Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Sep;75(3):1271–1286. doi: 10.1016/S0006-3495(98)74047-0

Multiple channels mediate calcium leakage in the A7r5 smooth muscle-derived cell line.

C A Obejero-Paz 1, S W Jones 1, A Scarpa 1
PMCID: PMC1299803  PMID: 9726930

Abstract

Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.

Full Text

The Full Text of this article is available as a PDF (298.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D., Tsien R. W. Calcium-permeable channels in vascular smooth muscle: voltage-activated, receptor-operated, and leak channels. Soc Gen Physiol Ser. 1987;42:45–64. [PubMed] [Google Scholar]
  2. Byron K., Taylor C. W. Vasopressin stimulation of Ca2+ mobilization, two bivalent cation entry pathways and Ca2+ efflux in A7r5 rat smooth muscle cells. J Physiol. 1995 Jun 1;485(Pt 2):455–468. doi: 10.1113/jphysiol.1995.sp020742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen C. F., Hess P. Mechanism of gating of T-type calcium channels. J Gen Physiol. 1990 Sep;96(3):603–630. doi: 10.1085/jgp.96.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chesnoy-Marchais D. Kinetic properties and selectivity of calcium-permeable single channels in Aplysia neurones. J Physiol. 1985 Oct;367:457–488. doi: 10.1113/jphysiol.1985.sp015835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coulombe A., Lefèvre I. A., Baro I., Coraboeuf E. Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Membr Biol. 1989 Oct;111(1):57–67. doi: 10.1007/BF01869209. [DOI] [PubMed] [Google Scholar]
  6. Coyne M. D., Dagan D., Levitan I. B. Calcium and barium permeable channels from Aplysia nervous system reconstituted in lipid bilayers. J Membr Biol. 1987;97(3):205–213. doi: 10.1007/BF01869223. [DOI] [PubMed] [Google Scholar]
  7. Fayazi A. H., Lapidot S. A., Huang B. K., Tucker R. W., Phair R. D. Resolution of the basal plasma membrane calcium flux in vascular smooth muscle cells. Am J Physiol. 1996 Jun;270(6 Pt 2):H1972–H1978. doi: 10.1152/ajpheart.1996.270.6.H1972. [DOI] [PubMed] [Google Scholar]
  8. Fish R. D., Sperti G., Colucci W. S., Clapham D. E. Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ Res. 1988 May;62(5):1049–1054. doi: 10.1161/01.res.62.5.1049. [DOI] [PubMed] [Google Scholar]
  9. Fleischmann B. K., Murray R. K., Kotlikoff M. I. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11914–11918. doi: 10.1073/pnas.91.25.11914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fong P. Y., Turner P. R., Denetclaw W. F., Steinhardt R. A. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science. 1990 Nov 2;250(4981):673–676. doi: 10.1126/science.2173137. [DOI] [PubMed] [Google Scholar]
  11. Franco A., Jr, Lansman J. B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature. 1990 Apr 12;344(6267):670–673. doi: 10.1038/344670a0. [DOI] [PubMed] [Google Scholar]
  12. Franco A., Jr, Lansman J. B. Stretch-sensitive channels in developing muscle cells from a mouse cell line. J Physiol. 1990 Aug;427:361–380. doi: 10.1113/jphysiol.1990.sp018176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franco A., Jr, Winegar B. D., Lansman J. B. Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Biophys J. 1991 Jun;59(6):1164–1170. doi: 10.1016/S0006-3495(91)82332-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ganitkevich VYa, Isenberg G. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J Physiol. 1990 Jul;426:19–42. doi: 10.1113/jphysiol.1990.sp018125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1461–1465. doi: 10.1073/pnas.87.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hardie R. C., Reuss H., Lansdell S. J., Millar N. S. Functional equivalence of native light-sensitive channels in the Drosophila trp301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium. 1997 Jun;21(6):431–440. doi: 10.1016/s0143-4160(97)90054-3. [DOI] [PubMed] [Google Scholar]
  17. Hayashi T., Nakai T., Miyabo S. Glucocorticoids increase Ca2+ uptake and [3H]dihydropyridine binding in A7r5 vascular smooth muscle cells. Am J Physiol. 1991 Jul;261(1 Pt 1):C106–C114. doi: 10.1152/ajpcell.1991.261.1.C106. [DOI] [PubMed] [Google Scholar]
  18. Himpens B., De Smedt H., Casteels R. Subcellular Ca(2+)-gradients in A7r5 vascular smooth muscle. Cell Calcium. 1994 Jan;15(1):55–65. doi: 10.1016/0143-4160(94)90104-x. [DOI] [PubMed] [Google Scholar]
  19. Horn R. Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys J. 1987 Feb;51(2):255–263. doi: 10.1016/S0006-3495(87)83331-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  21. Hu Y., Vaca L., Zhu X., Birnbaumer L., Kunze D. L., Schilling W. P. Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun. 1994 Jun 15;201(2):1050–1056. doi: 10.1006/bbrc.1994.1808. [DOI] [PubMed] [Google Scholar]
  22. Hughes A. D., Schachter M. Multiple pathways for entry of calcium and other divalent cations in a vascular smooth muscle cell line (A7r5). Cell Calcium. 1994 Apr;15(4):317–330. doi: 10.1016/0143-4160(94)90071-x. [DOI] [PubMed] [Google Scholar]
  23. Imaizumi Y., Muraki K., Takeda M., Watanabe M. Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C880–C885. doi: 10.1152/ajpcell.1989.256.4.C880. [DOI] [PubMed] [Google Scholar]
  24. Jackson M. B., Wong B. S., Morris C. E., Lecar H., Christian C. N. Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys J. 1983 Apr;42(1):109–114. doi: 10.1016/S0006-3495(83)84375-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karaki H., Ozaki H., Hori M., Mitsui-Saito M., Amano K., Harada K., Miyamoto S., Nakazawa H., Won K. J., Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997 Jun;49(2):157–230. [PubMed] [Google Scholar]
  26. Kargacin G., Fay F. S. Ca2+ movement in smooth muscle cells studied with one- and two-dimensional diffusion models. Biophys J. 1991 Nov;60(5):1088–1100. doi: 10.1016/S0006-3495(91)82145-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kimes B. W., Brandt B. L. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp Cell Res. 1976 Mar 15;98(2):349–366. doi: 10.1016/0014-4827(76)90446-8. [DOI] [PubMed] [Google Scholar]
  28. Kuno M., Goronzy J., Weyand C. M., Gardner P. Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature. 1986 Sep 18;323(6085):269–273. doi: 10.1038/323269a0. [DOI] [PubMed] [Google Scholar]
  29. Lapidot S. A., Huang B. K., Fayazi A., Russek L. N., Strickberger S. A., Brooks A. E., Phair R. D. Mechanisms for Ca signaling in vascular smooth muscle: resolved from 45Ca uptake and efflux experiments. Cell Calcium. 1996 Feb;19(2):167–184. doi: 10.1016/s0143-4160(96)90085-8. [DOI] [PubMed] [Google Scholar]
  30. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lückhoff A., Clapham D. E. Calcium channels activated by depletion of internal calcium stores in A431 cells. Biophys J. 1994 Jul;67(1):177–182. doi: 10.1016/S0006-3495(94)80467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marks T. N., Dubyak G. R., Jones S. W. Calcium currents in the A7r5 smooth muscle-derived cell line. Pflugers Arch. 1990 Dec;417(4):433–439. doi: 10.1007/BF00370664. [DOI] [PubMed] [Google Scholar]
  33. McCarthy R. T., Cohen C. J. Nimodipine block of calcium channels in rat vascular smooth muscle cell lines. Exceptionally high-affinity binding in A7r5 and A10 cells. J Gen Physiol. 1989 Oct;94(4):669–692. doi: 10.1085/jgp.94.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  35. Missiaen L., Parys J. B., De Smedt H., Casteels R. Ins(1,4,5)P3 and glutathione increase the passive Ca2+ leak in permeabilized A7r5 cells. Biochem Biophys Res Commun. 1993 May 28;193(1):6–12. doi: 10.1006/bbrc.1993.1582. [DOI] [PubMed] [Google Scholar]
  36. Obejero-Paz C. A., Lakshmanan M., Jones S. W., Scarpa A. Effects of dexamethasone on L-type calcium currents in the A7r5 smooth muscle-derived cell line. FEBS Lett. 1993 Oct 25;333(1-2):73–77. doi: 10.1016/0014-5793(93)80377-7. [DOI] [PubMed] [Google Scholar]
  37. Ohya Y., Abe I., Fujii K., Takata Y., Fujishima M. Voltage-dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats. Circ Res. 1993 Dec;73(6):1090–1099. doi: 10.1161/01.res.73.6.1090. [DOI] [PubMed] [Google Scholar]
  38. Orallo F. Regulation of cytosolic calcium levels in vascular smooth muscle. Pharmacol Ther. 1996;69(3):153–171. doi: 10.1016/0163-7258(95)02042-x. [DOI] [PubMed] [Google Scholar]
  39. Orlov S., Resink T. J., Bernhardt J., Ferracin F., Buhler F. R. Vascular smooth muscle cell calcium fluxes. Regulation by angiotensin II and lipoproteins. Hypertension. 1993 Feb;21(2):195–203. doi: 10.1161/01.hyp.21.2.195. [DOI] [PubMed] [Google Scholar]
  40. Patlak J. B. Measuring kinetics of complex single ion channel data using mean-variance histograms. Biophys J. 1993 Jul;65(1):29–42. doi: 10.1016/S0006-3495(93)81041-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Preston R. R., Saimi Y., Kung C. Calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol. 1992 Aug;100(2):233–251. doi: 10.1085/jgp.100.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  43. Rosenberg R. L., Hess P., Tsien R. W. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J Gen Physiol. 1988 Jul;92(1):27–54. doi: 10.1085/jgp.92.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rubart M., Patlak J. B., Nelson M. T. Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations. J Gen Physiol. 1996 Apr;107(4):459–472. doi: 10.1085/jgp.107.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shatkay A. Individual activity of calcium ions in pure solutions of CaCl2 and in mixtures. Biophys J. 1968 Aug;8(8):912–919. doi: 10.1016/S0006-3495(68)86528-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  48. Vaca L., Kunze D. L. Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol. 1994 Oct;267(4 Pt 1):C920–C925. doi: 10.1152/ajpcell.1994.267.4.C920. [DOI] [PubMed] [Google Scholar]
  49. Van Breemen C., Cauvin C., Johns A., Leijten P., Yamamoto H. Ca2+ regulation of vascular smooth muscle. Fed Proc. 1986 Nov;45(12):2746–2751. [PubMed] [Google Scholar]
  50. Van Renterghem C., Lazdunski M. Identification of the Ca2+ current activated by vasoconstrictors in vascular smooth muscle cells. Pflugers Arch. 1994 Nov;429(1):1–6. doi: 10.1007/BF02584023. [DOI] [PubMed] [Google Scholar]
  51. Wilde D. W., Furspan P. B., Szocik J. F. Calcium current in smooth muscle cells from normotensive and genetically hypertensive rats. Hypertension. 1994 Dec;24(6):739–746. doi: 10.1161/01.hyp.24.6.739. [DOI] [PubMed] [Google Scholar]
  52. Wong A. Y., Klassen G. A. A model of calcium regulation in smooth muscle cell. Cell Calcium. 1993 Mar;14(3):227–243. doi: 10.1016/0143-4160(93)90070-m. [DOI] [PubMed] [Google Scholar]
  53. Xuan Y. T., Wang O. L., Whorton A. R. Thapsigargin stimulates Ca2+ entry in vascular smooth muscle cells: nicardipine-sensitive and -insensitive pathways. Am J Physiol. 1992 May;262(5 Pt 1):C1258–C1265. doi: 10.1152/ajpcell.1992.262.5.C1258. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES