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ABSTRACT We predict the amplification of mechanical stress, force, and torque on an adherent cell due to flow within a
narrow microchannel. We model this system as a semicircular bulge on a microchannel wall, with pressure-driven flow. This
two-dimensional model is solved computationally by the boundary element method. Algebraic expressions are developed by
using forms suggested by lubrication theory that can be used simply and accurately to predict the fluid stress, force, and
torque based upon the fluid viscosity, m, channel height, H, cell size, R, and flow rate per unit width, Q2-d. This study shows
that even for the smallest cells (g 5 R/H ,, 1), the stress, force, and torque can be significantly greater than that predicted
based on flow in a cell-free system. Increased flow resistance and fluid stress amplification occur with bigger cells (g . 0.25),
because of constraints by the channel wall. In these cases we find that the shear stress amplification is proportional to
Q2-d(1 2 g)22, and the force and torque are proportional to Q2-d(1 2 g2)25/2. Finally, we predict the fluid mechanical influence
on three-dimensional immersed objects. These algebraic expressions have an accuracy of ;10% for flow in channels and
thus are useful for the analysis of cells in flow chambers. For cell adhesion in tubes, the approximations are accurate to ;25%
when g . 0.5. These calculations may thus be used to simply predict fluid mechanical interactions with cells in these
constrained settings. Furthermore, the modeling approach may be useful in understanding more complex systems that
include cell deformability and cell-cell interactions.

INTRODUCTION

Cells in nature frequently adhere to the walls of channels or
tubes whose cross-sectional dimensions are similar to those
of the cells themselves. This can occur in situations as
varied as leukocyte adhesion in the vascular system to
biofilm formation in porous media. Fluid flowing through
these systems exerts stresses on these cells, which may
influence their adhesion to the microchannel wall. In addi-
tion, cell adhesion can greatly influence the flow field
within these channels. To fully understand the interrelation-
ships between cell behavior and flow, a fundamental under-
standing of the modification of the flow-field within the
channel, the flow-induced stress, force, and torque on the
cell body is necessary. Several specific lines of research that
can benefit from improved understanding of the hydrody-
namic interaction between a cell and the environment it
inhabits are described below.

Leukocyte adhesion

Much is already known about the adhesion process with
leukocytes, particularly neutrophils. Briefly, the adhesion
process is initiated by an inflammation response, which
results in vascular endothelial cells displaying specific ad-
hesion molecules that bind to convecting neutrophils. The
initial attachment is mediated by adhesion molecules known
as selectins, which slow the neutrophils and cause them to

roll along the endothelial surface. Next, neutrophil activa-
tion ensues, resulting in the up-regulation of the integrin
family of adhesion molecules, which initiates firm contact
between the endothelium and neutrophil. Subsequently, the
neutrophil flattens and eventually migrates between inter-
endothelial junctions to enter the tissue.

Clearly the strength and rate of attachment of the ligand-
receptor bindings are key determinants of the adhesion
process, and for this reason they are the focus of many
studies (for example, Goetz et al., 1994; Hammer and Apte,
1992; Konstantopoulos and McIntire, 1996; Tempelman
and Hammer, 1994). Olivier and Truskey (Olivier and Trus-
key, 1993) have examined the force and torque associated
with shape changes during sequestration, and predicted that
a significant reduction in stress and torque would occur.
However, an unstudied aspect of the above investigations
relates to the fluid mechanical interaction that occurs during
the adhesion and sequestration of cells in small vessels (for
example, postcapillary venules) wherein a cell, or a cluster
of cells, may cause significant flow disruption and thus
increase the stress exerted on the cell. A goal of the research
described herein is to identify the scenarios in which such
flow disruption may be significant, and the degree to which
this disruption influences the stress field on an adherent cell.
For this reason, the calculations performed in this study will
provide a description of the stress field surrounding the cell
(which could affect cell deformation), and the torque and
force on the cell that must be balanced by receptor-ligand
binding for a cell to adhere. The methods described in this
paper are applied to rigid models of cells, but are extendable
to the analysis of deformable cells. The present study could
thus be considered a baseline for determining the impor-
tance of cell deformation for cell adhesion behavior.
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Biofilm formation

A situation that is similar to leukocyte adhesion is biofilm
formation. “Biofilm” is a general term describing the im-
mobilization of cells on a substratum. An excellent review
of biofilms and their importance is provided by Characklis
and Marshall (1990). Biofilms are ubiquitous in nature, and
can be either detrimental or beneficial. For example, bio-
films can occur on teeth and gums, intestines, and within the
urinary tract, where they pose health risks. In contrast,
biofilms may be beneficial in the natural environment,
where they are responsible for natural cleansing of ground-
water. In situ bioremediation efforts depend upon the cre-
ation of microbial colonies within porous media, wherein
the bacteria and pore dimensions are equivalent.

The development or improvement of effective strategies
for in-situ bioremediation should be based upon a sound
understanding of the detailed pore-level behavior of micro-
organisms within porous media. Bioavailability of microor-
ganisms depends upon the local physicochemical conditions
(e.g., pH, temperature, concentrations of dissolved gases
and solutes) because they influence chemotaxis and floccu-
lation, the propensity of microbes to aggregate and adhere to
each other and the local pore structure, creating the biofilm.
A common feature of many theoretical models of biofilm
formation is that the explicit dependence upon fluid dynam-
ics is ignored. However, cells may be removed from the
biofilm by flow properties that lead to detachment. In ad-
dition, while the biofilm is the site of bioremediation, it may
also hinder microbial migration into the pores by reducing
forced convection and diffusive transport of new cells into
the small pores (a type of biofouling). For these reasons,
recent studies of bacterial movement in microchannels sug-
gest that surface interaction and hydrodynamic forces must
be included in models at the micropore scale if one is to
examine cell fate and transport issues in realistic models of
bioremediation (Berg and Turner, 1990; Dillon et al., 1995,
1996; Harkes et al., 1992). The goal of the research de-
scribed in this paper is to explain simply the fluid dynamical
interaction between adherent cells and the flow through the
microchannels they inhabit, so as to improve the under-
standing of this aspect of the microscale process. Addition-
ally, knowledge of the force and torque on individual cells
will be important in assessing the likelihood of biofilm
formation.

Mechanotransduction

Recently it has become evident that vascular endothelial
cells that line vessel walls convert fluid stresses to electrical
and/or biochemical signals, affecting the behavior of the
vascular system—a behavior termedmechanotransduction
(Davies, 1995). This mechanism is hypothesized to regulate
vessel tone and may be related to atherosclerosis. Tensegrity
architectural models of the cytoskeleton may explain how
the surface mechanical stresses are converted into biochem-
ical responses (Ingber, 1997). A critical aspect of mechano-

transduction studies is a quantitative evaluation of the stress
field exerted on the cell surface. This aspect has been
recognized and studied by Barbee and colleagues (Barbee et
al., 1995), who used computational fluid dynamics tools to
investigate how endothelial cell remodeling influences the
subcellular shear stress distribution. These studies showed
that the endothelial surface would remodel under shear so as
to align with the flow to reduce the magnitudes of shear-
stress and their gradients at the cell surface. Further under-
standing of the fluid mechanical interactions with adherent
cells in a variety of orientations may be useful for identi-
fying mechanotransduction mechanisms. While the problem
described in the present paper is idealized, the methods
described may be useful in further research of mechano-
transduction. In particular, the change in the stress field with
cell deformation (on which the present study builds a foun-
dation) may be important in understanding mechanotrans-
duction mechanisms.

Study goals

In the present study, our goal is to estimate the magnitudes
of fluid-induced stress, force, and torque on a cell that
adheres to a microchannel wall. As explained above, this
information is essential if one is to accurately evaluate the
adhesion strength necessary for a cell to remain adherent to
either a vessel wall or on a soil matrix in porous media. In
addition, to quantify mechanotransduction responses, one
must first understand the magnitude and distribution of
stresses on the cell membrane. We investigate a two-dimen-
sional model of a single isolated cell within a narrow
channel, and study the influence of channel height and cell
size on the stresses, forces, and torques exerted on these
cells. We use lubrication theory as a motivation for the
development of simple algebraic formulae that can be used
accurately to predict these mechanical influences over a
range of different cell to channel height aspect ratios. Al-
though the problem studied herein is greatly simplified, the
methods described may be useful in determining improved
analytical expressions for more complex systems that more
accurately describe cell behavior in vivo.

In these models, we assume the flow is driven by a
pressure difference (DP) between opposite ends of the chan-
nel of lengthL, thus setting the average pressure gradient.
For this reason, the flow rate (Q*) through the channel will
depend upon the size of the channel as well as the size of the
adherent cell. We have chosen to model this system as
pressure-driven (instead of with a defined flow rate), be-
cause in the systems that we hope to model (e.g., porous
media or capillary beds), parallel pathways may exist
through which flow will be shunted when the resistance of
a given pathway increases. In these cases, the pressure
difference will remain relatively constant as cell adhesion
occurs. In our simulations, we will report the flow rate that
occurs with cell adhesion, because this will influence the
base level of the stresses in the system, and the rate at which
cells might convect into the channel.
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MODEL DEVELOPMENT

Here we develop a model that can be used to study the stress
distribution on individual cells in a single microchannel of
length L and heightH. These cells could be leukocytes
adhering to the endothelial surface of a vessel wall, or could
make up a biofilm in porous media. Flow of a viscous,
incompressible fluid is driven within the channel because of
an applied pressure differenceDP. Discrete cells of heightR
are allowed to attach to the channel wall, which changes the
“effective” wall shape and therefore influences the flow
field. Below we develop the governing equations that de-
scribe this situation, and use this model to investigate the
flow through the channel, and the fluid-mediated stresses on
attached cells.

Governing equations

We assume slow, viscous flow through the microchannel in
which inertia is negligible, based upon the Reynolds num-
ber, Re 5 UH/v ,, 1, whereU is a representative flow
velocity andv is the fluid kinematic viscosity. Therefore,
flow is governed by Stokes equations and continuity:

¹*p* 5 m¹* 2u* , and

¹* z u* 5 0. (1)

where¹*p* is the pressure gradient,m is the viscosity of the
fluid, and u* 5 (u*, v*) is the convective velocity of the
fluid. In this and following equations, * denotes a dimen-
sional variable, and unstarred quantities reflect dimension-
less variables.

Because of the imposed pressure difference,DP, the
pressure on the left and right boundaries of the domain,Pleft

andPright, are given by

p*left 5 DP and p*right 5 0, (2)

where the pressure at the right boundary is taken as the
reference pressure. The no-slip boundary condition is im-
posed so that the velocity at the top and bottom walls of the
pore is zero:

u* ~x*, y* 5 y*wall! 5 0. (3)

A monolayer biofilm develops when cells attach to the
wall and modify the microchannel structure. At the point of
attachment for each cell, the wall of the microchannel is
modified by the addition of a semicircular protuberance of
heightR. The attachment is smoothed at the juncture with
the wall by a “fillet” of radiusR/10.

Scales and dimensionless governing equations

To discern important parameters of the system, the govern-
ing equations of the model are nondimensionalized by using

the following scales:

x* 5 Lx, y* 5 Ly, p* 5 DPp, t* 5 DPt

and u* 5 Uu 5
DPH2

8mL
u, (4)

where L and H are the length and height of the pore
respectively,DP is the applied pressure difference across
the length of the pore, andm is the viscosity of the fluid. The
velocity scale,U 5 DPH2/8mL, is the centerline velocity
magnitude for flow in a channel without aggregation.

Using the scales in Eq. 4, the Stokes equations and
continuity are given by

¹p 5
b2

8
¹2u, and

¹ z u 5 0. (5)

The pressure and velocity boundary conditions are given by

pleft 5 1 and pright 5 0, (6)

and

u~x, y 5 ywall! 5 0, (7)

whereb 5 H/L is the dimensionless parameter defining the
microchannel aspect ratio. In dimensionless form, cell ad-
hesion induces a wall protuberance of magnitudea 5
R/L 5 bg, whereg 5 R/H is the cell to channel width aspect
ratio. An example of the domain with a single cell attached
at x 5 (1/2, 0) is shown in Fig. 1. We solve the governing
equations using the boundary element method, as discussed
in the Appendix. This computational method is outstanding
for irregularly shaped domains, because it demands only a
discretization of the surface. Even so, this method is capable
of resolving fine features of the flow. For example, stream-
lines are shown in Fig. 1, which demonstrate the overall
flow field. These streamlines show small Moffat vorticies
near the edge of the cell, which would require small dis-
cretizations to resolve if finite difference methods were
used. The boundary element method is useful for systems
with free surfaces (e.g., deformable cells) (Gaver et al.,
1996), because it does not require remeshing of the domain
with deformation. Finally, this method is rapid—typical

FIGURE 1 Example of a domain with one aggregated cell with stream-
lines indicating the flow.g 5 R/H 5 0.30; b 5 H/L 5 0.25.
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calculations required only 1 CPU-s on a 200 MHz Intel
Pentium-Pro computer. For these reasons, the present meth-
ods are extendable to much more complicated systems that
include multiple cells and/or cell deformation, from which
the present study would be considered a baseline.

It is important to recognize that the scaling in this anal-
ysis removes the pressure difference between ends of the
pore (DP) as a parameter of the problem, because it was
used in the stress and velocity scales. To determine the
magnitude ofDP under specific conditions, one would use
either direct measurements in an experiment, or estimate the
magnitude based upon flow conditions that are known to
exist. For example, if a background flow in a pore of
dimensionsH 5 10 mm andL 5 100 mm is known to be
U 5 15mm/s (1.3 m/day, a natural flow velocity), then from
Eq. 4 a pressure drop ofDP 5 1.2 N/m2 must be imposed
across the pore. A reduction ofH to 1 mm would yield a
100-fold increase inDP for the same velocity, or a 100-fold
decrease in velocity for the sameDP. We will demonstrate
below that the stress/flow is invariant withDP, so a mea-
surement ofQ* is sufficient to estimate the stresses on
individual cells.

RESULTS

In this section we explore how the flow over attached cells
establishes a stress field upon the cell. We first examine
(next section) the flow rate through the system,Q*, and
demonstrate its behavior as a function of the two dimen-
sionless parameters in the system,b 5 H/L andg 5 R/L.
We then examine the scales for the magnitudes of the
stresses, forces, and torques and show that these mechanical
quantities are proportional toQ*, and that the magnitudes of
the flow-normalized quantities are independent ofDP. Next,
we predict the magnitudes of these flow-normalized me-
chanical properties on isolated cells and develop regression
formulae based upon lubrication analysis. These regression
formulae may be used simply to predict the fluid flow
behavior on cells in constrained settings.

The influence of cell adhesion on channel
flow rate

When a cell attaches to the channel wall, it disturbs the flow
rate through the channel,Q* 5 *u*dy*, which in turn
influences the stress field experienced by the cell. We scale
Q* by the flow rate that would exist in a flat-walled (cell-
free) system,

Qflat-wall 5
DPH3

12mL
, (8)

and define this dimensionless flow rate as

Q̃ 5
Q*

Qflat-wall
5

12mL*u*dy*

DPH3 . (9)

Deviation of Q̃ from unity represents the reduction in
flow rate due to the cell adhesion.Q̃ depends on the two
geometric dimensionless parameters in the system. The cell
aspect ratio (g 5 R/H) dictates the size of the gap width
between the channel wall and top of the cell. Clearly, as
g 3 1, the channel becomes obstructed andQ̃ 3 0. In
addition,Q̃ is modulated by the other independent param-
eter of the system (eitherb 5 H/L or a 5 R/L). If g 5 R/H
is varied withb 5 H/L fixed, this is equivalent to changing
the cell size (R) for a given channel, as shown in Fig. 2a.
In this case, asR/H increases, the cell fills a larger portion
of the channel by increasing its relative length, because
R/L 5 R/H z H/L. The influence of flow following this
scenario is presented in Fig. 3a. This flow rate reduction
occurs for two reasons. First, the resistance increases with
increasingR/H due to the decreased gap through which fluid
can flow between the cell and opposing wall. Second, the
flow resistance increases because of the increasing axial
extent over which the cell fills the channel (R/L increasing).
Alternatively, varyingR/H with R/L fixed is identical to
changing the channel height (H) with a fixed cell size, as
shown in Fig. 2b. The influence on the flow rate in this
situation is given by Fig. 3b. In this case, the change in flow
resistance is due only to the decrease in the gap width
between the top of the cell and the opposite wall with
increasingR/H. From this figure it is evident that small cells
(R/L 5 0.01) have only a minor effect on the flow rate until
R/H . 0.3. However, asR/L increases, the flow resistance
increases markedly because of the increasing axial extent of
the flow disturbance.

Stress, force, and torque scales for
attached cells

A number of mechanical factors may influence a cell’s
ability to adhere to a microchannel wall. These include the
normal and shear-stress distribution on the cell membrane,
and the net force and torque exerted on the cell. Below we
determine the basic magnitudes of these characteristics, so
that we can determine the relative influence of fluid flow on
a cell. As described in detail below, we rescale the cell shear
stress (t*s), the x component of force (F*x), and the torque
(T*) by magnitudes that are derived from stress magnitudes

FIGURE 2 Description of decrease in the cell aspect ratio,R/H, by (a)
changing the cell size (b 5 H/L fixed); (b) changing the channel width
(g 5 R/L fixed).
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that would exist in a flat-wall (or cell-free) system. These
rescaled dimensionless quantities are denoted byt̃s, F̃x, and
T̃, respectively. These quantities provide a measure of the
amplification of the fluid mechanical interaction with the
cell due to the combined effect of flow disruption by the cell
and the constraint of the channel.

In addition, because shear stress under Stokes flow is
directly proportional toQ*, it is useful to represent the fluid
mechanical interaction with the cells by dividing the stress,
force, or torque byQ*—we call this theflow-normalized
response. This representation is beneficial for several rea-
sons. First, it identifies the magnification of the mechanical
influence on cells in a system with a fixed flow rate. In a
pressure-driven system the flow rate is modified, as shown
in Fig. 3. Nevertheless, with this representation, onceQ* is
determined, it is simple to calculate the fluid mechanical
impact on the cell. Most importantly, the flow-normalized
responses (t*s/Q*, F*x/Q*, andT*/Q*) depend only on phys-
ical constants of the system and the dimensionless flow-
normalized responses (t̃s/Q̃, F̃x/Q̃, and T̃/Q̃, respectively)
that are functions only ofg 5 R/H. This greatly simplifies
the data representation, and will be very useful in determin-
ing regression formulae of the system response outlined
below (see Regression Relationships).

To determine the magnitudes of these mechanical prop-
erties, the stress vector along the cell surface,tcell, is cal-

culated using the relationship:

tcell 5
t*cell

DP
5 s z n̂cell (10)

wheren̂cell is the cell wall outward normal vector, ands is
the dimensionless stress tensor,s 5 2PI 1 (b2/8)[¹u 1
¹ut]. An example of thex, y, normal, and tangential com-
ponents of the stress (tx, ty, tn, andts, respectively) on a
single cell is shown in Fig. 4,a–d. Note thatty 5 tn along
the flat wall. Far from the cell, these quantities approach the
pressurep, which decreases linearly, as would be expected
in uniform channel flow.

Note that the dimensionless shear-stress on a flat-walled
(cell-free) microchannel is

~ts!flat-wall 5
~t*s!flat-wall

DP
5

b

2
, (11)

which is shown in Fig. 4d. This figure shows thatts on the
cell surface may be much larger than that on the flat wall.
To compare the relative magnitudes of the cell shear-stress
with that exerted on the flat wall in a cell-free system, we
represent the dimensionless shear-stress as

t̃s 5
t*s

~t*s!flat-wall
5

t*s
DP~b/2!

, (12)

FIGURE 3 The influence of cell aspect ratio (R/H) on the flow rate
through the channel. (a) Effect of variation in cell size (H/L fixed). z, H/L 5
0.05;¹, H/L 5 0.10;n, H/L 5 0.15; ◊, H/L 5 0.20;‘, H/L 5 0.25. (b)
Effect of variation of channel height (R/L fixed). —-z—-, R/L 5 0.01;
zzzz¹zzzz, R/L 5 0.03; —-n—-, R/L 5 0.05; —-◊zzzz, R/L 5 0.07; —-‘—-,
R/L 5 0.09; —-zzzz, R/L 5 0.11; —-●zzzz, R/L 5 0.13; —-¹—-, R/L 5 0.15.

FIGURE 4 Dimensionless stresses exerted on single cells.b 5 H/L 5
0.05, g 5 R/H 5 0.25. (a) x component; (b) y component; (c) normal
component; (d) tangential component.
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and the flow-normalized shear stress from Eq. 8 is thus

t* s

Q*
5 S6m

H2Dt̃s

Q̃
. (13)

The x component of the force/width on the cell (F*x) is
computed by integratingt*x over the cell surface. In undis-
turbed flow, the magnitude of force on a flat section of wall
over the distance covered by the cell is

~Fx!flat-wall 5 2R~t*x!flat-wall 5 RbDP. (14)

This magnitude is due solely to the shear-stress exerted on
the flat wall. When a cell is introduced,t*x will include
contributions due to shear- and normal stresses, which will
be modified by the flow field, increasing the magnitude of
F*x. To identify the amplification due to flow disruption, we
represent the relative magnitude ofF*x with the flat-wall
limit as

F̃x 5
F*x

~Fx!flat-wall
5

*t*xds*

R z DPb
, (15)

where the integration is computed over the cell surface. The
flow-normalizedx component of force/width is thus

F*x
Q*

5 S12mR

H2 DF̃x

Q̃
5 S12gm

H DF̃x

Q̃
. (16)

The torque/width experienced by the cell isT* 5 *r* 3
t*ds*, where r* is typically the vector between the rota-
tional axis of the cell and the cell surface. For unattached
cells, r* originates from the center of mass (denoted with
the subscript cm) of the cell, so thatT*cm 5 *r*cm 3 t*ds*,
with the integration conducted over the entire surface of the
cell. In the present model, we assume that the cell is im-
mobile. In this context, it is most convenient to chooser* 5
r *base, the radial vector from the center of the attachment of
the cell to the surface. In this case, the torque induced by
fluid flow is T*base5 *r*base3 t*ds* 5 R*t*sds*, because
the component oft* perpendicular tor *base is t*s. T*base is
useful for representing the fluid-exerted torque on the fully
adherent cell. In equilibrium it is balanced by the torque
exerted by cell adhesion, which is due solely to they
component of force exerted by the receptor-ligand binding
along the flat surface of the cell, whereas thex component
of force exerted by the receptor-ligand binding is balanced
by F*x. For this reason, all torques hereafter will be referred
to as T*base unless otherwise noted. Note, however, that
becauser *cm 5 r *base2 (4R)/(3p)ey, T*cm 5 T*base1 (4R/
3p)*t*xds* 5 T*base1 (4R/3p)F*x. So, from the data pro-
vided,T*cm can be determined.

To determine a scale forT*base, we assume thatt*s '
(t*s)flat-wall (which underestimates the stress in the cell cen-
ter, but overestimates it near the edge of the cell); then a
“flat-wall” torque/width scale is

~T*base!flat-wall 5 pR2SbDP

2 D. (17)

Below, we will use this as a torque scale to evaluate the
influence of biofilm formation on the torque experienced by
a cell. As such, we will represent the dimensionless torque as

T̃base5
2R*t*sds*

~pR2!~bDP!
, (18)

where the integration is taken over the cell surface. The
flow-normalized torque is given by

T*base

Q*
5 S6pmR2

H2 DT̃base

Q̃
5 6pmg2

T̃base

Q̃
. (19)

Stresses, forces, and torques on individual cells

Fig. 5, a and b, shows the dimensionless shear-stress and
normal stress for individual cells of different sizes within a
narrow channel (b 5 H/L 5 0.05). Fig. 5a shows that small
cells (g 5 R/H 5 0.1) have a (t̃s)max' 3, indicating that the
shear-stress on a cell is much larger than the stress exerted
on the flat wall. This result is in agreement with calculations
of stresses due to Stokes flow in a semiinfinite domain over
semicircular ridges computed by Higdon (1985), providing
confirmation of our numerical method. This result shows
that the shear-stress exerted on the cell is much larger than
the stress exerted on the surrounding wall. The shear-stress
deviation occurs over a distance from the cell center of
several cell radii (;4R) before t̃s 3 1, indicating the
distance over which the flow field is disturbed by the

FIGURE 5 The relationship between cell aspect ratio (R/H) and cell
stress.b 5 H/L 5 0.05. ——,R/H 5 0.1; zzzzz, R/H 5 0.3; –––,R/H 5 0.5;
–––zzz, R/H 5 0.75. (a) Shear-stress; (b) Normal stress.
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presence of the cell. With increasing cell size, (t̃s)max in-
creases, so that whenR/H 5 0.75, (t̃s)max ' 5.5. The cell
disturbs the flow field throughout the channel by introduc-
ing a large increase in flow resistance, which decreasesQ̃
and causes the far-fieldt̃s , 1. The relative disturbance
from the far-field flow occurs over a shorter relative dis-
tance from the cell center of;2R with the larger cells.

The normal stress along the bottom wall is greatly influ-
enced byR/H, as shown in Fig. 5b. In a cell-free system, the
normal stress is identically the pressure (p) and would decay
linearly with increasingx; this is clearly modified by the
introduction of a cell. The normal stress disruption causes
an increase inP upstream of the cell, and a decrease
downstream. This is a direct result of the increased flow
resistance resulting from the cell occluding the channel.

Figs. 6–8 demonstrate the behavior of the system
through plots of (t̃s)max, F̃x, andT̃base, respectively, fora 5
R/L 5 0.03 (a cell occupying a small section of the channel)
anda 5 0.10 in thea panels, and the dimensionless flow-
normalized mechanical behavior of the system, (t̃s)max/Q̃,
F̃x/Q̃, andT̃base/Q̃, in theb panels. Thea-panel representa-
tions are intended to give a general understanding of the
physical behavior of the system. However, to completely
analyze this system using this representation would require
an exhaustive exploration as a function of two geometrical
parameters (g and eithera or b). In contrast, using the
flow-normalized (b-panel) approach, the response is solely

a function of the dimensionless cell size,g 5 R/H. These
data are represented in log-log format, with variation ofg
along the abscissa representing the inverse of the dimen-
sionless gap width 1/(12 g) or by 1/(12 g2). The rationale
for this format will be made clear when data regression
formulae are discussed in the next section.

Fig. 6a shows the maximumt̃s exerted on the cell asR/H
increases. For smallR/H, (t̃s)max ' 3, the infinite-domain
limiting result discussed above. AsR/H increases, (t̃s)max

increases greatly, and reaches a maximum nearR/H 5 0.8.
For R/H . 0.8, (t̃s)max3 0, because the cell obstructs the
channel andQ̃3 0. Cells that extend over a larger portion
of the domain (a 5 0.10) experience smaller (t̃s)max be-
cause of the commensurate reduction in flow rate in the
pressure-driven system. Fig. 6b demonstrates the influence
of g on the dimensionless flow-normalized maximum shear
stress, (t̃s)max/Q̃. As the gap width decreases ((12 g)21

increasing), (t̃s)max/Q̃ is initially constant, indicating that the
top wall has little influence on the cell. When (12 g)21 .
1.33, shear stress amplification due to interaction with the
top wall is observed. This indicates that the top wall starts
to influence the shear stress on the cell when the cell size is
greater than 25% of the channel width. For larger cells, a
dramatic increase in (t̃s)max/Q̃ occurs as the cell fills the
channel. In a system with a fixed flow rate, (t̃s)max would
increase exponentially; however, in a pressure-driven sys-
tem, the shear-stress would be reduced from these values by
the reduction inQ̃ (see Fig. 3), as shown in Fig. 6a.

FIGURE 6 The influence of cell aspect ratio (R/H) on the maximum
shear-stress. (a) Dimensionless behavior.F, a 5 0.03; ■, a 5 0.10. (b)
Dimensionless flow-normalized response.F, Boundary element; – – –,
lubrication theory;zzzzz, large-gap limit; ——, regression.

FIGURE 7 The influence of cell aspect ratio (R/H) on thex component
of force, Fx. (a) Dimensionless response.F, a 5 0.03; ■, a 5 0.10. (b)
Dimensionless flow-normalized response.F, Boundary element; – – –, lubri-
cation theory; ——, regression.
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The dimensionlessx component of force on a cell,F̃x, as
a function ofg 5 R/H is given in Fig. 7a. For R/H small,
F̃x ' 3, indicating the magnification of force due to flow
disruption, even for very small cells. Asg increases,F̃x

increases markedly. In the limitR/H 3 1, the cell com-
pletely occludes the channel, and thusF̃x 3 L/R 5 1/a (in
dimensional form,F*x3 DP z H), because this is the entire
x component of force applied to the cell. The dimensionless
flow-normalizedx component of force on a cell (F̃x/Q̃) as a
function of (12 g2)21 is shown in Fig. 7b. This represen-
tation shows that in a fixed flow-rate system,F̃x would
increase without bound because the applied pressure would
need to be increased to compensate for the increased vis-
cous resistance as the gap width between the cell and top
wall narrows. In a pressure-driven system, theg 3 1
limiting behavior is not as obvious in Fig. 7b, becauseQ̃ is
simultaneously reduced with the increase ing, as shown in
Fig. 3.

Finally, the dimensionless torqueT̃base is greatly influ-
enced byR/H, as shown by Fig. 8. Fig. 8a shows that asg
increases, the torque experienced by the cell increases to a
maximum value, then decays to zero as the flow is reduced
by obstruction of the channel. The dimensionless flow-
normalized response shown in Fig. 8b demonstrates that in
the flow-driven case,T̃basewould grow exponentially asg
increases. This increase inT̃baseis reduced by flow limita-
tion in the pressure-driven system, as demonstrated in Fig.

8 a. These results show that torque predictions in uncon-
strained systems may greatly underestimate the torque on a
cell in a constrained channel.

Regression relationships

The data presented in Figs. 6–8 clearly demonstrate that
disruption of the flow field by a single cell in a microchan-
nel can greatly increase the mechanical influence of the
fluid on the cell over that experienced in an unconstrained
setting. In this section we develop regression relationships
that can be used to predict simply these fluid mechanical
interactions for individual cells. For the flow-normalized
responses, the general forms of these regressions were de-
rived using lubrication theory analysis, which is presented
briefly in the Appendix. This approach gives a logical basis
for the regression analysis. The general forms derived
should thus be accurate for more complex systems (deform-
able and multicell), which will allow comparison with the
rigid single-cell responses derived herein.

Flow rate

The flow rate predictions by lubrication theory given in the
Appendix for a semicircular protuberance of lengtha 5 R/L
and channel aspect ratiob 5 H/L gives

Q̃ 5
Q

Qflat-wall
5

f1~a, b!

f2~a, b!
,

where

f1~a, b! 5 2~b2 2 a2!5/2 (20)

and

f2~a, b! 5 ~2~1 2 2a!a4 1 2b2a2~5a 2 2!!~b2 2 a2!1/2

1 b4~2~b2 2 a2!1/2 1 3pa2! 1 6b4a2tan21S a

~b2 2 a2!1/2D,
as demonstrated in Fig. 9. Although this approximation

FIGURE 8 The influence of cell aspect ratio (R/H) on the cell torque. (a)
Dimensionless response.F, a 5 0.03; ■, a 5 0.10. (b) Dimensionless
flow-normalized response.F, Boundary element; – – –, lubrication theory;
——, regression.

FIGURE 9 The influence of cell aspect ratio (R/H) on flow rate through
the channel. Boundary element analysis:F, a 5 0.03; ■, a 5 0.10.
Lubrication theory: — — –,a 5 0.03; –––,a 5 0.10.
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overestimatesQ̃ for smallR/H, it gives a better fit than any
simple regression formula provides, and is probably suffi-
cient for the purposes of this study.

Maximum shear stress

Lubrication theory shows that

Lim
g31

S~t̃s!max

Q̃
D 5

1

~1 2 g!2. (21)

As shown in Fig. 6a, this relationship is satisfactory for
small gap widths, but does not provide an adequate rela-
tionship for small values ofg, as can be seen in Fig. 6b. To
develop a quantitative relationship that can be used over
0.25# g # 1 (the range over which the top wall influences
the cell), we performed a least-squares regression of the
boundary element data, using the form (t̃s)max/Q̃ 5 a 1
1/(1 2 g)2, which has the correct limiting behavior asg3
1. This calculation shows thata 5 1.158, and the regression
coefficient is R2 5 0.998. This leads to the following
relationship for the maximum shear stress calculations:

S~t̃s!max

Q̃
D 5 H 2.95 g , 0.25

1.1581
1

~1 2 g!2 0.25# g # 0.85. (22)

This relationship is shown in Fig. 6b, which demonstrates
a strong correlation to the calculations from the boundary
element method and to that of the limiting lubrication theory
analysis. Forg . 0.85, Eq. 21 should be used to estimate
(t̃s)max/Q̃.

x component of force, Fx:

As shown in the Appendix, the lubrication approximation
for (F̃x/Q̃) gives

Lim
g31

SF̃x

Q̃
D 5

2p

~1 2 g2!5/2, (23)

which is shown in Fig. 7b. Clearly this relationship is
inadequate forg , 1. We generalized this form and found
the regression

F̃x

Q̃
5

3.191 0.65g 1 4.3g2

~1 2 g2!5/2 g # 0.8, (24)

which, as shown in Fig. 7b, clearly provides a good fit of
the computationally derived results (R2 5 1.00). Forg .
0.8, Eq. 23 should be used to estimateF̃x/Q̃.

Torque

In the limit of small gap width, the flow-normalized torque
on the cell is given by

Lim
g31

ST̃base

Q̃
D 5

2

~1 2 g2!5/2, (25)

as shown in Fig. 8b. We generalized this form and found
the regression

T̃base

Q̃
5

1.151 0.70g

~1 2 g2!5/2 g # 0.85, (26)

which (Fig. 8b) clearly provides a good fit of the compu-
tationally derived results (R2 5 1.00). Over the range ofg
investigated, this relationship does not converge to the lu-
brication theory prediction given in Eq. 25, although as
g 3 1, it is expected that this relationship will hold.

DISCUSSION

In this paper we predict the stress, force, and torque on a
model of a stationary cell attached to a channel wall. From
the data presented above, it is clear that the flow-field
disruption can be significant. The constraints added by the
microchannel walls result in significant magnification of the
stress, force, and torque when the cell size is significant in
relation to the channel width. In this case, the amplification
of the cell stress, force, and torque can be large, as demon-
strated by Figs. 6–8. In a pressure-driven system, the net
flow is reduced by this disturbance, as shown in Figs. 3 and
9, which reduces the stress amplification. If the cell is small
compared to the channel length (R/L ,, 1), this flow rate
reduction is lessened. In a system with a defined flow rate,
the stress amplification is potentially enormous, because the
flow is required to squeeze through the gap between the cell
and the opposing wall. This case is described by panelsb of
Figs. 6–8. From these studies, it appears that the stress
magnification demonstrated in this model may have a sig-
nificant impact on cell adhesion within the channel, or on
the mechanotransduction of cells lining the channel wall.

As with all model studies, it is important to keep in mind
the limitations of the modeling approach. In particular, with
this model we have assumed a two-dimensional geometry
that implies that the cell shape does not vary in thez
direction, and thus our cells are semicircular “rib-shaped”
objects, instead of a more biological hemispherical shape.
We have also neglected to model cell wall flexibility, which
will clearly allow modification of the cell shape when large
stresses are imposed. Furthermore, in the models we as-
sumed that fluid inertia was negligible, based uponRe 5
UH/v. For a flow velocity appropriate for the microvascu-
lature withU 5 0.2 cm/s,H 5 20 mm, andv 5 0.03 cm2/s,
Re5 0.01; thus inertia is indeed negligible. If the gap width
is reduced withDp held constant, then the reduction in the
flow rate (see Fig. 3) would further reduceRe. If Q is
defined, then a reduction in the gap width would be accom-
panied by an increase inU, which would elevateRe. If the
gap width reduces to 10% of the channel width (g 5 0.9),
thenRe5 0.1, which is large enough for inertial effects to
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be significant. If this regime is to be investigated, modifi-
cation of the analytical methods will be warranted.

Validation

To judge the accuracy of the two-dimensional modeling
approach in the present study, we compared our predictions
to calculations and measurements of three-dimensional flow
obstructions in different flow scenarios by other investiga-
tors (Brooks and Tozeren, 1996; Chapman and Cokelet,
1996; Pozrikidis, 1997). To do so, it was necessary to
calculate an equivalent 3-D force and torque on our 2-D
objects. We chose to let (F*x)3-D 5 2R(F*x)2-D, where (F*x)2-D

is the prediction from the present study, and (F*x)3-D is the
force on the cell in a cell of length 2R, which should thus be
comparable to a hemispherical cell. Likewise, (T*base)3-D 5
2R(T*base)2-D.

Our first comparison is to the model study by Pozrikidis
(1997) of shear flow over a protuberance attached to a plane
wall, which can be compared to our study in the limit of
g 3 0. In this study, far upstream the imposed flow field
has a linear velocity, so thatu 5 ky, and thus (t*s)flat-wall 5
mk 5 Dpb/2, which sets the flow rate in our system atQ* 5
kH2/6. From this, our model studies in the limit ofg 3 0,
using Eqs. 16 and 24, predict (F*x)3-D 5 4.06pmkR2. Like-
wise, Eqs. 19 and 26 give (T*base)3-D 5 2.30pmkR3. For
comparison, Pozrikidis (1997) predicts (F*x)3-D 5
4.30pmkR2 and (T*base)3-D 5 2.44pmkR3. This difference of
only 6% is surprisingly good.

Next, we compare the results of our model to the study
results of Brooks and Tozeren (1996), who modeled cells
attached to a flow channel. These models explored arrays of
a variety of different shaped cells, and we compare our
model results to their prediction for an array of hemispher-
ical cells of radiusR 5 12.6mm in a channel of heightH 5
120 mm (g 5 0.105). In this model an intercell spacing of
d 5 60 mm exists and a flow rate (Q*)3-D 5 10 ml/min
occurs in a channel of widthb 5 1.5 cm, and the fluid
viscosity is m 5 0.01 dyn s/cm2. Our model predicts
(F*x)3-D 5 9.9 3 1024 dyn, which is only a 6% deviation
from their prediction of (F*x)3-D 5 9.33 1024 dyn. It should
be noted, however, that in this case, our model prediction is
larger than the prediction by Brooks and Tozeren (1996),
whereas we predict a smaller force than that predicted by
Pozrikidis (1997). This discrepancy is due most likely to
interactions between neighboring cells in the study of
Brooks and Tozeren (1996), which reduces (F*x)3-D, and was
not modeled in either the present study or by Pozrikidis
(1997). Once again, the prediction between the present 2-D
study and the 3-D calculation is very good.

Finally, we considerF*x for a single cell, and compare it
to experimental measurements and computational predic-
tions by Chapman and Cokelet (1996, 1997) of the drag
force on a model leukocyte adhering to a blood vessel. In
these studies, the authors determined the drag force on a
rigid sphere attached to the inside wall of a cylindrical tube

with a prescribed flow rate through the tube. Using dimen-
sional analysis, they find that

SF*x
Q*D

tube

5
gtube

2m

2D S8.152
7.52

ln~gtube!
D2

, (27)

wheregtube 5 d/D is the ratio of the cell to tube diameter.
Fig. 10 a compares the relative magnitudes of the dimen-
sionless quantities (F*x/Q*)/(mg/+) for the 2-D channel re-
gression behavior (Eq. 24) with the 3-D tube measurements
(Eq. 27), where+ is the relevant cross-sectional dimension
(H for 2-D, orD for 3-D). Note thatF*x/Q* is dimensionally
equivalent in 2-D and 3-D, because in 2-DF*x is the force
per unit width andQ* is the flow per unit width, so the
two-dimensionality of each cancels out. This figure shows a
remarkable similarity between the 2-D channel predictions
and 3-D measurements. Fig. 10b shows that forg . 0.5, the
2-D prediction consistently overestimatesF*x by only 25%,
indicating that for small gap widths the fluid dynamics are
fit by 2-D approximations. This comparison suggests that
stress and torque predictions of the 2-D channel model may
give reasonably accurate results for small gap widths, be-
cause most of the contributions to the stress field occur in
the narrow region between the cell and opposite wall, which
has a 2-D behavior when the gap width is small. Of course,
this hypothesis should be evaluated in a careful comparison
between 2-D and 3-D calculations. Nevertheless, this com-
parison gives us confidence that the predicted amplification
of cell stress, torque, and force exerted in small channels is
relevant to the 3-D system.

FIGURE 10 Comparison ofFx predictions with 3-D experiments in tube.
(a) F*x/Q/(mg/+). (b) Proportional difference in predictions.
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As an example of how the analysis above may be used to
predict the fluid mechanical influence on adherent cells, we
consider neutrophil adhesion in a postcapillary venule. The
relevant dimensions ared 5 8 mm for the neutrophil,D 5
20 mm for a postcapillary venule (Horsfield and Gordon,
1981),L 5 1000 mm, m 5 0.03g/(cm s), with an average
fluid velocity of Vm 5 0.2 cm/s, resulting in a 3-D flow rate
Q3-D* 5 6.3 3 1027 cm3/s. We will assume in this system
that d ' R andD ' H, which is justified based upon the
comparison between tube experiments and channel theory
above. From Eqs. 24 and 26,F̃x/Q̃ 5 6.4 andT̃base/Q̃ 5 3.1,
respectively. So from Eq. 16,F*x 5 2.93 1024 dynes. And
from Eq. 19, T*base 5 1.8 3 1027 dynes z cm. For the
neutrophil to stop rolling, the ligand-receptor binding would
need to create a torque of this magnitude. From Eq. 26, this
is nearly three times the torque one would predict in an
unconstrained setting. To calculate the shear-stress on the
cell, an equivalent 2-D flow rate must be calculated for this
system. We chooseQ*2-D 5 32Q*3-D/(6pD) 5 (4/3)VmD, so
thatt*s from Eq. 13 correctly predicts the vessel wall shear-
stress in a cell-free system. So in this case,Q*2-D 5 5.3 3
1024 cm2/s. Then from Eqs. 13 and 22,t*s ' 100 dynes/cm2.
These predictions are clearly subject to error due to differ-
ences in 2-D and 3-D geometry. However, in all cases these
results are comparable to predictions made by Fung (1984),
based upon the model studies by Schmid-Schoenbein et al.
(1975). Finally, from Fig. 9, the flow rate through this
venule would not be greatly affected by the adhesion of the
cell, becausea 5 R/L ,, 1. However, ifL is reduced to 350
mm, the flow (and henceF*x, T*base, and t*s) would be
reduced by;20%. This could have an impact on the rate of
leukocyte transport to this venule by shunting blood to other
parallel venules.

CONCLUSIONS

In this study, we have attempted to clarify the importance of
fluid mechanics for the stresses, forces, and torques expe-
rienced by cells adhering to microchannel walls. This situ-
ation is important in biofilm formation, and cell adhesion in
biomedical systems. We have shown that the stress magni-
fication due to cells adhering in a constrained setting may be
extremely large, which may have an impact on the likeli-
hood of adhesion, the flow rate through the channel, and
mechanotransduction. We have used the boundary element
method to perform the calculations in this study, and have
used lubrication theory to determine simple analytical ex-
pressions that can be used to predict the maximum shear
stress, force, and torques on 2-D representations of im-
mersed cells. We used these relationships to create formulae
for 3-D immersed objects. These formulae are

~t*s!max

5
6mQ*2-D

H2 H 2.95 g , 0.25
1.1581 ~1 2 g!22 0.25# g # 0.85 J,

~F*x!3-D 5 24mg2Q*2-DH3.191 0.65g 1 4.3g2

~1 2 g2!5/2 J, (28)

and

~T*base!3-D 5 12pmRg2Q2-D*H1.151 0.70g

~1 2 g2!5/2 J.
These formulae are accurate forg , 0.8. For largerg, the
lubrication approximations given in the Appendix should be
used. In these calculations, the immersed cell has dimension
R, g 5 R/H is the ratio of cell to channel width, andQ*2-D is
the flow rate per unit width in the system. Based upon
comparisons with 3-D studies by Brooks and Tozeren
(1996) and Pozrikidis (1997), these predictions for flow in
a planar geometry are accurate to;10%, and thus can be
used to simply calculate the mechanical influence of fluid
flow on an adherent cell in a flow chamber. By comparing
our results to those of Chapman and Cokelet (1996), we
expect that in circular geometries the relationships in Eq. 28
are accurate to within;25% wheng $ 0.5.

Finally, it is important to recognize that this is a model
study with many simplifications. Although we expect that
the predictions given here are accurate for rigid models of
cells, they ignore the influence of cell deformability and
cell-to-cell interaction, which could clearly alter the behav-
ior predicted in this study. The methods described herein are
readily adapted for investigations of these more complicated
systems. Future investigations of the influence of deform-
ability and interactions between cells could use the present
study for comparison, to define the relative importance of
these aspects for cell adhesion phenomena.

APPENDIX

This appendix provides a basic background for the computational and
analytical approaches used in this study.

Boundary element method

The computational solution to the boundary value problem posed in the
section on model development is challenging because the domain changes
as a function of the extent of cell coverage. Conventional finite-difference
techniques are difficult to implement because of the need to continually
remesh the domain with changes in the number of aggregated cells. Biofilm
models have been developed using the immersed boundary method to
follow individual cells in a microchannel (Dillon et al., 1995, 1996). In the
present model, however, we base our calculations on the boundary integral
representation of Stokes flow, derived by Ladyzhenskaya (1963). The
solution for the velocity field resulting from Stokes flow is obtained in
terms of single- and double-layer potentials by taking Fourier transforms of
Eq. 5 and applying Green’s theorem (Ladyzhenskaya, 1963), which creates
an integral relationship that must be satisfied:

uk~x! 5 E
S

T ik~x, y!uidSy 2
8

b2E
S

Uik~x, y!tidSy, (29)
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where

Uik~x, y! 5 2
1

4pHdiklogUx 2 yU 2
~xi 2 yi!~xk 2 yk!

ux 2 yu2 J,
T ik~x, y! 5 2

1

p

~xi 2 yi!~xj 2 yj!~xk 2 yk!

ux 2 yu4 nj~y!. (30)

HereS represents the boundary surface, andti 5 sijnj, with i, j equal to 1
(x direction) or 2 (y direction). Asx approaches a point on the boundary
surface, the solution of Eq. 29 becomes

Ckiui~x! 5 E
S

T ik~x, y!uidSy 2
8

b2E
S

Uik~x, y!tidSy,

(31)

wherex [ S, and the tensorCki accounts for stress discontinuities at the
surface.Cki 5 1

2
dki if the boundary is smooth, but has a more complicated

structure if the domain has corners (Brebbia and Dominguez, 1989).
Equation 29 is solved numerically by discretizing the boundary intoN

3-point (quadratic) elements, so that

Ckiui~x! 2 O
j51

N E
Sj

T ik~x, y!uidSy 5 2
8

b2O
j51

N E
Sj

Uik~x, y!tidSy,

(32)

whereu and t are discretized along the domain and are represented by
quadratic polynomials.

Equation 32 is represented by a system of linear equations,

Hw 5 Gt, (33)

whereH and G are, respectively, 4N 3 4N and 4N 3 6N matrices, and
w2j21 5 uj, w2j 5 vj, t2j21 5 txj, t2j 5 tyj for j 5 1, . . . , 2N. Matrix G is
made larger thanH to allow the stress vector to have two distinct values at
corner points because of two possible orientations of the normal vector.
This is particularly useful at corner points, where stress discontinuities
exist as a result of discontinuities in the normal vector. The elements ofH
andG are computed using a 10-point regular Gaussian quadrature ifx does
not coincide with one of the node points ofSj. Otherwise a 10-point
logarithmic quadrature is used to evaluate those portions of the integrals in
Eq. 31 that contain the logarithmic singularity. The diagonal coefficients of
H are computed indirectly by imposing a uniform flow in both thex andy
directions. We then apply the boundary conditions and rearrange the
system so thatAz 5 f, whereA is a 4N 3 4N matrix, z is a 2N vector
containing the unknown velocities and stresses, andf contains the known
stress or velocity information. This system is solved using Gaussian
elimination with partial pivoting. We have validated this technique in
different systems, including those of Gaver et al. (1996) and Halpern and
Gaver (1994).

Lubrication theory

In this section we derive lubrication approximations of the flow field
through a channel with a single-cell protuberance on the bottom wall. In
these calculations, we follow lubrication analysis of creeping flows. For
details of this type of analysis, the reader is referred to Leal (1992). In the
description that follows, we assume that2u/y2 .. 2u/x2 andP/y '
0, so that Eq. 5 is approximately

dP

dx
5

b2

8

2u

y2, (34)

with u(y 5 h1(x)) 5 u(y 5 h2(x)) 5 0, to satisfy no slip on the top and
bottom walls, respectively. From this and continuity (Eq. 5), the velocity

field is

u~x, y! 5 A~x!y2 1 B~x!y 1 C~x!

and

v~x, y! 5
A9~x!

3
y3 2

B9~x!

2
y2 2 C9~x!y 1 D~x!, (35)

where

A~x! 5
4

b2

dP

dx
, B~x! 5 2

4

b2

dP

dx
~h1~x! 1 h2~x!!,

C~x! 5
4

b2

dP

dx
h1~x!h2~x!

and

D~x! 5
A9~x!

3
h2~x!3 1

B9~x!

2
h2~x!2 1 C9~x!h2~x!.

To satisfy Eq. 6, the local pressure gradient is

dP

dx
5 2F~h1~x! 2 h2~x!!3E

x50

x51 dx

~h1~x! 2 h2~x!!3G21

.

(36)

From this result,

Q 5
2

3b2FE
x50

x51 dx

~h1~x! 2 h2~x!!3G21

. (37)

From this, the shear-stress on the wall of a flat-walled channel is
(ts)flat-wall 5 b/2, and the flow through a flat-walled channel isQflat-wall 5
2b/3. Flow rate predictions from this analysis are provided by Eq. 20 and
are demonstrated in Fig. 9.

Maximum shear stress

Given a semicircular protuberance of heightg 5 R/H, the lubrication
theory calculation shows that the maximum shear stress is

Lim
g31

S~t̃s!max

Q̃
D 5

1

~1 2 g!2. (38)

x component of force, Fx

From lubrication theory in the limit of small gap width (g 3 1),

u

y
.. Su

x
,
v

x
,
v

yD,
the x component of the cell stress is

tx 5 2P cosu 1
b2

8

u

y
sin u.

Integrating over the surface of the cell,

Lim
g31

SF̃x

Q̃
D 5

2p

~1 2 g2!5/2. (39)
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Torque

The cell shear-stress is

ts 5 2
b2

2

v

y
~sin u cosu! 1

b2

8 Su

y
1

v

xD~sin2u 2 cos2u!.

In the limit of small gap width (g 3 1), using Eq. 18,

Lim
g31

ST̃base

Q̃
D 5

2

~1 2 g2!5/2. (40)

These results are used above (see Regression Relationships) to develop
regression formulae.
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