all pulse
potentials, the normal Ca21 current was much larger than
either Ibnull or Idys. In addition, the normal current had a
slower time to peak and displayed significant inactivation.
The mutant currents had a similar density and showed little
inactivation during the pulse. Current-voltage relationships
are shown in the top panel of Fig. 3. The three Ca21 currents
activated at potentials more positive than210 mV, but the
peak densities ofIbnull and Idys were 11- to 12-fold lower
than the peak density of the normal current. Furthermore,
Idys activated at slightly more negative potentials thanIbnull.
The bottom panel of Fig. 3 shows conductance-voltage
relationships for the two mutant currents. A Boltzmann fit
of theGCa-V curve of 31b1-null cells and 25 dysgenic cells
showed thatGmax (30.2 6 2.5 pS/pF forb1-null versus
30.56 3.5 pS/pF for dysgenic) and the slope factor k (8.66
0.4 mV versus 8.76 0.4 mV) were identical for the two
currents. However, there was a;5 mV difference inV1/2

(16.36 1.1 mV versus 11.76 1.0 mV) that was significant
(p , 0.005, unpairedt-test). This result suggested that the
voltage dependences of the DHPR complexes underlying
Ibnull and Idys were nonidentical.

To more fully understand the molecular nature of the
DHPR complexes underlyingIbnull andIdys, we investigated
permeation, activation kinetics, and pharmacological prop-
erties of both currents. Fig. 4 shows current-voltage curves
of b1-null and dysgenic cells in which the external solution

containing 10 mM Ca21 was replaced by 10 mM Ba21 and
then returned to 10 mM Ca21. In some experiments, this
sequence was reversed so that Ba21 was replaced with
Ca21, and then the external solution was returned to Ba21.
In all cases, the Ba21 current was larger than the Ca21

current by an average proportion of;1.7-fold for Ibnull and
;1.9-fold for Idys. This result was consistent with the iden-
tification of Ibnull and Idys as L-type currents. However,
there was a much larger separation of theIBa-V and ICa-V
curves inb1-null cells than in dysgenic cells. This is clearly
seen in the normalized curves shown in the bottom panels of
Fig. 4. The asterisks indicate Ca21 and Ba21 currents that at
the same potential were significantly different (p , 0.02,
unpairedt-test). Evidently, Ca21 biased the voltage depen-
dence ofIbnull more strongly than that ofIdys.

Fig. 5 shows scaled traces of the time course of normal,
Ibnull, andIdys currents for a depolarization to120 mV. Idys

activated faster thanIbnull, and both activated faster than the
normal current. Furthermore,Ibnull andIdys displayed much
less inactivation than the normal current. In fact, the inac-
tivation of Idys or Ibnull was barely detectable in most cases.
The lines correspond to a fit of the pulse current according
to Eq. 3. In most cells, this equation was sufficient to
describe the time course of the Ca21 current in the range of
positive potentials. From the fit we extracted the time con-
stant of current activation, which is shown at each voltage
and for each cell type in the bottom panel of Fig. 5.Idys

activated two- to threefold faster thanIbnull and fivefold
faster than the normal current. Furthermore, in this range of
test potentials the activation rate ofIdys was essentially
voltage-independent. In contrast, the activation rate of the
normal andIbnull currents slowed with increasingly positive
potentials. The slowing of the normal current at positive

FIGURE 2 Voltage dependence of
normal and mutant Ca21 currents.
Whole-cell L-type Ca21 currents are
shown for a normal,b1-null, and dys-
genic myotube at the indicated pulse
potentials. The holding potential was
250 mV, and the pulse duration was
1 s. The cell capacitance was 267,
522, and 718 pF for the normal,b1-
null, and dysgenic cells, respectively.
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potentials was similar to that described previously (Dirksen
and Beam, 1995).

The stimulatory effects of the DHP Bay K 8644 are
shown in Fig. 6. When cells were exposed to 5mM Bay K
8644, the peak Ca21 current increased by;1.3-fold in
normal, ;2.1-fold in b1-null, and ;2.7-fold in dysgenic
myotubes. ThusIdys was stimulated more strongly than
Ibnull. However, the difference was not significant (t-test,
p 5 0.2). Because Bay K 8644 is known to reduce the time
to peak of the L-type current, we also investigated whether
the kinetics of activation of each current were affected
differently. The bottom panel of Fig. 6 shows time constants
of activation fitted to the pulse current in the range of210
to 140 mV in cells stimulated by 5mM Bay K 8644. A
comparison of time constants in Figs. 5 and 6 indicated that
the DHP accelerated the kinetics of activation in all cases.
However, the activation time constant was reduced more

strongly in normal andb1-null cells than in dysgenic cells.
The ranking order for stimulation of the Ca21 current was
I

dys
. Ibnull . normal, whereas that for stimulation of the

activation rate was normal. Ibnull . Idys. This result
suggested that the DHPR complexes responsible forIbnull

and Idys displayed different mechanisms of modulation by
DHPs.

Fig. 3 showed that the densities ofIbnull andIdys were the
same. However, the properties of the Ca21 channels under-
lying these currents, namely, the unitary single-channel
current,i, and the number of functional channels per cell,
NF, may not necessarily be identical. Thus we estimatedi
andNF by mean-variance analysis. Fig. 7,A–C, shows the
time course of the mean Ca21 current (smooth trace) and its
variance (noisy trace) estimated from 40 pulses to120 mV
in a normal, ab1-null, and a dysgenic cell. In the normal
cell, the variance increased in proportion to the mean cur-
rent throughout the pulse. In contrast, the variance ofIbnull

andIdys saturated earlier than the mean current. To increase
the accuracy of the variance determination, we selected
mutant cells with relatively large current densities.Imax, the
whole-cell Ca21 current measured at the end of the pulse,
was 0.5–2 pA/pF for the mutant cells and 4–7 pA/pF for
normal cells. In cells withImax, 0.2 pA/pF, the variance of
the pulse current was barely distinguishable from the vari-
ance of the rest current immediately before the pulse. The
latter component was subtracted from the pulse variance in
all cases. After normalization for cell capacitance, the vari-
ance ofIbnull at times longer than the activation time con-
stant amounted to a doubling of the rest variance, whereas
those ofIdys or the normal current were at least three times
as large. HenceIdys was intrinsically noisier thanIbnull. This
is clearly noticeable in a comparison of variance traces in
Fig. 7,B andC, during the second half of the pulse. Fig. 7,
D–F, shows mean-variance curves of the same data. The
smooth line is a fit of the data according to Eq. 2. In
agreement with the shape of each curve,NF was the largest
andpmax (Imax/iNF) the lowest for normal cells. Because of
the uncertainty in the fit of a quasilinear mean-variance
curve with Eq. 2, for normal cells we could only estimateNF

as.300 channels/pF andpmax , 0.3 (six cells). In mutant
cells, the mean-variance curves reached a maximum in all
cases, and the parabolic fit resulted in unique parameters.
For five b1-null cellsNF was 456 12 channels/pF andpmax

was 0.686 0.1, and for five dysgenic cellsNF was 246 5
channels/pF andpmax was 0.626 0.1. Evidently, a similar
pmax was reached at the end of the pulse by the Ca21

channels ofb1-null and dysgenic cells. Furthermore,Imax

for these two groups of cells was the same (16 0.2 pA/pF
versus 1.46 0.5 pA/pF, respectively), and the difference in
channel density was not significant (t-test,p 5 0.13). The
initial slope of the mean-variance curve was much larger for
dysgenic cells than for the other two cell types and resulted
in a fittedi that was larger for the dysgenic cells. This is best
shown by plots of the ratio variance/mean versus mean (Fig.
7, G–I). Because Eq. 2 can be rearranged ass2(t)/I(t) 5 i 2

FIGURE 3 Current-voltage and conductance-voltage relationships of
normal and mutant Ca21 currents. (Top) Voltage dependence of the L-type
Ca21 current measured 300 ms after the onset of the pulse in normal (f,
45 cells), b1-null (Œ, 31 cells), and dysgenic (F, 28 cells) myotubes.
(Bottom) Voltage dependence of the L-type Ca21 conductance ofb1-null
(Œ, 31 cells) and dysgenic (F, 25 cells) myotubes. The lines are a
Boltzmann fit to the population averageGCa-V curves. Parameters of the fit
areGmax 5 29.2 and 29.8 pS/pF;V1/2 5 14.8 and 10.7 mV;k 5 7.9 and
8.4 mV for b1-null and dysgenic myotubes, respectively.
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(1/NF)I(t), the single-channel currenti may be conveniently
obtained by linear extrapolation of the variance/mean ratio
to zero mean current. The data showed that the extrapolated
y intercept (i) was higher forIdys than for eitherIbnull or the
normal current. The single-channel currents obtained by
extrapolation of the ratio-mean plot and those obtained from
the parabolic fit of the mean-variance plot were in close
agreement and were (in fA) 226 4 (six cells), 436 7 (five
cells), and 846 9 (five cells) for normal,b1-null, and
dysgenic cells. In all combinations, these differences were
significant (t-test, p , 0.02). It should be noted that the
accuracy of the fit ofNF is low unless the mean-variance
relationship is highly curved. This was not the case for all
cells. On the other hand,i is fit with the same accuracy in
mean-variance plots with high or low curvature, as long as
the time course of the variance at lowI(t) is accurate. In
summary, the mean-variance analysis demonstrated that the
Ca21 permeation characteristics of dysgenic andb1-null
Ca21 channels were significantly different.

Many properties ofIbnull shown here and previously are
consistent with the bulk of this current originating from a
DHPR complex that includes thea1S subunit (Strube et al.,
1996; Beurg et al., 1997). However, conventional epifluo-
rescence ofb1-null cells labeled with aa1S monoclonal

antibody failed to detect significant levels of expression of
a1S (Gregg et al., 1996). We reexamined this question by
immunolabeling cells at a higher antibody concentration
(1:50 dilution instead of 1:200 used previously) and with a
different a1S monoclonal antibody (Ohlendieck et al.,
1991). Fig. 8 shows confocal gray scale images of a dys-
genic (A) and b1-null (B) myotubes labeled with aa1S-
specific primary antibody and a fluorescein-congugated sec-
ondary antibody. We consistently observed a faint staining
of the dysgenic myotubes. The latter result agreed with a
previous report (Flucher et al., 1991) and presumably was
due to nonspecific secondary antibody binding to the myo-
tube. Background-level staining of cells of the kind ob-
served in Fig. 8A was also seen in manyb1-null cells (not
shown). However,;50% of the examinedb1-null myo-
tubes displayed a fluorescence intensity significantly above
the background intensity. The image in Fig. 8B was rep-
resentative ofb1-null myotubes displaying a high immuno-
fluorescence. Evidently,a1S was expressed in some but not
all b1-null myotubes in culture. The fact that;50% of
b1-null cells did not expressa1S was consistent with the
finding that;30% of theb1-null myotubes did not display
L-type Ca21 current, although no efforts were made to
explore this correlation further.

FIGURE 4 Ca21 and Ba21 current-voltage relation-
ships forIbnull and Idys. (Top left and right) L-type I-V
curves for the sameb1-null (five cells) or dysgenic (five
cells) cells in external solution containing 10 mM Ca21

(filled symbols) and 10 mM Ba21 (open symbols). (Bot-
tom left and right) The same data normalized to the
peak of theI-V curve. The asterisks indicate Ca21 and
Ba21 currents that were significantly different at the
same potential (unpairedt-test,p , 0.02).
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DISCUSSION

b1-null myotubes display an L-type Ca21 current that dif-
fers from the normal L-type Ca21 current in density, voltage
dependence, and kinetics of activation (Strube et al., 1996;
Beurg et al., 1997).Ibnull has many characteristics of the
Ca21 current produced by DHPRa1 subunits expressed in
the absence of DHPRb subunits (summarized by Strube et
al., 1996). ThusIbnull could originate from skeletal-type
DHPR complexes that includea1S but are deficient inb1a.
To address this issue, we comparedIbnull with Idys, the
L-type Ca21 current of dysgenic myotubes that do not
express a functional DHPRa1S (Knudson et al., 1989;
Chaudhari, 1992; Varadi et al., 1995). Statistically signifi-
cant differences were found in the midpoint of theG-V
curves, the kinetics of activation, and the single-channel
currents estimated by ensemble variance analysis.

Becausei estimated forIbnull is between the values esti-
mated for the normal currrent and forIdys, Ibnull could

represent a mixed population of L-type channels. Some
channels in this mixture could include the DHPRa1S sub-
unit, whereas others include thea1-dysgenic subunit. We
based this explanation on the fact that a significant fraction
of b1-null cells expressed DHPRa1S and that there is no
reason to assume thata1-dysgenic may not be expressed in
these cells as well. To test this hypothesis, we performed
mean-variance analysis of ensemble currents generated by
computer simulation of two independent channels of differ-
ent single-channel currents. The estimatedi varied in direct
proportion to the number of trials of each channel included
in the ensemble (not shown). Assuming thati estimated for
b1-null represents a weighted sum of the single-channel
currents ofx dysgenic channels and (12 x) a1S channels,
thenibnull 5 idysx 1 ia1S(1 2 x) andx ' 0.34. According to
this two-channel population model forIbnull, the fraction of
dysgenic anda1Schannels inb1-null cells would be roughly
one-third and two-thirds, respectively. Thus the bulk of the
Ca21 channels ofIbnull would havea1S as their pore sub-
unit. We also considered two alternative explanations, that
Ibnull was produced by a novel DHPRa1 subunit with a
distinct unitary conductance, and that a single type of DHPR
complex withoutb was responsible for the estimated single-
channel current ofb1-null cells. Both explanations were
considered unlikely. First, splice variants ofa1S that could
account for this putative subunit have not been reported.
Second, mutagenesis experiments have shown that the sin-
gle-channel conductance of Ca21 channels is determined by
domains of thea1 subunit (Yang et al., 1993; Dirksen et al.,
1997) and is the same whena1 is expresssed alone or
coexpressed withb subunits (Bourinet et al., 1996).

The maximum open channel probability,pmax, estimated
by variance analysis in dysgenic,b1-null, and some normal
cells was significantly higher than previously determined by
cell-attached patch recordings. In normal myotubes,pmax

measured in many-channel patches in the presence of Bay K
8644 was 0.19 (Dirksen and Beam, 1995). In the absence of
Bay K 8644, as in our case, this value is expected to be even
lower. On the other hand,pmax is ;0.3 in cardiac L-type
Ca21 channels. Similar values were estimated by single-
channel recordings and by whole-cell variance analysis in
the absence of Bay K 8644 (Tsien et al., 1986). It is entirely
possible that a few Ca21 channels in normal, dysgenic, and
b1-null cells may have a highpmax, but the majority of them
would have a lowpmax and contribute little to the mean
Ca21 current or variance. Furthermore, dysgenic channels
are intrinsically noisier than normal channels, and if their
pmax is similar to that of cardiac channels, they could
increase thepmax estimated in theb1-null cell. In any case,
the discrepancy inpmax does not compromise the estimation
of single-channel currents. When we separated normal cells
with high and lowpmax, the single-channel currents esti-
mated in the two groups were similar (not shown). Finally,
the mean-variance data were consistent with the noise spec-
tra of Ibnull and Idys when measured near steady-state (not
shown). The limiting noise power at low frequencies,S(0),
and the cutoff frequency,f1/2, were lower forIbnull than for

FIGURE 5 Kinetics of activation ofIbnull andIdys. (Top) Scaled traces at
120 mV of normal L-type Ca21 current (f), Ibnull (Œ), and Idys (F) in
response to a 1-s pulse from a holding potential of250 mV. The solid lines
correspond to a fit of the pulse current according to Eq. 3, withK 5 21.16
pA, t1 5 68.6 ms,t2 5 1824 ms for normal,K 5 21.00 pA,t1 5 16.3 ms,
t2 5 6349 ms forb1-null, andK 5 21.00 pA,t1 5 7.6 ms,t2 5 4251 ms
for dysgenic myotubes. (Bottom) Tau activation,t1 of Eq. 3, obtained from
a fit of the pulse current at each potential. Entries indicate the number of
cells. Asterisks indicatet1 for Ibnull and Idys significantly different at the
same potential (unpairedt-test,p , 0.005).
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Idys. Both results were expected, becauseS(0) increases with
the square of the single-channel current andIdys is a faster
current (Conti et al., 1975).

To identify the subunit composition ofIbnull, we first
considered that ofIdys. The latter Ca21 current could con-
ceivably originate from DHPR complexes that includea1C.
Chaudhari and Beam (1993) showed that mRNA for the
cardiaca1C subunit is abundant in dysgenic and normal
muscle. Furthermore, mRNA fora1C has been reported in a
dysgenic cell line (Varadi et al., 1995), as well as in primary
cultures of normal myotubes (Bulteau et al., 1977) and in
normal adult rodent skeletal muscle (Pereon et al., 1997).
Cardiac-type Ca21 currents are also present in the dysgenic
cell line (Varadi et al., 1995). On the other hand, there
appears to be a kinetic mismatch between the appearance of
cardiac mRNA, which is higher in young fetal myotubes
and declines thereafter (Chaudhari and Beam, 1993), and
the appearance ofIdys, which has roughly the same density
throughout fetal development (Shimahara and Bournaud,
1991). Because targeting ofa1 subunits to the transverse
tubules may require other DHPR subunits (Flucher et al.,
1991; Chien et al., 1995), the appearance of the Ca21

current may be controlled by the expression levels ofa1 as
well as by other factors. Additional support for a cardiac
origin of Idys comes from its functional profile, which is
entirely consistent with that of a cardiac L-type Ca21 cur-
rent. In agreement with Adams and Beam (1989), our data

showed thatIdys activated much faster and was stimulated
more strongly by Bay K 8644 than the normal L-type
current. AlthoughIdys did not inactivate during prolonged
depolarization, it should be noticed thata1C does not either
when expressed in dysgenic myotubes (Tanabe et al.,
1990b; Adams et al., 1990). Finally, the mean-variance
analysis provides a compelling reason to suspect thatIdys is
a cardiac-type current. The estimated single-channel current
of ;84 fA in 10 mM Ca21 at 120 mV is consistent with
estimations made by the same technique in ventricular myo-
cytes, which were 130 fA in 10 mM external Ba21 at 110
mV (Bean et al., 1984). In summary, our results are entirely
consistent withIdys originating from DHPR complexes that
includea1C or an unidentified embryonic homolog ofa1C.

Based on the conclusion above, we considered the pos-
sibility that Idys andIbnull originated from DHPR complexes
of the same “a1C”-like subunit, but that complexes under-
lying Ibnull lackedb1a, the isoform found in skeletal muscle
and absent in theb1-null myotube. In heterologous systems,
b1a produces a negative shift of theI-V curve ofa1C Ca21

channels, decreases the sensitivity of the Ca21 current to
Bay K 8644, and increases the Ca21 current density (Singer
et al., 1991; Wei et al., 1991; Lory et al., 1993; Nishimura
et al., 1993; Perez-Garcia et al., 1995; Kamp et al., 1996).
The effect ofb1a on the kinetics of activation ofa1C Ca21

channels is more complex. Some investigators found an

FIGURE 6 Stimulation ofIbnull and Idys by Bay K
8644. (Top) L-type I-V curves of normal,b1-null, and
dysgenic myotubes during a control period (open sym-
bols) and 10 min after exposure of cells to 5 mM Bay K
8644 (filled symbols). Current was normalized to the
peak of theI-V curve during the control period. The fold
stimulation of the peak Ca21 current produced by Bay K
8644 was 1.36 0.1 (11 cells) for normal, 2.16 0.3 (11
cells) for b1-null, and 2.76 0.3 (11 cells) for dysgenic
myotubes. (Bottom) Activation time constants of the
normal L-type current (squares), Ibnull (triangles), and
Idys (circles) in myotubes exposed to 5mM Bay K 8644.
The pulse current at each potential was fitted by Eq. 3.
Tau activation corresponds tot1 of Eq. 3. Entries indi-
cate the number of cells. Asterisks indicatet1 for Ibnull

and Idys significantly different at the same potential
(unpairedt-test,p , 0.005). Tau activation at130 mV
in the absence and presence of Bay K 8644 was 49.26
2.6 and 11.26 1.5 ms (9 cells) for normal, 266 3.3 and
7.6 6 0.7 ms (10 cells) forb1-null, and 7.36 1.1 and
3.4 6 0.3 ms (4 cells) for dysgenic myotubes. The fold
decrease in tau activation at130 mV produced by Bay
K 8644 was 4.46 0.2 for normal, 3.46 0.4 forb1-null,
and 2.16 0.3 for dysgenic myotubes.
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increase in the activation rate (Singer et al., 1991; Wei et al.,
1991; Lory et al., 1993); others showed no effect (Itagaki et
al., 1992) or even a decrease in the activation rate (Perez-
Garcia et al., 1995), none of which seemed to correlate with
the expression system. We reasoned that ifIbnull originated

from the same DHPR complex asIdys but without b1a,
differences betweenIbnull and Idys would be analogous to
those observed whena1C is expressed alone ora1C is
coexpressed withb1a, respectively. The activation ofIdys at
more negative potentials thanIbnull (Fig. 3) and the faster

FIGURE 8 Immunofluorescence ofb1-null and dysgenic
myotubes labeled with DHPRa1S antibody. Confocal im-
ages of 5123 512 pixels were converted to a 16-level gray
scale, and the color table was inverted so that high-intensity
pixels appear black and low-intensity pixels appear white.
(A) A dysgenic myotube. (B) A b1-null myotube at the
same magnification.

FIGURE 7 Mean-variance relationship of the normal L-type Ca21 current,Ibnull andIdys. (A–C) Superimposed time courses of the mean whole-cell Ca21

current (smooth trace) and the ensemble variance (noisy trace) for a step potential to120 mV after a 750-ms prepulse to235 mV from a holding potential
of 280 mV. The pulse duration was 100 ms for the normal cell and 50 ms for theb1-null and dysgenic cells. The ensemble variance was computed
according to Eq. 1 from 40 pulses (39 difference traces). Variance traces were low-pass filtered at 1 kHz with a digital Gaussian filter. The vertical
calibration bar corresponds toI 5 1 pA/pF ands2 5 0.02 pA2/pF for normal,I 5 0.2 pA/pF ands2 5 0.005 pA2/pF for b1-null, andI 5 0.4 pA/pF and
s2 5 0.02 pA2/pF for dysgenic cells. The horizontal calibration bar corresponds to 20 ms for normal and 10 ms forb1-null and dysgenic cells. (D–F) The
ensemble variance plotted as a function of the mean Ca21 current for the same cells. The origin of each graph is given by the intersection of the horizontal
calibration bar (mean) and vertical calibration bar (variance). Lines are a fit of the data according to Eq. 1. Parameters of the fit arei (pA) 5 0.02, 0.05,
0.08 andNF (channels/pF)5 575, 24, 39 for normal,b1-null, and dysgenic, respectively. (G–I) A linear fit of the variance/mean ratio plotted as a function
of the mean current.

Strube et al. Ca21 Currents of DHPR a1 and b Mutants 215



activation rate ofIdys (Figs. 5 and 6) fit this scenario. With
respect to the first observation (Fig. 3), it must be pointed
out that not onlyb subunits but alsoa1 subunits produce
strong effects on the midpoint of theG-V relationship. In
dysgenic myotubes theG-V curve of expresseda1C Ca21

channels is;20 mV more negative than that of expressed
a1S Ca21 channels (Garcia-Martinez et al., 1994). Hence
the fact thatIdys activates at more negative potentials than
Ibnull may not be explained solely by the presence ofb1a in
the Ca21 channel complex ofIdys and its absence from the
Ibnull complex. Against the hypothesis thatIdys and Ibnull

differ by the presence or absence of theb1a subunit, respec-
tively, is the observation that Bay K 8644 stimulatedIdys

more strongly thanIbnull. In heterologous expression sys-
tems, Ca21 currents froma1S andb1a subunits ora1C and
b1a subunits are always less sensitive to the agonist than
those from b-deficient complexes (Varadi et al., 1991;
Singer et al., 1991; Lory et al., 1992; Itagaki et al., 1992;
Hullin et al., 1992). A similar observation has been made in
the b1-null myotube, where expression ofb1a results in a
reduction in the sensitivity of the rescued Ca21 current to
Bay K 8644 (Beurg et al., 1997). Exemptions to this rule are
found in the expression ofa1Cb2a (Perez-Reyes et al., 1992;
but see Hullin et al., 1992, for a different result),a1Cb4, and
a1Sb4 (Castellano et al., 1993). In these cases, the sensitiv-
ity of the Ca21 current to Bay K 8644 was unchanged by
coexpression ofa1 andb subunits. Clearly, however, none
of these cases involvedb1a. In summary, the higher sensi-
tivity of Idys to Bay K 8644 and the fact thatIbnull and Idys

had the same current density are not in keeping with the
hypothesis thatIdys andIbnull differ only by the presence or
absence of DHPRb1a.

The immunodetection of DHPRa1S in b1-null and its
absence in dysgenic myotubes agreed with the hypothesis
thata1S is a component ofIbnull. DHPRa1S was previously
thought to be present at extremely low levels inb1-null
myotubes (Gregg et al., 1996). In the present study we used
a different and, evidently, a higher-affinity antibody to show
significant expression of this subunit inb1-null myotubes in
culture. The distribution of DHPRa1S in b1-null cells
differed from that reported in normal cells in several re-
spects. Unlike in normal myotubes, a significant fraction of
b1-null myotubes did not express DHPRa1S. This obser-
vation agreed with the fact that;30% ofb1-null myotubes
had undetectable levels of L-type Ca21 current. Further-
more, thea1S immunolabeling ofb1-null myotubes lacked
the punctuate appearance seen in normal cells (Gregg et al.,
1996) and was dimmer than the immunofluorescence of
normal myotubes, although well above background levels.
The nonclustered distribution ofa1S in b1-null cells is
consistent with the low density of tetrads observed in freeze
fractures (Protasi and Franzini-Armstrong, unpublished ob-
servations) and suggests thata1S is not found in triadic
junctions. In this respect, the distribution of DHPRa1S in
b1-null myotubes may be similar to the distribution of the
DHPR a2 subunit in dysgenic myotubes (Flucher et al.,
1991). Finally, it is important to mention that the present

data cannot explain the low density ofIbnull and the absence
of a significant amount ofa1S subunits in the transverse
tubules previously inferred from charge movements (Strube
et al., 1996). Recent studies indicate that DHPRb subunits
play a role in targetinga1 subunits to membrane sites
(Chien et al., 1995). Expression of DHPRa1S and b sub-
units in double-mutant mdg/mdg cchb12/2 myotubes may
represent a useful system for exploring this dual role of
DHPR b subunits in skeletal muscle.
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