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ABSTRACT Partition of sized FITC-dextrans in polyacrylamide gel showed a relationship between Kav and solute radius as
predicted by the theory of Ogston, which is based solely on geometry of the spaces. Permeability data for the same dextrans
were fit to several theories, including those based on geometry and those based on hydrodynamic interactions, and the gel
structure predicted by the partition and permeability data were compared. The Brinkman effective-medium model (based on
hydrodynamic interactions and requiring a measure of the hydraulic conductivity of the matrix) gave the best fit of permeability
data with the values for fiber radius (rf) and void volume of the gel (e) that were obtained from the partition data. The models
based on geometry and the hydrodynamic screening model of Cukier, using the rf and e from partition data, all predicted
higher rates of permeation than observed experimentally, while the effective-medium model with added term for steric
interaction predicted lower permeation than that observed. The size of cylindrical pores appropriate for the partition data
predicted higher rates of permeation than observed. These relative results were unaffected by the method of estimating void
volume of the gel. In sum, it appears that one can use data on partition of solute, combined with measurement of hydraulic
conductivity, to predict solute permeation in polyacrylamide gel.

INTRODUCTION

Understanding the movement of macromolecules through
matrices is important for many biological phenomena, in-
cluding the reduced diffusion that occurs in cytoplasm
(Jones and Luby-Phelps, 1996) and the restricted perme-
ation of proteins across basement membranes (Williams,
1994). Much information has been gained by modeling such
matrices as containing cylindrical pores (Deen et al., 1985),
but recently interest has been shown in various forms of
fiber-matrix models, which provide a closer match to the
ultrastructure of biological matrices and polymer gels
(Curry and Michel, 1980; Katz, 1992; Schnitzer, 1992; Katz
and LaMarche, 1994; Phillips et al., 1989).

The classic derivation of the fiber-matrix model is that of
Ogston, who used a geometric argument to gain expressions
for the partition (Ogston, 1958) and diffusion (Ogston et al.,
1973) of spheres in a matrix made of infinitely long, stiff
rods. Other derivations of this same system are by Schnitzer
(1988), who used a statistical mechanics approach and
found expressions that differ from the Ogston theory under
certain conditions (Schnitzer, 1992), and by Johansson and
Löfroth (1993), who provide expressions that are valid for
matrices made up of moderately flexible rods.

Besides these models based on geometric arguments, at
least three theories have been proposed that take into ac-
count the hydrodynamic interactions that will occur be-
tween solute and matrix during diffusion. Cukier (1984)
used expressions of hydrodynamic screening to describe the

reduction of solute diffusion within a solution of polymers,
while Tong and Anderson (1996) and Johnson et al. (1996)
have applied different forms of the Brinkman effective
medium model to describe the reduction of solute diffusion
in gels. While the geometric models above require knowl-
edge only of the radius and density of fibers in the matrix,
the Cukier hydrodynamic screening approach requires ad-
ditional knowledge of the ratio of fiber length to fiber
radius, and the effective medium model requires knowledge
of the Darcy permeability of the matrix.

Some experimental tests of these theories have been
carried out in chromatographic beads and in polymer gels.
For protein diffusing in AcA-34 (polyacrylamide) chro-
matographic beads, the Ogston fiber-matrix theory has been
shown to be self-consistent in its predictions of partition and
diffusion (Moussaoui et al., 1991), while similar work in
agarose beads suggests that Ogston theory is not self-con-
sistent in these systems, as diffusion of proteins was slower
than would be predicted from solute partition data (Mous-
saoui et al., 1992; Johnson et al., 1995). In polymer gels,
both agarose (Johnson et al., 1996) and polyacrylamide
(Tong and Anderson, 1996) gels have been studied; while
the two studies agreed that the Ogston theory was inaccurate
in predicting diffusion rates, they disagreed as to which
formulation of effective medium theory was best for fitting
diffusion data for proteins, and the data for linear polymers
did not match those for proteins (Tong and Anderson,
1996).

A complication in all of these studies is the assumptions
made concerning the relevant sizes of molecules. When a
theory requires a solute radius or volume, several methods
are available for measuring this parameter, but not all give
equivalent values. For example, Minton (1980) points out
that various measures for molecular volume (such as partial
specific and hydrodynamic volumes) do not necessarily
reflect the functionally relevant volumes for molecular in-

Received for publication 25 June 1997 and in final form 27 March 1998.

Address reprint requests to James C. Williams, Jr., Department of Anat-
omy, Indiana University School of Medicine, 635 Barnhill Drive, India-
napolis, IN 46202-5120. Tel.: 317-274-3423; Fax: 317-278-2040; E-mail:
williams@anatomy.iupui.edu.

Notes 1 and 2 appear at the end of the Conclusions section.

© 1998 by the Biophysical Society

0006-3495/98/07/493/10 $2.00

493Biophysical Journal Volume 75 July 1998 493–502



teraction. In the studies cited above, the radius of permeat-
ing or partitioning solute has usually been assumed to be the
Stokes radius calculated from diffusion determinations.
While this may be appropriate for hard, spherical molecules,
such as certain globular proteins, it is not appropriate for
other molecules, such as sugar polymers; even for a spher-
ical polymer like Ficoll, the Stokes radius (rs) and the radius
apparent from size-exclusion chromatography (rsec) are not
equivalent (Oliver et al., 1992). For matrices, matrix fiber
radius (or volume) has sometimes been calculated from
predicted molecular dimensions (e.g., from x-ray scatter-
ing), and sometimes from partial specific volumes, and it is
not clear whether either of these approaches is appropriate.

In the present study we take the approach thatrsec is a
reasonable measure of the size of the diffusing/partitioning
molecule for any steric interactions, as such interactions
predominate in size-exclusion chromatography (Hussain et
al., 1991). Using this, we find agreement between partition
and permeation data in polyacrylamide gel using the Brink-
man effective medium model for predicting diffusion in the
gel. To calculate the void volume of the gel (e), we used the
dry weight combined with the partial specific volume of
polyacrylamide, but we find that the method used for esti-
mation of e did not affect the relative results among the
different theories, but only alters the apparent value of the
fiber radius.

METHODS

Polyacrylamide and dextrans

Polyacrylamide gels were prepared as for electrophoresis using typical
methods. Briefly, stock solutions of electrophoresis-grade acrylamide and
bis-acrylamide (C5 2.6%; both from Sigma Chemical, St. Louis, MO)
were prepared in water, and an appropriate volume of stock solution was
added to tris-buffered saline (1.5 M, pH5 8.8) and the mixture was
degassed. Then ammonium persulfate and tetramethylenediamine (each
0.05%) were added to initiate polymerization. Gels were cast between glass
plates and allowed to polymerize for at least 1 h. Gel slabs were then rinsed
in water, and 20-mm-diameter disks were cut from the slabs using an arch
cutter.

FITC-labeled dextrans (mixture of five polydisperse preparations, of
Mw in thousands of 4, 20, 70, 150, and 500; all from Sigma Chemical) were
fractionated at room temperature on a Sephacryl S-300HR column, 2.5 cm
in diameter, with a packed bed height of 48 cm. The buffer was 0.05 M
ammonium acetate (pH5 7) and the flow rate was maintained at 2.0
ml/min using a Bio-Rad EP-1 pump, taking 4-ml fractions. Only;15 mg
of mixed FITC-dextrans in;0.3 ml was fractionated in a single run; this
small sample size minimized spreading of elution peaks due to sample
volume or viscosity. Each fractionation run was recorded using a UV
monitor to ensure that fractions from different runs represented identical
elution volumes. Each fraction was then pooled with identical fractions
from other runs, and the dextrans were concentrated using a combination
of Centriprep and Centricon concentrators (Amicon, Beverly, MA). Up to
80 ml of each fraction was concentrated to volumes as small as 0.2 ml. The
amount of FITC-dextran in a fraction was determined by absorbance. Some
fractions were run again on the column to check their degree of polydis-
persity, and the width of peaks was not greater than that for proteins; from
the width of the peaks,Mw/Mn was estimated (conservatively) to be#1.08
for all fractions.

The molecular size of the dextrans in the fractions was determined by
calibration with standard proteins (proteins, with assumed radii, were:

cytochrome c, 17 Å; myoglobin, 19 Å; carbonic anhydrase, 22 Å; albumin,
35 Å; alcohol dehydrogenase, 46 Å; andb-amylase, 60 Å), and blue
dextran was used for void volume determination. The molecular radius for
an FITC-dextran fraction that was calculated from the protein standard
curve reflects the functional size of the dextran. This radius, calledrsec, was
used for predicting partition and permeation of the dextrans.

For linear polymers like dextran,rsecis not necessarily the same as the
Stokes radius,rs, that is calculated from diffusion determinations. For the
present study we used a chromatography medium and buffer system
identical to that used by Oliver et al. (1992), who measured bothrsecand
rs for dextrans. Fitting the data from Fig. 6 in Oliver et al. to a polynomial,
we find (in Å) rs 5 0.6281 1.089rsec2 0.00044rsec

2 . Using this calculated
rs, the diffusion coefficient in free solution,Dfree, was estimated for each
dextran fraction using the Stokes-Einstein relation,Dfree5 kT/(6prrs). The
product of the Boltzmann constant and the absolute temperature,kT, was
taken to be 4.13 10214 erg (room temperature, 22°C), and the viscosity,
r, was taken to be that of water, 0.8904 centipoise.

Determination of volume fraction available to
solute (free space, or Kav) (See Note 1)

Individual disks of polyacrylamide gel, cast 1.0 mm thick, were measured
for weight, diameter (using calipers), and thickness (using a micrometer),
and incubated in 4 ml of phosphate-buffer saline (PBS, consisting of 150
mM NaCl with 20 mM sodium phosphates, pH5 7.4; some experiments
also had 0.02% sodium azide in the PBS with no apparent effect) contain-
ing FITC-dextran at a concentration of;50 mg/ml, in capped, 20-ml glass
vials. The vials were put on a shaker at low speed for 48 h at room
temperature. At the end of this incubation period, each disk was removed
from its vial, measured for weight, diameter, and thickness, and transferred
to 2 ml of PBS for a rinsing period of 48 h. At the end of the rinsing period,
each disk was removed, measured for diameter and thickness, and trans-
ferred to a tared vial for determination of final wet and dry weights. Some
disks received an additional 2-h rinse in water before determination of wet
and dry weights, which eliminated the need to correct the dry weights for
salt content. Values forKav were determined from measurements of total
fluorescence (using a Turner fluorometer) in samples taken from the
incubation and rinse solutions, corrected for carry-over volume (volume
clinging to the outside of the gel), which was calculated from the apparent
Kav for very large dextrans (radius. 100 Å). Carry-over volume was not
significantly different (by multiple ANOVA) for different batches of gel,
for different fractions of dextran used, or for different gel concentrations
(%), and averaged;2% of the disk volume (carry-over volume5
0.00916 0.0006 ml for 27 batches of gel disks of average total volume
0.4026 0.002 ml).

Fit of Kav to theory

Given a void volume ratio ofe and a fiber radius ofrf, the volume of the
gel available to a spherical solute of radiusrsol is

Kav 5 expF~e 2 1!S1 1
rsol

r f
DnG (1)

wheren is a scaling parameter that can be related to the stiffness of the
fiber (Johansson and Lo¨froth, 1993). Forn 5 2, Eq. 1 is the same as that
derived by Ogston (Ogston et al., 1973; Ogston, 1958), and the same can
also be obtained from Eq. 6.9 in Curry (1984). The equivalent equation for
Kav derived by Schnitzer (1988) is slightly different:

Kav 5 exp~e 2 1!expH~1 2 e!F1 2 Srsol 1 r f

r f
D2G

e
J. (2)

Each of these equations describes a relationship betweenKav andrsol that
is dependent on the valuese and rf. Data forKav obtained using a single
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batch of polyacrylamide and incubating with solutes of different sizes were
fit to Eqs. 1 and 2. Fits were obtained both by varyinge and rf, or by
varying rf alone and usinge estimated from the mean fractional water
content for that batch of polyacrylamide.

Partition data were also fit to single-radius pore theory, in which the
volume of the gel available to a solute depends on the radius of the pore,rp:

Kav 5 eS1 2
rsol

rp
D2

. (3)

Permeation through gels

Disks of polyacrylamide gel, 0.5 mm thick, were prepared as above and
soaked overnight in PBS (to allow for the same, slight swelling observed
in the gels used forKav determination). A disk was then mounted vertically
between two halves of a lucite chamber, such that a 1-cm-diameter portion
of the gel disk separated the two 4-ml compartments of the chamber. Each
compartment was filled with PBS, and FITC-dextran was added to one of
the compartments. The chamber was placed on a magnetic stirrer and both
compartments were vigorously stirred using fluted stir-disks. Samples were
taken from both compartments hourly, and fluorescence determined later.
The measured concentration on the side to which FITC-dextran was
initially added was always much greater than the concentration in the other
compartment, so that the concentration difference across the gel was
effectively constant throughout the experiment. Permeability was calcu-
lated as the rate of permeation divided by the product of the surface area
of the gel and the concentration difference between the compartments.

The thickness of unstirred layers bounding the gel in the diffusion
apparatus was estimated by measuring the permeation of FITC-glycine,
which was prepared by mixing FITC (.90%, isomer I, from Sigma
Chemical) with a molar excess of glycine. The unstirred layer thickness can
be calculated from a measured permeability if the diffusion coefficient for
the solute within the gel,D, is known. One might assume thatD3Dfree for
a small solute, but this is not at all certain, as the theories set forth below
differ on this point. For this reason, the maximum thickness of gel plus
unstirred layers was calculated asDfree/P, whereP is the measured per-
meability of FITC-glycine across the gel. The results suggested that un-
stirred layer effects were minimal, so thatP could be taken to be that of the
gel alone. (See data and discussion below.)

Fit of permeation data to theory

The rate of permeation across the gel (Js) can be described by

Js 5
A

Dx
KavDDC (4)

whereA is the surface area of the gel,Dx is the thickness, andDC is the
concentration difference between the compartments (see Note 2). The
permeability is therefore

P 5
KavD

Dx
. (5)

For the Ogston fiber-matrix theory, we have the following [the “stochastic
model” (Ogston et al., 1973; Curry, 1984)]:

DOgston5 DfreeexpF2~1 2 e!1/2S1 1
rsol

r f
DG (6)

where Dfree is the diffusion coefficient in free solution, calculated as
described above. Another analysis of diffusion based on the geometry of
the fiber matrix is that of Johansson and Lo¨froth (1993), who modeled the
fiber matrix as consisting of moderately flexible rods, and who predicted an

effect on diffusion as follows:

DJohansson5 Dfree@e
2a 1 a2eaE1~2a!# (7)

where

a 5 ~1 2 e!S1 1
rsol

r f
D2

and E1~2a! 5 E
2a

`Se2u

u
duD.

E1, the exponential integral, was evaluated using the relation

E1~2a! < 20.577212 lnu2au 2 O
i51

30 ~22a!i

i~i!!

which was found to be valid for 2a # 10. This was a reasonable limit for
the data in the present study, and taking the series out to only 30 terms kept
the computation times for nonlinear fitting of combined Eqs. 5 and 7 to
only several seconds.

Other workers have stressed hydrodynamic relations in theories for
diffusion in fiber matrices. Cukier (1984) used hydrodynamic screening
theory to predict the following:

DCukier 5 DfreeexpF2rsol

r f
Î3~1 2 e!

ln~L/b! G (8)

whereL/b is the ratio of the fiber length to fiber diameter. Thus, Eq. 8
requires knowledge of the length of the fibers in the matrix—a measure-
ment not made in the present study—while Eq. 6 assumes only thatL ..
rsec. (Equation 7 assumes that the flexible fibers of the matrix are long and
are stiff enough that the persistence length of the fiber is.103 the fiber
radius.)

Effective medium models are also based on consideration of the hydro-
dynamic interactions of molecules (Johnson et al., 1996; Tong and Ander-
son, 1996). Tong and Anderson (1996) found good prediction of protein
diffusion in polyacrylamide gel using the Brinkman result:

DBrinkman5 DfreeS1 1
rsol

Îk
1

1

3Srsol

Îk
D2D21

(9)

wherek is the Darcy permeability of the matrix. In contrast, Johnson et al.
(1996) fit diffusion in agarose gels using Eq. 9 that was modified to include
a term that accounted for steric hindrance in the gel; the steric term used
was the empirical relationship described by Johansson and Lo¨froth (1993),
and with thisD, is predicted by

DBrinkman1steric term

5 DfreeS1 1
rsol

Îk
1

1

3Srsol

Îk
D2D21

exp@20.84a1.09#. (10)

Both Eqs. 9 and 10 require knowledge ofk, an expression of the hydraulic
conductivity of the gel. The hydraulic conductivity of polyacrylamide gel
was measured by Tokita and Tanaka (1991). For their 10% gels (with
cross-linker concentration of 2%, similar to our concentration of 2.6%), the
measured frictional coefficient was 93 1011 dyn z s z cm24. Dividing this
value into the viscosity of water givesk 5 99 Å2. Alternatively, Tong and
Anderson (1996) used other data in the literature to obtain the relationship
k 5 2.64(VolFract)21.42, where VolFract is the volume fraction of the
monomer before polymerization. For 10% gels in the present study, at 0.7
ml/g (Tong and Anderson, 1996), this gives a value ofk 5 115 Å2. The
value ofk has a significant effect on the predictions of Eqs. 9 and 10, so
both of these values were used and compared in the present study.
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For pore theory, the predicted value forD is

Dp 5 Dfree~1 2 2.10444m

1 2.08877m3 2 0.94813m5 2 1.372m6

1 3.87m8 2 4.19m9!

(11)

wherem 5 rsol/rp [as in Curry, Eq. 5.16 (Curry, 1984); this formula is valid
only for m # 0.6].

Phenomenological descriptions of solute diffusion through matrix have
been proposed that depend only on the void volume of the matrix and not
the fiber (or pore) size. Lauffer (1961) described diffusion through agarose
gels using

DLauffer 5 Dfree

1 1 b~e 2 1!

e
(12)

whereb is a constant. Ogston et al. (1973) derived a different relationship:

DOg2phenom5 DfreeF 1

1 1 g~1 2 e!G
2

, (13)

again, whereg is a constant. Eq. 13 was initially described as being
unsuccessful in accurately describing the diffusion of solutes through
polymers (Ogston et al., 1973).

Statistics

Data were fit to theory using the nonlinear fitting routines inJMP (SAS
Institute, Cary, NC). Starting values for parameters were varied to confirm
stable convergence in all cases. Confidence intervals were calculated in
JMP using the likelihood method (Rivers et al., 1996). Where appropriate,
data were compared using ANOVA or the Tukey-Kramer HSD test, and
differences were considered significant ifp , 0.05.

RESULTS

Partition of dextran in gels

Data from three sets of gels are shown in Fig. 1, which
demonstrates the expected result that solute partition is
more restricted in the gels of higher concentration. This was
apparent even at the dextran of 87 Å radius, in which the
data for Fig. 1 hadKav values of 0.0366 0.001, 0.0126
0.001, and 0.00146 0.0001 for the 6, 8, and 10% gels,
respectively, significantly decreasing with increasing con-
centration of gel. The dextran fraction at 132 Å radius was
used for correcting these gels for carry-over volume (that is,
Kav for the 132 Å fraction was assumed to be zero). Mean
volume of the 132 Å fraction was 0.00826 0.0002 ml (n 5
9 gel disks), and mean gel total volume was 0.4006 0.005
ml (n 5 18). A summary of all partition data is shown in
Table 1.

The curve fits in Fig. 1 assume that the void volume of
the gel,e, can be estimated from the measured water frac-
tions of the gels. For this calculation, the specific volume of
polyacrylamide that was measured by Munk et al. (1980),
0.687 ml/g, was used (Tong and Anderson, 1996). Using
these estimates ofe, the data were fit using Eq. 1, withn 5
2, and the fiber radii for the three curves were 7.5, 8.1, and
7.8 Å for the 6, 8, and 10% gels, respectively. That is, data

from each of the three gel concentrations were best fit with
curves that suggest a similar fiber size for all three gel
concentrations.

Similar fits were obtained with the data from Table 1, as
shown in Table 2. The one-parameter fit, shown at the far
right of Table 2, is similar to the curves shown in Fig. 1,
wheree was calculated from dry weights, and one can see
that the pooled data suggest a fiber radius for the acrylamide
that is quite similar for all of the gel concentrations. For the
two-parameter fits shown in Table 2, the best-fit values for
e were not too far off from those calculated from dry weight
data, but it is clear that using such partition data, even with
as many data points as used in Table 2, to obtain bothe and
rf could lead to considerable error in estimation of both
parameters.

The effect of varyingn, the scaling factor in Eq. 1, on the
predicted value for fiber radius is shown in Fig. 2 for 6, 8,
and 10% gels;e is calculated from dry weights, as in Table
2. Asn is reduced, the partition data are fit by smaller values
of the fiber radius. However, lower values ofn predict a
flatter relationship betweenKav and solute radius than is
seen in the data, as shown in Fig. 3, where the effect of
different values ofv is shown for pooled data from the
partition of dextran into 10% gels. Note that curves fit using
lower values forn do not fit the “corner” of the data in the
range of 30–90 Å solute radius as well as the curve does
with n 5 2.

Comparison of fits of the partition data between the
Ogston and Schnitzer theories (Eqs. 1 and 2) can be made

FIGURE 1 Solute free space (Kav) measured for three different concen-
trations of polyacrylamide gel using the same fractions of FITC-dextran
and experiments carried out within the same week. Two or three gel disks
were measured for each size of solute radius with each gel concentration.
(Symbols are for individual measurements, and often overlap.) 6% gel:
curve shows one-parameter fit withe 5 0.975 from water content, with
data fitting best torf 5 7.5 Å; two-parameter fit (not shown), void volume
(e) 5 1.0, and fiber radius (rf) 5 0.3 Å. 8% gel:e 5 0.955 from water
content, one-parameter fit,rf 5 8.1 Å; two-parameter fit (not shown),e 5
0.95 andrf 5 8.6 Å. 10% gel:e 5 0.945 from water content, one-parameter
fit, rf 5 7.8 Å; two-parameter fit (not shown),e 5 0.94 andrf 5 8.1 Å.

496 Biophysical Journal Volume 75 July 1998



by comparing Tables 2 and 3. Note that the fiber radii
predicted using the Schnitzer equation were consistently
larger than the radii predicted by the simpler Ogston equa-
tion. These differences are not great, but it is clear that the
Schnitzer theory is consistent with thicker fibers (and thus
less total length of fibers) within the matrix in comparison
with the Ogston theory.

Permeation of dextrans across gels

Plots of the diffusional permeation of gel slabs by FITC-
dextran were linear with time, and the concentration of
FITC-dextran in its initial compartment did not change
significantly over the time of the experiments. Thus, the
rates of permeation were easily calculated, and were con-
verted to permeability values (Table 4) for ease of fitting to
model predictions, as shown in Fig. 4. The range of sizes of
dextrans for permeation experiments was dictated by the
method used: measurement of permeation of molecules

larger than 30 Å radius was not practical, as the rate of
permeation for larger molecules across the 0.5 mm gels was
too slow for an experiment to be completed in one day. At
the other end, accurate fractionation of molecules much
below anrsecof 15 Å was not possible on the column used.

Unstirred layer thickness was estimated by measuring the
rate of permeation of FITC-glycine, a molecule small
enough that its rate of diffusion in the gel should be little
different from that in free solution. Mean permeability for
FITC-glycine in 10% gels was 7.826 0.13 3 1025 cm/s
(n 5 3). BecauseDfree # 5 3 1026 cm2/s, the maximum
thickness of the total unstirred slab in the chamber is 640
mm. This is not much larger than the nominal thickness of
the gel (0.5 mm). Moreover, it is certain that the gel will
have some effect on reducing diffusion (if only by reducing
the total volume of fluid available to the solute), so that the
actual thickness of the unstirred layer is apparently,70mm
on each side of the gel.

The increased restriction of permeation across 10% gels
with increasing molecular size is easily seen in Fig. 4. This
is a real effect of restriction to permeation across the gel, as
a plot of P/Dfree againstrsec (Katz and Schaeffer, 1991)
showed a significant negative slope (plot not shown; slope
was20.27 cm21/Å radius,p 5 0.0015).

Note that with the exception of the fit from Eqs. 12 and
13, the shape of the data in Fig. 4 is fit fairly well by all of
the theories described in the Methods. The effective me-
dium models fit the data with curves that have less slope
than those predicted by the other models, with the Johans-
son geometric model having the steepest slope, but these
differences are not large at any point. In contrast, the fiber

TABLE 1 Data for partition of FITC-dextran into polyacrylamide gel

Dextran radius (Å)

Fractional volume of gel available to dextran (Kav)

6% Gels 8% Gels 10% Gels

15.1 0.776 0.02 (29) 0.716 0.02 (13) 0.596 0.03 (15)
16.8 0.666 0.03 (10) 0.596 0.02 (3) 0.496 0.02 (3)
18.6 0.766 0.01 (6) 0.706 0.02 (24) 0.686 0.03 (23)
20.6 0.796 0.01 (3) 0.586 0.03 (13) 0.476 0.03 (7)
22.9 0.666 0.02 (20) — 0.426 0.01 (8)
25.4 0.516 0.02 (10) — —
31.2 0.456 0.02 (6) 0.396 0.01 (30) 0.306 0.01 (30)
34.6 0.476 0.01 (35) 0.286 0.016 (13) 0.326 0.02 (21)
42.5 0.326 0.02 (13) 0.196 0.001 (3) 0.116 0.001 (3)
52.2 0.296 0.004 (6) — —
64.2 0.116 0.003 (3) 0.0656 0.0055 (23) 0.026 0.004 (27)
71.1 0.116 0.002 (4) — —
87.4 0.0376 0.0007 (21) 0.0126 0.001 (9) 0.0066 0.0006 (12)

119* 20.000036 0.001 (4) — —
132* 20.0000056 0.0004 (3) 20.000036 0.0005 (17) 20.000066 0.0004 (19)
147* 20.00086 0.0004 (41) — 0.00016 0.0003 (10)

.162*# 0.00026 0.0002 (3) 0.0026 0.002 (17) 20.00076 0.0007 (14)

Dextran radius is mean apparent radius from size-exclusion chromatography. Values ofKav are shown as mean6 SE, with number of gel disks measured
shown in parentheses. Gel % is nominal value only; actual content of final gels (by dry weight) was less than nominal (e.g., in 10% gels, fractional water
content averaged 0.91996 0.0003 for 56 gel disks).
*These dextran fractions were used for correcting for carry-over volume; for each day’s experiment, one of these fractions was used for two or more disks,
and meanKav for this fraction was assumed to be zero. See text for explanation of carry-over volume.
#This dextran fraction was at void volume of column, so stated radius is a minimum value.

TABLE 2 Values of void volume (e) and fiber radius (rf) in
polyacrylamide gels calculated from measurement of
equilibrium content of sized FITC-dextrans

Gel %

Two-parameter fit

e from dry wt

One-parameter fit

e rf (Å) rf (Å)

6 0.936 0.01 14.16 1.7 0.971 8.16 0.1
8 0.976 0.01 6.46 1.3 0.956 8.66 0.1

10 0.926 0.02 11.46 2.0 0.945 8.86 0.1

Uses Eq. 1 withn 5 2. For 6% gels,n 5 217 data points from a total of
12 days of experiments (with a new batch of gel for each day); 8%,n 5 165
data points from 9 days; 10%,n 5 192 data points from 10 days.
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radius of the matrix that is consistent with these fits to the
permeability data in Fig. 4 varies among these models, as
shown in Fig. 5, which shows the predicted fiber radii from
the partition experiments (using Eq. 1 and the data in Fig. 3)
along with the predicted fiber radii using the different
diffusion theories and the data in Fig. 4. The error bars show
the 95% confidence intervals for the nonlinear fits. Note that
this confidence interval is calculated assuming that the void
volume of the gel is known exactly, so the true confidence
intervals for the fiber radius will be larger than shown.
However, this figure does allow a visual comparison of
which analyses show consistent fits between the partition
and permeation data.

This comparison shows that the Brinkman effective me-
dium model—with either of the two estimates for the Darcy
constant—yielded a fit with the permeation data that is
consistent with the partition data and a scaling factor ofn 5
2. The geometric models of permeation (Ogston, Schnitzer,
and Johansson) and the hydrodynamic screening model of
Cukier are consistent withn in the range of 1.6–1.7; how-
ever, the shape of the partition data does not support the
appropriate use ofn , 2 (see above and Fig. 3). Varying the
Cukier parameter ofL/b did not change this greatly. The
addition of a steric term to the Brinkman effective medium
model fit the permeation data with fiber radii considerably
larger than those predicted by the partition data.

Some of these fits are shown overlaid on the permeation
data in the lower panel of Fig. 6, where the fiber radii
consistent with the partition data are used for the calcula-
tions of permeation. Using these radii, the geometric theo-
ries predict a higher rate of permeation than was seen, while
the effective medium model with steric term predicts a
lower rate. Similarly, in the top panel of Fig. 6 it can be seen
that the fiber radii consistent with the permeation data for
the geometric theories predictKav values that are lower than
measured experimentally, while the effective medium
model with added steric term yields predictions ofKav

values that are too high.
The fit of partition and permeation data with pore theory

is shown in Fig. 7. Note that pore theory is not self-
consistent with regard to the data on partition and perme-
ation of dextrans in the present study.

DISCUSSION

This study was motivated by a desire to find a consistent
theoretical description of partition and permeation of mac-

FIGURE 2 Effect of varying scaling factor (n) in Eq. 1 on predicted
value of fiber radius from data in Table 1. Note that the relationship is
apparently linear, and that the data from 8 and 10% gels yield predicted
fiber radii that are very close, while data from 6% gels suggest a slightly
thinner fiber.

FIGURE 3 Pooled data on solute free space in 10% gels. Data are same
as Table 1. Curve fits use the Ogston equation, Eq. 1, with different values
for the scaling factor,n. Note thatn 5 2 provides the best fit of the data.

TABLE 3 One-parameter fit of data in Table 2 using
Schnitzer model of solute partition

Gel % rf (Å)

6 8.36 0.1
8 8.86 0.1

10 9.16 0.2

Data are the same as in Table 2, but fit was made using Eq. 2, withe values
as calculated from dry weights and partial specific volume of polyacryl-
amide.

TABLE 4 Data for diffusion of FITC-dextran across 0.5-mm-
thick 10% polyacrylamide gel

Dextran radius (Å) Permeability (1026 cm/s)

15.1 6.616 0.85 (3)
16.8 5.446 0.61 (11)
18.6 4.446 0.94 (3)
20.6 3.116 0.64 (4)
22.9 2.366 0.15 (2)
25.4 1.97 (1)
28.1 0.79 (1)

Values are shown as mean6 SE with number of gel disks measured shown
in parentheses.
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romolecules in a matrix. While equilibrium partition of
solutes can be measured in many biological matrices (e.g.,
by quantitative immunostaining), measuring rates of perme-
ation through a matrix is generally more difficult due to the
anatomical arrangement of the tissue. Theoretically, one
could measure the partition coefficients for a range of solute
sizes to obtain a description of the physical characteristics
of the matrix, and use that characterization to predict dif-
fusion and permeability. This idea was tested in polyacryl-
amide gel as an easily handled model system.

The results suggest that, indeed, one can probe the phys-
ical nature of a matrix by measuring equilibrium partition of
molecules—and the partition data in the present study (Fig.
3) matched the shape of the Ogston theory quite closely—
and then accurately predict the ability of the molecules to
permeate the matrix, but to do this one needs additional
data: the hydraulic permeability of the matrix. That is, the
best results for predicting permeation in the present study
were found using the Brinkman effective-medium descrip-
tion of solute diffusion in a matrix (Fig. 6), and this de-
scription requires knowledge of the Darcy constant of the
matrix.

This is a significant problem, as measuring the Darcy
constant in some matrices (such as in cytoplasm or intersti-
tial extracellular matrix) could be difficult. Moreover, the
Darcy constant for a matrix as simple as polyacrylamide gel
is not easy to measure; two different values were gleaned
from the literature for the present study, and the results were
quite different for the two values used. Finally, it must be
noted that simply increasing the number of parameters in a

model increases the chances of a good fit (Katchalsky,
1963), so one should view this result with some caution.
Still, simple addition of an additional parameter, such as
with the Cukier model, did not give as good a fit between
the partition and diffusion data as did the Brinkman model,
so there is good reason to think that the Brinkman model
provides a better description of the interactions of diffusion
within the gel than do the other theories.

The results found using other theories of solute perme-
ation did well in describing the permeation data alone, with
the exception of the so-called phenomenological equations
12 and 13, which did not fit the shape of the data (Fig. 4).
Of course, all of the permeation calculations usedKav as
calculated from Ogston’s formulation (Eq. 1) in fitting
permeability (Eq. 5), so that the differences in fit among
models were due to estimation of the diffusion coefficient
for the solutes within the gel. (The single exception to this
is the Schnitzer values in Fig. 5, which used Eq. 2 forKav,
but these were very close to the Ogston values.) Over the
range of values of solute radius shown in Fig. 4,Kav ranged
from 0.4 to 0.7 (forrf 5 8.8 Å), indicating thatKav alone
would reduce permeability in the 10% gel to about half of
that in free solution for this range of solute sizes. For the
Ogston theory, reduction ofD in the gel was comparable to
this: with rf 5 8.8 Å, Kav/(D/Dfree), that is, the ratio of the
reduction due toKav to the reduction due toD, averaged 1.3

FIGURE 4 Permeability of FITC-dextran across 0.5-mm-thick 10%
polyacrylamide gel. The number of gel pieces tested with each dextran
fraction is shown by the numerals next to the symbols. Model fits all
assumee 5 0.945 and use Eqs. 1 (Kav, with n 5 2) and 5 (P) unless stated
otherwise: Ogston (Eq. 6),rf 5 6.2 Å; Schnitzer (Eqs. 2 and 6),rf 5 6.4
Å; Johansson (Eq. 7),rf 5 5.3 Å; Cukier (Eq. 8),L/b 5 10, rf 5 5.8 Å;
Brinkman (Eq. 9),k 5 115 Å2, rf 5 9.7 Å; Brinkman with steric term (Eq.
10), k 5 115 Å2, rf 5 15.6 Å; pore model (Eqs. 3 and 11),rp 5 58.2 Å;
Lauffer phenomenological model (Eq. 12),b 5 14.9; and Ogston phenom-
enological model (Eq. 13),g 5 23.8.

FIGURE 5 Predicted fiber radii in 10% gel using data in Figs. 3 or 4 and
various models. Shown here are likelihood confidence intervals of apparent
radius of fibers in gel for partition fits using Eq. 1 (Table 2 and Fig. 3) and
for various theories for fitting permeability data (from Fig. 4). Confidence
intervals for partition data are projected in the background with hatched
bars so that intersection with confidence intervals of permeability data can
be seen easily. Note that the partition fit withn 5 2 is the best fit for
partition data, and that the confidence interval for this fit falls within ranges
of Brinkman fits (“Brink,” Eq. 9). “Brink 1 S” is Brinkman effective
medium model with steric term added (Eq. 10). All other designations are
as in Fig. 4.
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for the solute range of Fig. 4. However, with the Brinkman
effective-medium model,Kav/(D/Dfree) averaged 2.2, indi-
cating the relatively smaller diffusion coefficient in the gel
predicted by this model.

These results, showing comparison of partition and per-
meation data, are similar to those found by Tong and
Anderson (1996) for proteins in polyacrylamide gel. They
found that the Brinkman model described diffusion rates in
the gel accurately, just as the use of the Brinkman model fit
the permeation data in the present study. However, they
found that this result was valid only for proteins, and not for
polyethylene glycol, which, like the dextran used in the
present study, is a linear polymer. Polyethylene glycol dif-
fusion did vary with gel concentration, but the measured
diffusion constants were greater than those predicted by the
Brinkman model and the two sizes of polymer did not differ
in their diffusion constants within the gel, whereas protein
diffusion was fit accurately by the model and showed ap-
propriate differences in diffusion for the two proteins used
(Tong and Anderson, 1996). It is not clear why these results

for polyethylene glycol were different from the dextran
results in the present study, but it should be understood that
the permeation measured in the present study is different
from the diffusion measured by Tong and Anderson. Per-
meation includes both a partition and diffusion component.
This difference, combined with the different methods of
estimating solute and fiber radii in these two studies, makes
it difficult to compare them directly.

A good fit of protein partition and diffusion was found by
Johnson et al. (1995) with the Brinkman model in SP-
Sepharose beads, but in agarose gels the same group found
that the Brinkman model needed an additional steric term
(Eq. 10) to fit the diffusion data (Johnson et al., 1996). In
other chromatographic beads, Moussaoui et al. (1991) found
that partition and diffusion of proteins was accurately de-
scribed by the Ogston equations in the gel AcA-34, which is
acrylamide-based, but not in Sepharose Cl-B, which is a
cross-linked agarose gel (Moussaoui et al., 1992).

It is difficult to reconcile all of these studies. Even within
the same matrix—acrylamide-based or agarose-based—the
results are conflicting. Methodological differences could
play a role in the differing results, although all of the studies
just cited measured diffusion in the matrix using fluores-
cence recovery after photobleaching (FRAP). The present
study is unique in this regard, as the method we used for
measuring permeability is unaffected by solute binding to
the gel, or by some solute being trapped as a relatively
immobile fraction, both of which require correction in the
FRAP method.

However, the method we used for measuring permeabil-
ity is susceptible to error due to unstirred layers. In this
method, diffusion of the dextran from one chamber to the
other requires the dextran to penetrate the gel along with the
unstirred layers of fluid bounding each surface of the gel.
The error induced by the presence of these unstirred layers
will vary according to the thickness of the layers and the
permeability of the gel slab, and will be greatest for small
solutes. Assuming unstirred layers of 100mm thickness on

FIGURE 6 Visual comparison of partition and permeability fits for data
in 10% gels.Top: Using the 95% confidence intervals for fiber radius (rf)
from fit of the permeability data, these values are plugged into Eq. 1 to
show predicted ranges of solute partition. Three theories are designated, as
in Fig. 4. Note that the range from the Brinkman theory overlaps most
partition data points.Bottom:In reverse of above, here confidence interval
values forrf that fit partition data (withn 5 2) are compared. Note that by
usingrf predicted by partition data, Brinkman theory (withk 5 115 Å2) fits
permeability data very well.e 5 0.945 for all.

FIGURE 7 Visual comparison of partition and permeability fits from
pore theory for data in 10% gels. The main panel shows predicted partition
from fit of permeability data.Inset:predicted permeability range calculated
using pore size confidence interval from fit of partition data.
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both sides of the gel (thicker than that estimated), the error
in the permeability measurement would have averaged only
7.1 6 0.6% over all of the data points in Table 4. Note that
this error results in measured values that are smaller than the
actual gel permeability, and so the points in Figs. 4, 6, and
7 would be slightly higher with this error taken into account,
but errors this small would not affect the conclusions that
were drawn.

Other studies have uniformly used the Stokes radii for
molecules permeating and partitioning into matrices. The
present study usedrsec for molecular size, and this is argu-
ably the best choice for linear polymers, as the effects on
partition and diffusion of the variable shape of the molecule
will be present in both the chromatographic column and in
the experiments with gels. Other studies have used various
measurements for the void volume and fiber radius of the
matrix. In the present study, the matrix void volume ratio
was estimated using dry weights with the partial specific
volume of polyacrylamide. One cannot be certain that this
gives the correct void volume, but free fit of the pooled
partition data (Table 2) yielded values for void volume that
were not far from those calculated for 6 and 10% gels.
Moreover, the overall results in the present study were
unaffected by the way that void volume was estimated. If
the partial specific volume of polyacrylamide was assumed
to be 0.7, 1.0, or 1.3, the relative results came out the same,
just with different values for the apparent fiber radius of the
matrix.

Nature of the matrix

Some of the studies cited above used x-ray diffraction or
similar data for the size of the fibers in the matrix. In the
present study we assumed no dimensions, but simply looked
to see whether the apparent dimensions of the matrix fibers
matched between the partition and diffusion data. The ap-
parent radius of the “fibers” in the polyacrylamide was just
under 9 Å, which is reasonable; it is slightly larger than the
5.5–6.5 Å values suggested by Tong and Anderson (1996),
but similar to the 8.6–9.0 Å radii found by Ogston et al.
(1973).

Although polyacrylamide solution has been viewed as a
model fiber matrix (Ogston et al., 1973), cross-linked poly-
acrylamide gel is not a matrix of randomly oriented rods
(Tietz, 1988). Rather, the work of Ru¨chel and colleagues
has shown that polyacrylamide gel consists of open “cells”
surrounded by thin walls, rather like a sponge (Ru¨chel and
Brager, 1975; Ru¨chel et al., 1978). These cells are large
relative to solutes (severalmm in diameter) while the walls
may be quite thin.

Thus, a fiber-matrix analysis of solute interaction with
polyacrylamide gel is mainly of functional use, rather than
being a match to the exact geometry of the gel. Still, the
fiber-matrix model is superior to an equivalent pore model,
because an absolute limit to the size of molecule that per-
meates a gel, which is implicit in pore theory, was not

consistent with the data in the present study. For example,
when the data are fit using pore theory (Fig. 7),Kav for
solutes with a radius of 87 Å is predicted to be zero, while
the experimental values forKav, though small, were signif-
icantly greater at 87 Å than at 132 Å. That is, the experi-
mental data were not consistent with a pore radius smaller
than 87 Å, even though the best fit of the pore theory to the
data required such a small pore size. This deficit could have
been remedied by using a heteroporous model (Deen et al.,
1985), but such a model would have introduced yet another
parameter into the analysis.

Ogston versus Schnitzer derivations of partition
in fiber-matrix

The Ogston equation (Eq. 1 withn 5 2) is derived using a
geometric argument and by assuming that spaces of a given
size are distributed within the matrix according to the Pois-
son distribution (Ogston, 1958). The Schnitzer equation
(Eq. 2) is derived using a statistical physics approach and by
assuming that the number of accessible spaces is predicted
by a Gaussian distribution (Schnitzer, 1988). The difference
between the two equations is most apparent at small values
of the void volume ratio and large values of solute size
(Schnitzer, 1992). As described above, fits using these two
derivations of the theory did differ, but only minimally.

The conditions under which the two derivations yield
widely different predictions—smalle and largersec—were
not important for the present study. For example, fore 5
0.90 andrsol/rf ' 7.0, Kav predicted by Ogston is about
twice that predicted by Schnitzer (1992). However, in the
present study (Figs. 1 and 3), values ofKav at rsol/rf ' 7.0
are so close to zero that the difference between the two
derivations is of no significance. Similarly, the permeation
data (Fig. 4) are for relatively small molecules (rsol/rf , 4),
and permeabilities for large molecules would be extremely
low, so the difference between fits of the two derivations is
trivial. It would be good to compare the two derivations
measuring permeation of very large molecules and compare
these to the other models shown above, but such experi-
ments are technically difficult. For most biological applica-
tions (for example, partition of soluble proteins into extra-
cellular matrix, wherersol/rf # ;1) these two derivations of
fiber-matrix theory are probably equally applicable.

CONCLUSIONS

The data in the present study show that it is presently not
feasible to use partition data for predicting permeation of
macromolecules in polyacrylamide gel without having ad-
ditional data on the hydraulic conductivity of the gel. The
Brinkman formulation for diffusion in a gel is superior to
other models, but measuring the Darcy constant in biolog-
ical matrices is technically very difficult. For work with
biological matrices, it would be useful to have a model that
accurately predicts solute permeation from partition data
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alone, and perhaps this is a reasonable direction for future
research.

NOTES

1. Here we follow Curry (1984) and useKav and f (the partition
coefficient) as distinct from one another.Kav is the ratio of the equilibrium
solute concentration in the gel relative to that in the incubation solution,
calculating the gel concentration as the solute content divided by the gel
volume.f is the ratio of the concentration of the solute within the void
volume of the gel relative to that in the incubation solution. As solute
radius goes to zero,f3 1.0, whileKav3 e, which is the void volume of
the gel. (Note thatKav3 e is true in Eqs. 1 and 2 only for values ofe $

0.9; in general, Eqs. 1 and 2 predictKav3 ee21, which is close toe if e is
close to 1. This is a consequence of the assumption in fiber-matrix theory
that the free space in the matrix is much greater than the volume occupied
by the fibers, and means that these theories should be used with caution for
values ofe , 0.9.)

2. In Eqs. 4 and 5 we differ from Curry (1984) in usingKav in place of
f. The rationale for the use ofKav here is that the equations forD appear
to be based on the entire volume of the gel (as explicitly described by
Ogston et al., 1973), rather than just the fluid space represented by the void
volume. Thus it isKav that appropriately expresses the drop in solute
concentration in moving from the bulk solution into the matrix. In the end,
though, the conclusions of the present work are unchanged iff, rather than
Kav, is used in Eqs. 4 and 5.
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Rüchel, R., and M. D. Brager. 1975. Scanning electron microscopic ob-
servations of polyacrylamide gels.Anal. Biochem.68:415–428.
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