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ABSTRACT The potential of using the Lamm equation in the analysis of hydrodynamic shape and gross conformation of
proteins and reversibly formed protein complexes from analytical ultracentrifugation data was investigated. An efficient
numerical solution of the Lamm equation for noninteracting and rapidly self-associating proteins by using combined
finite-element and moving grid techniques is described. It has been implemented for noninteracting solutes and monomer-
dimer and monomer-trimer equilibria. To predict its utility, the error surface of a nonlinear regression of simulated sedimen-
tation profiles was explored. Error contour maps were calculated for conventional independent and global analyses of
experiments with noninteracting solutes and with monomer-dimer systems at different solution column heights, loading
concentrations, and centrifugal fields. It was found that the rotor speed is the major determinant for the shape of the error
surface, and that global analysis of different experiments can allow substantially improved characterization of the solutes. We
suggest that the global analysis of the approach to equilibrium in a short-column sedimentation equilibrium experiment
followed by a high-speed short-column sedimentation velocity experiment can result in sedimentation and diffusion coeffi-
cients of very high statistical accuracy. In addition, in the case of a protein in rapid monomer-dimer equilibrium, this
configuration was found to reveal the most precise estimate of the association constant.

INTRODUCTION

Analytical ultracentrifugation is one of the traditional tools
for the physical characterization of biological macromole-
cules. The concentration profiles of sedimenting macromol-
ecules reveal, applying first principles, their molar masses,
state of aggregation, diffusion coefficients, and hydrody-
namic shapes. In particular, during the last decades, it has
been used as a powerful technique for the characterization
of homogeneous and heterogeneous protein-protein interac-
tions and protein-nucleic acid interactions in solution. The
traditional experimental configurations used are both high-
speed long-column sedimentation velocity experiments,
which observe the time course of the transient states, and
low-speed sedimentation equilibrium experiments with
shorter solution columns, in which the approached equilib-
rium between sedimentation and diffusion allows for the
application of thermodynamic principles to the data analy-
sis. Despite its success, in both configurations the informa-
tion contained in the dynamics of the sedimentation process
has not been exploited to its fullest potential, in particular
with respect to hydrodynamic shape andgross conforma-
tion of reversibly formed protein complexes.

In 1929, Lamm derived the basic differential equation
that governs the sedimentation behavior of ideal solutions,
which has later been refined and generalized by Fujita
(1962). For ideal solutions of chemically reacting solutes, it

takes the form
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whereck(r, t) denotes the concentration of solutek at radius
r and timet, Jk,tr denotes the transport flux of solutek, v
denotes the angular velocity of the rotor,sk andDk denote
the sedimentation and diffusion coefficients of the solute,
and Qk denotes the local chemical reaction rates, respec-
tively (Fujita, 1962). In part because of the lack of analytical
solutions, the data interpretation and the experimental tech-
niques commonly had to be constrained to conditions that
allow for analysis with special solutions to this equation.
Sedimentation equilibrium can be understood as a special
case of the Lamm equation, and others are the limit of
negligible influence of diffusion on the sedimentation of
noninteracting and self-associating solutes in high centrifu-
gal fields (Fujita, 1962; Gilbert, 1955; Schachman, 1959;
Svedberg and Pedersen, 1940), or the limit of an infinitely
long solution column, which can be experimentally ap-
proached in high-speed experiments with larger macromol-
ecules (Behlke and Ristau, 1997; Fujita, 1962; Holladay,
1979a; Philo, 1997; Stafford, 1992). While these special
solutions have proven extremely useful, in practice they are
not always completely satisfying. For example, difficulties
can be encountered in the case of small, rapidly diffusing
solutes (Schuck et al., 1998). Also, the traditional sedimen-
tation velocity methods do not allow for completely rigor-
ous data interpretation in the presence of chemical reactions.
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Finally, they can restrict the experimenter in the choice of
rotor speed, sample volume, and experiment time.

With the advent of digital computers, several investiga-
tors developed methods for numerical simulation of trans-
port processes and demonstrated the principle of using
numerical solutions of the Lamm equation for centrifugal
data analysis (see, e.g., Bethune and Kegeles, 1961a, b;
Cann and Kegeles, 1974; Claverie, 1976; Claverie et al.,
1975; Cox, 1965, 1969; Dishon et al., 1966; Gilbert and
Gilbert, 1973; Goad and Cann, 1969; Marque, 1992; Min-
ton, 1992; Sartory et al., 1976). More recently, with increas-
ing computational power readily at hand, increasing interest
has been devoted to this approach. Based predominantly on
the numerical methods described by Claverie and co-work-
ers (1975), its potential for the description of experimental
sedimentation data has been shown in different experimen-
tal configurations (Demeler and Saber, 1998; MacPhee et
al., 1997; Schuck et al., 1998; Schuck and Millar, 1998;
Stafford, 1998). In principle, numerical solutions allow the
analysis of any series of concentration profiles, including
those that previously have eluded quantitative analysis, e.g.,
the complete approach to equilibrium in low-speed experi-
ments, and sedimentation velocity profiles that are governed
by high diffusion and effects of the finite length of the
solution column. This more direct numerical analysis has
the potential for significant reduction of experimental time
(Schuck and Millar, 1998) and reduction of sample volume,
as well as an increase in the amount of data and the statis-
tical accuracy of the results. Most importantly, these nu-
merical approaches have the potential to rigorously take into
account and obtain information about interacting systems of
macromolecules, which is among the most useful and chal-
lenging of the current applications of analytical ultracentrif-
ugation. Unfortunately, excessive computational cost still
appears to limit the practicability of the extension of tran-
sient state analysis to interacting systems.

The present paper first describes an efficient finite ele-
ment method for the numerical solution of the Lamm equa-
tion that extends the method described by Claverie et al.
(1975) by the use of a moving grid. Second, the error
surfaces of direct Lamm equation analyses are explored, and
the use of a global analysis approach is proposed, which is
already well-known to improve accuracy of results in sed-
imentation equilibrium analyses. Here, we demonstrate its
advantages in the simultaneous analysis of sets of nonequi-
librium data from experiments at different rotor speeds.
Finally, an analytical procedure is described for solutes that
exhibit homogeneous associations, in the ideal limit of
instantaneous equilibria. It will be shown how both tech-
niques of using a moving grid and a global analysis can be
particularly helpful for the latter problem. All proposed
methods have been implemented in a PC computer program
running on the Windows operating system for the analysis
of data from the Optima XL-A; this software is available on
request.

METHODS

Moving grid

The central new aspect of the numerical method for obtaining solutions to
the Lamm equations proposed in this paper is the incorporation of a
moving frame of reference into a finite element approach. Similar to the
change of radial variables used in the derivation of approximate analytical
solutions to the Lamm equation (Faxe´n, 1929; Fujita and MacCosham,
1959; Fujita, 1962), the strategy here will be to transform the spatial
coordinate such that the sedimentation term in the numerical solution of the
Lamm equation disappears (Zienkiewicz and Taylor, 1991). This transfor-
mation of the grid will be described first in some detail.

The concentration distributionsc(r, t) are approximated by linear com-
binations of the elementsPk(r, t)

c~r, t! < O
k51

N

ck~t!Pk~r, t! (2)

They are hat functions (Fig. 1), defined as

Pk~r, t! 5 H ~r 2 rk21!/~rk 2 rk21! rk21 # r # rk

~rk11 2 r!/~rk11 2 rk! rk , r # rk11

0 else

for k 5 2, . . . ,N 2 1, and

P1~r, t! 5 H ~r2 2 r!/~r2 2 r1! r1 # r # r2

0 else (3)

PN~r, t! 5 H ~r 2 rN21!/~rN 2 rN21! rN21 # r # rN

0 else ,

whererk(t) denotes a division of the solution column inN (usually in the
order of 1000) grid points lying between the meniscus and bottom. The hat
functions Pk(r, t) are similar to the elements used by Claverie and co-
workers (1975), except for the nonequidistant and time-dependent gridrk(t)
used in the present study. To enable the numerical separation of the effects

FIGURE 1 Schematic representation of the nonequidistant gridrk(t) and
the corresponding elementsPk(r, t). Solid lines indicate the hat functions
Pk(r, t0) at the start of sedimentation; as an example, the hat function
P3(r, t0) is emphasized by double lines. At timest0 1 Dt all grid points
exceptr1 5 m and rN 5 b move to larger radii, indicated by the broken
lines. Spacing of the grid (Eq. 5) and the stretching in time (Eq. 4) is such
that after the timeDtswap(Eq. 6) the grid is mapped onto itself (Eq. 7). Grid
positions at timest0 andt0 1 Dtswapare indicated by solid vertical lines on
the bottom and on top of the hat functions, respectively. At the timet0 1
Dtswap, grid point rN21(t0 1 Dt) (dotted line) is removed and inserted at
r2(t0).
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of sedimentation and diffusion, the grid is moved according to

rk~t! 5 rk,0a~t 2 t0!

5 rk,0exp$sGv2~t 2 t0!% for k 5 2, . . . ,N

r1~t! 5 m, rN~t! 5 b, (4)

where m and b denote the meniscus and bottom, respectively, of the
solution column (Fig. 1). Except for the constant boundaries atr1 5 m and
rN 5 b, this propagationa(t) describes that of an ideal sedimenting particle
at rk,0 with a sedimentation coefficientsG and in the absence of diffusion.
With the choice of the starting grid

rk,0 5 m~b/m!~k23/2!/~N21! for k 5 2, . . . ,N 2 1 (5)

it follows that after a time interval of propagation

Dtswap5 @v2sG~N 2 1!#21ln~b/m! (6)

the grid is mapped precisely onto the starting grid

rk~t0 1 Dtswap! 5 rk11,0 for k 5 2, . . . ,N 2 2 (7)

This can be exploited to fall back on the starting gridrk,0 in our description
of c(r, t), simply by incrementing all indices inck from 2 toN 2 2 by one,
and by addingDtswapto the reference timet0 in Eq. 4. Additionally, the grid
point atrN21 is removed, and a new grid pointr2 5 r2,0 is inserted (Fig. 1).
The concentrationc2 assigned to the new grid pointr2 is given by linear
interpolation betweenm andr3, whereas the effects of eliminating the grid
point rN21 can be taken into account by recalculatingcN, preserving total
mass.

This definition ofrk(t) retains a constant average density of points along
the solution column. However, this grid constitutes a frame of reference
that moves with the sedimenting solutes and therefore lends itself to
description of sedimentation, particularly in the limit of small diffusion
influence.

Solution of the Lamm equation in the absence of
chemical reactions

In the following treatment, the absence of chemical reactions is assumed,
i.e., Qk 5 0 in Eq. 1. With the approximation of Eq. 2, equations for the
coefficientsck(t) can be derived by integrating the Lamm equation over the
elementsPk

E
m

b ­c

­t
Pk~r, t!rdr 5 2E

m

b ­~rJ!

­r
Pk~r, t!rdr (8)

and integration by parts of the rhs, exploiting the vanishing flux at the
meniscus and bottom (Claverie et al., 1975), which leads to
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Insertion of Eq. 2 leads to a system ofN equations forcj(t)
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The time derivative of the hat functions withk 5 3, . . . , N 2 2 can be
written as

­Pk

­t
5 v2sG 3 H 2r/~rk 2 rk21! rk21 # r # rk

r/~rk11 2 rk! rk , r # rk11

0 else
(11)

and similar expressions can be found for the elements 1, 2,N 2 1, andN,
taking into account thatr1 5 mandrN 5 b remain constant in time. Finally,
we can transform Eq. 10 into the moving frame of reference using the
change of variablesr(r, t) 5 r/a(t 2 t0), which allows us to separate the
time-dependencea(t) out of the integrals. The results of the integrals are
listed in the Appendix, expressed as tridiagonal matricesB, A(1), A(2), and
A(3). Unfortunately, it is not possible to obtain time-independent expres-
sions for those integrals involving hat functionsP1, P2, PN21, and PN,
because in the moving frame of reference the position of meniscusr(m)
and bottomr(b) will be time-dependent. Therefore,B(t), A(1)(t), A(2)(t),
andA(3)(t) are time-dependent only in the corner diagonal 23 2 subma-
trices due to the time-dependent transformationsr(m) and r(b). This
simplifies Eq. 10 to

O
j

­cj

­t
Bkj~t! 5 O

j

$v2@sAkj
~2!~t! 2 sGAkj

~3!~t!#

2 Da22~t 2 t0!Akj
~1!~t!%cj

(12)

This matrix equation is analogous to that derived by Claverie and
co-workers using hat functions on a static and equidistant grid (see Eq. 11
in Claverie et al., 1975). However, it is generalized by a termsGv2A(3)(t),
that describes the movement of the frame of reference, and by the factor
a22(t) that corrects the diffusion term for the stretching of the frame of
reference.

It can be shown thatA(2) 2 A(3) 5 22B is true for all elements except
those with k, j 5 1, 2, N 2 1, or N. Ignoring these elements would
correspond to the common ideal assumption of an infinite solution column.
In this limit, for sG 5 s, the first term on the rhs coincides with the
well-known expression for the radial dilution in the sector-shaped solution
column, superimposed by the second term describing the diffusion. Sedi-
mentation does not explicitly occur anymore in Eq. 12, it has been trans-
formed into the movement of the grid. However, ifsG 5 0 the grid remains
static and the method approaches that reported previously (Claverie et al.,
1975).

For the discretization of Eq. 12 in time, a Crank-Nicholson scheme
(Crank and Nicholson, 1947) is useful in providing stability for larger time
steps (Goad and Cann, 1969; Press et al., 1992). Evaluation of the time
derivative on the lhs of Eq. 12 using the average of the rhs between time
t and t 1 Dt gives the matrix equation

@B~t! 1 B~t 1 Dt! 2 DtJ~t 1 Dt!#cW~t 1 Dt!

5 @B~t! 1 B~t 1 Dt! 1 DtJ~t!#cW~t!

J~t! 5 v2@sAkj
~2!~t! 2 sGAkj

~3!~t!# 2 Da22~t 2 t0!Akj
~1!~t! (13)
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(using the abbreviationcW for the vector of concentrationsck), which can be
efficiently solved. Obviously, if the grid is moved withsG 5 s the time step
Dt cannot exceed 3/23 Dtswapwithout violatingrN21 # b. A particularly
attractive choice for the time step isDt 5 Dtswap, for which each step with
Eq. 13 is followed by incrementing the indices of concentrations. In
accordance with the method of mapping the grid onto itself in time
intervalsDtswap (as outlined above, using Eq. 7), it follows that for each
propagation step in Eq. 13 the matrices remain identical:

@B* 2 DtJ*D#cW~t 1 Dtswap! 5 @B* 1 DtJ* #cW~t! (14)

with B* 5 B(t0) 1 B(t0 1 Dtswap), J* 5 J(t0), andJ*D 5 J(t0 1 Dtswap).
Therefore, they need to be calculated only once and the movement of the
grid essentially does not increase the computational cost of the approach.

Solution of the Lamm equation in the limit of
rapid self-associations

The simplest system of reacting solutes is that of monomers in rapid
self-association equilibrium with oligomers. As outlined by Cox (1969),
this case can be approximated by the introduction of locally concentration
dependent weight-average sedimentation coefficientssw(c) and gradient-
average diffusion coefficientsDg(c):

sw~c! 5 O
j

Kjs
~j!c1

j21/O
j

Kjc1
j21

(15)

Dg~c! 5 O
j

jK jD
~j!c1

j21/O
j

jK jc1
j21

whereKj denotes the association constant for the monomer-j-mer interac-
tion (with K1 5 1), c1 denotes the monomer concentration, ands(j) andD(j)

denote the sedimentation and diffusion coefficients of aj-mer, respectively.
The monomer concentrationsc1 can be calculated locally from the total
concentrationc using the mass action law. With the approximation

sw~r, t! < O
k

sw~ck~t!!Pk~r, t! 5: O
k

sw,k~ck!Pk~r, t!

(16)
Dg~r, t! < O

k

Dg~ck~t!!Pk~r, t! 5: O
k

Dg,k~ck!Pk~r, t!

we can extend the ideal single noninteracting solute calculations shown
above. This follows a procedure similar to that described already by
Claverie (1976) for the case of concentration-dependent sedimentation,
here generalized to moving elements. The sedimentation coefficient of the
grid was chosen to be the average of the monomer and oligomer sedimen-
tation coefficients. Insertion into Eq. 9 leads to an extension of Eq. 10.
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Again, the integrals over threefold products of hat functions evaluate to
simple polynomials and can be abbreviated as tensorsUkji andWkji , which
are non-zero only foruk 2 ju, uk 2 iu, uj 2 iu , 2 (see Appendix). Although
they are time-dependent in their corner elementsk, j, i 5 1, 2, N 2 1, or

N, again, they do not change for time stepsDtswap. Generalization of the
flux matrix J in Eq. 13 to

Jkj~cW, t! 5 v2~2sGAkj
~3!~t! 1 O

i

sw,i~ci!Ukji~t!!

2 a22~t 2 t0!O
i

Dg,i~ci!Wkji~t! (18)

leads to an equation identical to Eq. 14. One additional complication of
interacting systems is the concentration dependence of the fluxes, making
Eq. 14 nonlinear. It can be addressed by using a two-step approximation

cW~pred!~t 1 Dt! 5 $B* 2 DtJ*D@cW~t!#%21$B* 1 DtJ* @cW~t!#%cW~t!

cW~t 1 Dt! 5 FB* 2 DtJ*DScW~t! 1 cW~pred!~t!

2 DG21

FB* 1 DtJ*ScW~t! 1 cW~pred!~t!

2 DGcW~t! (19)

in which first a concentration vectorcW(pred)is calculated for the timet 1 Dt.
In a second step, thiscW(pred) predicted att 1 Dt is averaged with the
concentrationcW(t) and taken as a basis for the calculation of the fluxes. This
approximates the average fluxes during the time stepDt. It should be noted
that in this treatment of the nonlinearity in Eq. 19, the accuracy of the
concentration-dependent flux term is enhanced by the fact that in the
moving frame of reference the concentration changes in each compartment
will remain small.

RESULTS

Moving grid solutions of the Lamm equation

Fig. 2 shows the results of simulations with the moving grid
approach (Eq. 13, using the maximal time steps according to

FIGURE 2 Calculated sedimentation profiles for different discretiza-
tions and computation methods under fast transport conditions (v 5 60,000
rpm,s 5 10 S,D 5 2 3 1027 cm2/s). Shown are the calculated profiles at
t 5 200 s, for a solution column from 6.5 cm to 7.2 cm, with uniform initial
distributionc(r, 0) 5 1. Lines show results with a very fine grid and small
time steps (N 5 10,000,Dt 5 0.26 s). Both the moving hat approach of Eq.
13 (. . .), and the analog equation based on the Claverie approach in the
Crank-Nicholson scheme (– –) converge (maximum difference# 1025).
Symbols show results from a very coarse discretization (N 5 125, Dt 5
20.9 s) in the Claverie approach (Œ), and in the approach of Eq. 13 using
a stationary grid (ƒ) and Eq. 13 using a moving grids 5 sG (E).
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Eq. 6) and the correspondent Claverie approach in a Crank-
Nicholson scheme (Claverie et al., 1975; Schuck et al.,
1998). For very fine grids and small time steps, both meth-
ods lead to virtually the same profiles (Dc ,, c0 3 1025 for
N . 10,000). However, for a coarse grid and large time
steps, the Claverie approach (as well as Eq. 13 at a station-
ary grid sG 5 0) can lead to significant errors; in cases of
high transport fluxes, even negative concentrations and os-
cillations near the sedimentation boundary are found. How-
ever, application of the moving grid withsG 5 s leads to
more stable results, and converges much more rapidly to-
ward the fine grid results (Fig. 2). With a decreasing number
of compartmentsN, both approaches can lead to oscillations
in the regions close to both ends of the solution columns, but
they decay very rapidly with increasing distance from the
meniscus and bottom, respectively.

The precision of the results was first tested for a nonin-
teracting solute at different rotor speeds, sedimentation, and
diffusion coefficients. In calculations using similar discreti-
zation, the moving and the stationary grid results were
comparable at low ratio of transport to diffusional flux
(v2s/D , 500 rpm2s2/cm2), for larger ratiosv2s/D, the
moving grid did lead to an increase in precision by a factor
of ;5. Correspondingly, the same precision was achieved
by the moving grid method by a factor 2 fewer grid points
than in the Claverie method. For example, with a moving
grid using Eq. 13 and Eq. 6, a division of a 7-mm solution
column intoN 5 500–1000 grid points, and forDtswap ,
200 s, the maximum error was,,c0 3 0.001 and the rms
error was,,c0 3 0.0001, independently of rotor speed,s,
andD. This numerical error is below the experimental error
of data acquisition in a centrifuge experiment.

Calculations for self-associating solutes were imple-
mented for monomer-dimer and monomer-trimer associa-
tions and tested in several ways. First, they obeyed mass
balance and approached the correct sedimentation equilib-
rium distributions, as analyzed by independent conventional
sedimentation equilibrium methods. Second, in the limit of
very small or very large association constants, respectively,
the calculated distributions converge correctly to those of a
single noninteracting monomer or oligomer, respectively.
Third, independent calculations both with a static equidis-
tant grid, as described in Claverie et al., 1975, and with a
moving grid, converge with finer discretization in space and
time toward the same profiles, which have been shown by
Claverie (1976) to represent the correct sedimentation dis-
tributions. For large self-associating solutes at high rotor
speeds, the gain in precision by the moving grid method was
found to be approximately a factor of 10.

Noninteracting and homogeneous associating systems are
similar in that they both allow the use of experimental scans
at an early time of an experiment as initial condition for the
solution of the Lamm equation. This option has been im-
plemented as described in Schuck et al., 1998. It can avoid
initial experimental imperfections that can be introduced,
for example, by the finite time needed for acceleration of the

rotor, or by the use of artificial layering techniques (Cox,
1966).

Global analysis of low-speed and high-speed
experiments for a single noninteracting solute

Data analysis with numerical solutions of the Lamm equa-
tion allows for the extraction of sedimentation coefficients
from the approach to equilibrium in conventional short-
column low-speed sedimentation equilibrium experiments
(Demeler and Saber, 1998; Schuck et al., 1998). Since this
method can take into account the end effects of the solution
column, it also allows investigators to perform short-
column high-speed sedimentation velocity experiments.
Fig. 3 shows low-speed and high-speed sedimentation pro-
files, respectively, simulating the experimental configura-
tion of a sedimentation equilibrium experiment, followed by
shaking of the cell allowing for redistribution of the protein,
and a rapid high-speed sedimentation.

The data were analyzed using the Lamm equation, and
treating the loading concentration and a small baseline
offset as unknown variables. From both parts of the exper-

FIGURE 3 Calculated sedimentation profiles of a protein withM 5 100
kDa (at a partial specific volume of 0.73 cm3/g) ands 5 7 S. Simulations
were performed for a 4-mm solution column at a rotor speed of 8000 rpm,
with distributions recorded at time intervals of 3600 s and radial increments
of 0.001 cm (upper panel); and for a 4-mm column at 40,000 rpm with
distributions at time intervals of 300 s (lower panel). The initial absorbance
was 0.5 OD, and Gaussian distributed noise of 0.01 OD and a baseline
offset d of 0.01 OD were added.
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iment, the diffusion coefficientD (or the buoyant molar
mass) as well as the sedimentation coefficients can be
obtained. This is demonstrated in Fig. 4A, which shows the
one-standard-deviation contour maps of the error surfaces
of the nonlinear regression, expressed ins andM as inde-
pendent parameters. As can be expected, the low-speed
experiment gives relative precise information onM, while
yielding only moderate accuracy fors. At a higher rotor
speed, this contour map changes its shape toward a very
well-defineds, but with a relative high uncertainty inM.
This situation remains virtually unchanged for larger col-
umn heights and a correspondingly larger amount of data, as
indicated by the contour of a 10-mm column height exper-
iment shown in Fig. 4A.

High statistical accuracy simultaneously ins andM can
be achieved in a global fit to both low- and high-speed

short-column data sets, as demonstrated by the correspond-
ing contour maps of the error surface in Fig. 4B. The
accuracy can be further increased if the baseline offset
and/or the loading concentration can be assumed equal in
both parts of the experiment. This can be fulfilled experi-
mentally if the buffer absorption remains constant and if the
protein does not pellet or absorb to the cell walls during the
first equilibrium experiment. For the global analysis of a
long-column high-speed and a short-column low-speed ex-
periment, it may not be possible to assume the loading
concentration and the baseline offset to be identical. Com-
pared to the global short-column analysis, this results in
higher precision ins, but lower precision inM.

Global analysis for a solute in monomer-dimer
self-association

To simplify the treatment of self-associating systems, it was
assumed that no volume change occurs during association.
This allows the application of the Svedberg equation (Sved-
berg and Pedersen, 1940) to relate the diffusion coefficients
of monomer and dimer, and to map the parameter space in
the data analysis from (s1, s2, D1, D2) to (M1, s1, s2).
Sedimentation profiles were calculated for a solute of
monomer molar mass 100,000 Da ands1 5 6.5 S, dimer-
izing with an equilibrium constantK2 5 3.98/OD
[log10(K2) 5 0.6] to a component with a molar mass of
200,000 Da ands2 5 10 S, at a loading absorbance ofa0 5
0.5 OD and 0.01 OD Gaussian distributed noise.

First, in order to study the ability to identify the presence
of a monomer-dimer equilibrium, we analyzed the simu-
lated data with an impostor single noninteracting species
model. Using a 4 mmcolumn at 8000 rpm, statistically
acceptable fits could be achieved for a single species of
M 5 164300 Da ands 5 8.84 S (rms deviation 0.010014).
For high-speed experiments, high deviations were found
only in the steepest gradient near the bottom of the column.
Excluding the outer 0.5 mm of the solution column, which
can be necessary in practice due to optical artifacts in the
vicinity of the cell bottom, reasonable fits could be achieved
with M 5 97600 Da ands 5 8.29 S (rms deviation
0.01097). Remarkably, the ability to fit the monomer-dimer
equilibrium data with a single species model using these
parameters was found to be qualitatively independent of the
length of the solution column. It should also be noted that
the broadening of the sedimentation boundary caused by the
heterogeneity of the association state closely resembles dif-
fusional broadening of a solute smaller than the monomer.
In contrast, global analysis of short-column experiments at
different speeds (4 mm, 8000 rpm and 45,000 rpm, similar
to those shown in Fig. 3) did not allow satisfactory model-
ing of the data with the impostor model (best-fitM 5
163,160,s 5 8.33 S, rmsd5 0.01266).

For the case of the correct application of a monomer-
dimer model with known monomer buoyant molar mass
(e.g., from known amino acid composition), the contour

FIGURE 4 Statistical analysis of the short-column concentration profiles
shown in Fig. 3 and of calculated sedimentation profiles for the same solute
(3), in a 10-mm long-column experiment at 45,000 rpm with distributions
recorded in 500-s intervals (data not shown). (A) One-standard-deviation
contour maps of the error surface for the independent analysis of each data
set. Data analysis was based on F-statistics (Bevington and Robinson,
1992), treatingd anda0 as unknown, floating parameters. Data points in the
steep part of the high-speed sedimentation profiles near the bottom (r .
7.162 cm) were excluded from the analysis. (B) Results of global analyses
of the short-column data shown inA and B, with baseline and initial
absorbance treated as independent parameters in setsA and B (—), con-
straining the baseline to be identical while using independent initial ab-
sorbancies (– –), and constraining both the baseline and initial absorbance
to be identical (. . .). Global analysis of the 10-mm column at 45,000 rpm,
and the 4-mm at 8000 rpm, using independent baseline offsets and loading
absorbancies (–z –).
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maps corresponding to the confidence level of one standard
deviation together with the statistical accuracy of the equi-
librium constant are shown in Fig. 5. As can be expected,
the short-column low-speed data have much more informa-
tion on the equilibrium constant (log10(K2) [ [0.52, 0.66]),
while the sedimentation coefficients are highly correlated
and little information can be obtained (Fig. 5A). The
high-speed experiment at the same column height of 4 mm
offers improved, but still poor, accuracy of the sedimenta-

tion coefficients, while containing very little information on
the equilibrium constant (log10(K2) [ [0.35, 0.91]). The use
of an increased column height of 10 mm, which leads to a
considerably increased data base, improves the precision of
the sedimentation coefficients (s1 [ [6.0, 6.9],s2 [ [9.84,
10.26]), but still does not lead to satisfactory precision of
the association constant (log10(K2) [ [0.40, 0.75] (Fig. 5A).

Therefore, global analysis procedures were applied to
different configurations. The highest accuracy in the sedi-
mentation coefficients was achieved in the combined anal-
ysis of two high-speed experiments with 7-mm columns and
loading concentrations at a ratio 10:1 (simulated bya0 5 1,
anda0 5 0.5 at a second wavelength with fivefold higher
solute extinction). This resulted in sedimentation coefficient
estimates with relative errors of only 1.2% and 1% for the
monomer and dimer, respectively, and an estimate for the
association constant of log10(K2) [ [0.535, 0.678] (Fig. 5
B). The highest accuracy in the equilibrium constant was
achieved by the global analysis of both low- and high-speed
short-column experiments in the configuration similar to
that of Fig. 3. Assuming the loading concentration and/or
the unknown baseline offset to be identical for each part of
the experiment, an association constant log10(K2) [ [0.565,
0.632] and relative errors of the monomer and dimer sedi-
mentation coefficients of 5% and 3%, respectively, were
obtained. The extension of the solution column in the high-
speed experiment introduces an increased number of data
points. However, since the baseline offset and the initial
absorbance in the different solution columns may not nec-
essarily be identical, this configuration did lead to only
slightly improved precision of the sedimentation coeffi-
cients, and to a less precise estimate of the equilibrium
constant (log10(K2) [ [0.545, 0.651]).

DISCUSSION

The applicability and the advantages of using direct fitting
of the Lamm equation to analytical ultracentrifuge data for
the analysis of hydrodynamic shapes and gross conforma-
tion of solutes has been demonstrated in different laborato-
ries (Demeler and Saber, 1998; MacPhee et al., 1997;
Schuck et al., 1998; Schuck and Millar, 1998; Stafford,
1998). Among its virtues is the ability to describe the
boundary effects at the end of the solution column, which
allows the study of small solutes with high diffusion coef-
ficient or, complementary to that, it allows for the use of
smaller sample volumes and lower rotor speeds in studies of
large solutes. In addition, due to the lack of analytical
solutions describing the sedimentation of systems of inter-
acting solutes, only numerical integration of the Lamm
equations has the potential to rigorously obtain information
on hydrodynamic shapes of reversibly formed protein com-
plexes from analytical ultracentrifugation experiments. This
method could provide insights into the gross conformation
of complexes, and consequently provide insight to some
extent into the mechanism of interaction for a large class of
protein-protein and protein-DNA systems.

FIGURE 5 One-standard-deviation contour maps of the error surface in
the analysis of a monomer-dimer self-association. Data were generated
usingM 5 100 kDa (at a partial specific volume of 0.73 cm3/g), monomer
s1 5 6.5 S and dimers2 5 10 S (3), with an association constantK2 5
3.98/OD[log10(K2) 5 0.6]. Data analysis was based on F-statistics, treating
association constantKA, baseline offsetd, and loading absorbancea0 as
unknown, floating parameters. Separately calculated confidence intervals
of the equilibrium constantKA (using the sedimentation coefficients as
floating parameters) as indicated for each experimental configuration.
Radial data increments were 0.001 cm. Unless noted otherwise an initial
absorbancea0 5 0.5 OD was used, and Gaussian distributed noise of 0.01
OD and a baseline offsetd of 0.01 OD were added. Data points in the steep
part of the high-speed sedimentation profiles near the bottom were ex-
cluded from the analysis. (A) Independent analyses: solution column of 4
mm at a rotor speed of 8000 rpm, with distributions recorded at time
intervals of 3600 s (. . .), 4-mm column at 45,000 rpm recorded at time
intervals of 300 s (—), and 10-mm column at 45,000 rpm at time intervals
of 300 s (– –). (B) Global analyses: two 7-mm columns at 45,000 rpm with
a ratio of loading concentrations of 10:1, achieved by loading absorbancies
a0 5 1 anda0 5 0.5 at wavelengths with fivefold different solute extinction
(such ase280/e230) (—); one 4-mm column at rotor speeds of 8000 rpm and
45,000 rpm, constrainingd and a0 to be identical in each set (– –), or
constrainingd to be identical and independently floatinga0 in each set
(. . .); a 4-mm column at 8000 rpm combined with a 10-mm column at
45,000 rpm, with independently floatingd anda0 (– z –).
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To achieve this goal, two major current difficulties have
to be resolved. First, the computational cost of the analytical
approach in most cases still seems to be prohibitive, despite
considerably increased computational capacities. This dif-
ficulty increases with higher sedimentation fluxes and lower
diffusional fluxes, or with increasing size of the solutes and
increasing rotor speed, respectively. In the present paper we
have addressed this problem by combining the most com-
monly used numerical strategy devised by Claverie (Cla-
verie, 1976; Claverie et al., 1975) with a moving grid
technique. In contrast to other moving or adaptive grid
approaches (Cox and Dale, 1981; Dishon et al., 1966; Cann
and Kegeles, 1974), the exponential spacing and movement
of the grid points in Eqs. 4 and 5 has the unique properties
of constantly traveling with the solute while mapping onto
itself after certain time intervals. Transformations of the
radial variable similar to Eq. 4 have proven extremely useful
in the derivation of approximate analytical solutions to the
Lamm equation for ideal noninteracting solutes (Faxe´n,
1929; Fujita and MacCosham, 1959; Fujita, 1962; Holladay,
1979a), their subsequent application to nonlinear regression
of sedimentation velocity data (Philo, 1997; Behlke and
Ristau, 1997; Holladay, 1979b, 1980), and to the time-
derivative analysis in the determination ofg*(s) (Stafford,
1992). The introduction of this transformation into the nu-
merical finite element solution provides a frame of refer-
ence in which, for ideal noninteracting solutes, sedimenta-
tion is virtually absent, and the Lamm equation essentially
reduces to a diffusion equation that is easier to solve. The
corresponding gain in accuracy is demonstrated in Fig. 2,
which shows how a very small number of moving grid
points can describe a sedimentation boundary compara-
tively well. For interacting solutes, although the movement
of the grid does not match that of all components, the
sedimentation fluxes are still greatly reduced. This can
substantially diminish the magnitude of the nonlinear terms
of the Lamm equation that are introduced by chemical
reactions among solutes and, in turn, improve the accuracy
and efficiency of the numerical solutions.

As pointed out by Demeler and Saber (1998), instabilities
can occur at the end of the solution column using the
Claverie approach. This problem was found in a similar
magnitude in the Claverie approach and with the moving
grid approach presented here. Consistent with the findings
of Demeler and Saber, these oscillations rapidly decay with
increasing grid size and distance from the bottom of the
solution column, and in practice remain well within the
range of the well-known artifacts of the optical detection
system of the analytical ultracentrifuge.

The second major difficulty in sedimentation studies of
reversibly interacting solutes is their high number of un-
known hydrodynamic parameters in addition to unknown
binding constants. In particular, in contrast to heterogeneous
interactions (Stafford, 1998), for self-associating solutes no
independent measurement of the sedimentation coefficient
of the species can be performed. Key to this problem could
be the use of a large experimental database from different

experiments and their global analysis (Beechem, 1992; Staf-
ford, 1998). While traditional analytical ultracentrifuge ex-
periments already allow a broad variety of experimental
configurations (for example, with different loading concen-
trations, rotor speeds, and column heights), even more con-
figurations are possible by the use of direct Lamm equation
fitting. These include approach to equilibrium analysis in
low-speed sedimentation equilibrium experiments, and
short-column high-speed sedimentation velocity experi-
ments that do not exhibit clear solvent and solution plateaus.
Since it is not obvious how to utilize such experiments for
rigorous hydrodynamic shape analysis of reversibly formed
protein complexes, we have investigated their information
content by analyzing their respective error surfaces for
simulated noisy ultracentrifuge data.

As can be seen in the contour maps of Figs. 4 and 5, the
information content strongly depends on the centrifugal
fields used in the experiments. This is in accordance with
common experimental experience and relates to differences
in the conditioning of analyses of a translatory movement of
a boundary, diffusional boundary spreading, and exponen-
tial equilibrium analysis, which, to a rotor-speed dependent
degree, govern the analysis. It is noteworthy that for a
noninteracting solute in high-speed sedimentation velocity
experiments the sedimentation coefficient confidence limits
are very narrowly confined, while only poor estimates of the
diffusion coefficient seem possible. This was found to be
qualitatively independent of the column length, indicating
that analysis of the boundary spreading during the relative
short duration of a high-speed experiment is an ill-condi-
tioned problem.

Precise parameter estimates were obtained with a global
analysis of an approach to equilibrium experiment and a
short-column high-speed experiment. This combines the
strength of an equilibrium analysis, which is its indepen-
dence of hydrodynamic parameters, with the strength of
sedimentation velocity studies; i.e., the ability to very pre-
cisely measure the translation of the boundary. In practice,
this sequence of experiments would only slightly differ
from the commonly used sequence of a conventional sedi-
mentation experiment followed by a final overspeeding
phase intended for the measurement of the background
absorption offset. The only additional requirements would
be scanning of the transient states in both parts and mixing
of the solution in between. The advantage over separate
traditional equilibrium and long-column sedimentation ve-
locity experiments is the considerably smaller amount of
sample needed by using only one single short column and
the identical baseline offsets and loading concentrations.
Also, it is noteworthy that a final high-speed phase follow-
ing sedimentation equilibrium experiments can substantially
improve the ability to identify the presence of self-association.

Interacting systems provide a much more complicated
problem, but as demonstrated for the case of monomer-
dimer self-association, the same principles lead to the most
informative experimental configuration. It was found that
the high-speed data alone can only poorly measure the
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association constant, while also giving only modestly pre-
cise estimates of the sedimentation coefficients (Fig. 5A).
Conceptually, this can be understood by considering the
Lamm equation analysis a transformation of the sedimen-
tation data into a binding isothermsw(c). It is well known
that the reliable analysis of a binding isotherm requires the
data to span two orders of magnitude in concentration,
which can be difficult to achieve in the absorption optical
system of the analytical ultracentrifuge at the given linear
range and experimental noise. This uncertainty of the asso-
ciation constant in turn affects the precision of the monomer
and dimer sedimentation coefficients, respectively. Low-
speed data alone have information on the equilibrium con-
stant, but virtually none on the sedimentation coefficients.
Therefore, global analysis seems to be essential in treating
and identifying interacting systems. As suggested by the
error contours in Fig. 5B, the determination of the equilib-
rium constant using the short-column approach to equilib-
rium technique again can be combined with the hydrody-
namic information of the high-speed data set. The error
analysis also indicates that, in an alternative configuration,
the global analysis of different long-column high-speed
experiments would require the use of considerably different
loading concentrations, which may be achieved, for exam-
ple, by exploiting multi-wavelength techniques.

In summary, we have presented a numerical method and
have explored experimental strategies for the efficient quan-
titative sedimentation analysis for ideal noninteracting and
self-associating systems. Previous methods for this problem
include the study of the concentration dependence of the
second moment of a sedimentation boundary (Adams,
1992), and the qualitative analysis of the boundary shape
assuming vanishing diffusion in Gilbert theory (Gilbert,
1955). The presented approach is more general in that it
allows the complete use of several series of concentration
distributions in different centrifugal fields in a global quan-
titative analysis. While the data simulation was based on the
use of an absorbance optical system, the approach can be
incorporated in the time-derivative analysis of interference
optical ultracentrifuge data that can provide enhanced sen-
sitivity (Stafford, 1994). The described numerical and ex-
perimental strategies could also prove useful in the sedi-
mentation analysis of heterogeneous interactions.

APPENDIX

In the following, the results of integration over the elements and their
derivatives are given. The productsPkPj are non-zero only for neighboring
elements withj 5 k 2 1, k, or k 1 1, and consequently the integrals can
be expressed as tridiagonal matrices of simple polynomials. They have to
be calculated only once using the initial gridrk,0, since the propagation of
the grid according to Eq. 4 leads to a uniform stretching that can be
accounted for separately in Eq. 12.

In accordance with the terminology introduced by Claverie et al. (1975)
and the integrals tabulated by Cox and Dale (1981) for the special case of
an equidistant grid, the integrals of the elementsBkj 5 *m

b PjPkrdr give

Bk,k21 5 Bk21,k 5 ~rk
2 2 rk21

2 !/12

Bk,k 5 ~rk11 2 rk21!~rk21 1 2rk 1 rk11!/12

B1,1 5 ~2mr2 2 3m2 1 r2
2!/12

BN,N 5 ~3b2 2 2brN21 2 rN21
2 !/12 (A1)

For the integralsAkj
(1) 5 *m

b (­Pj/­r)(­Pk/­r)rdr, Akj
(2) 5 *m

b Pj(­Pk/­r)rdr,
and Akj

(3) 5 *m
b (­Pj/­t)Pkrdr governing the diffusion and sedimentation

fluxes and the movement of the grid, respectively, we get

Ak,k21
~1! 5 Ak21,k

~1! 5 0.5~rk 1 rk21!/~rk21 2 rk!

Ak,k
~1! 5 rk~rk11 2 rk21!/$~rk 2 rk21!~rk11 2 rk!%

A1,1
~1! 5 0.5~r2 1 m!/~r2 2 m!

AN,N
~1! 5 0.5~b 1 rN21!/~b 2 rN21! (A2)

Ak,k21
~2! 5 ~rk

2 1 2rkrk21 1 3rk21
2 !/12

Ak,k
~2! 5 ~rk21 2 rk11!~rk21 1 2rk 1 rk11!/12

Ak,k11
~2! 5 ~2rk

2 2 2rkrk11 2 3rk11
2 !/12

A1,1
~2! 5 ~23m2 2 2mr2 2 r2

2!/12

AN,N
~2! 5 ~3b2 1 2brN21 2 rN21

2 !/12 (A3)

Ak,k21
~3! 5 ~3rk

2 1 2rkrk21 1 rk21
2 !/12

Ak,k
~3! 5 ~rk11 2 rk21!~rk21 1 2rk 1 rk11!/12

Ak,k11
~3! 5 ~23rk

2 2 2rkrk11 2 rk11
2 !/12

A1,1
~3! 5 2A1,2

~3! 5 r2~m1 r2!/12

A2,1
~3! 5 r2~m1 3r2!/12

A2,2
~3! 5 ~2mr2 1 2r2r3 1 r3

2!/12

AN21,N21
~3! 5 ~brN21 2 2rN21rN22 2 rN22

2 !/12

AN21,N
~3! 5 2rN21~b 1 3rN21!/12

AN,N21
~3! 5 2AN,N

~3! 5 rN21~b 1 rN21!/12 (A4)

Integrals of higher order,Ukji 5 *m
b PiPj(­Pk/­r)r2dr and Wkji 5 *m

b

Pi(­Pj/­r)(­Pk/­r)rdr, occur in the Lamm equations for multi-component
mixtures of interacting macromolecules, concentration dependent or radial
dependent sedimentation. The nonzero integrals are

Uk,k21,k21 5 ~rk
2 1 3rkrk21 1 6rk21

2 !/30

Uk,k21,k 5 Uk,k,k21 5 ~3rk
2 1 4rkrk21 1 3rk21

2 !/60

Uk,k,k 5 ~rk21 2 rk11!~3rk 1 rk21 1 rk11!/30

Uk,k,k11 5 Uk,k11,k 5 ~23rk
2 2 4rkrk11 2 3rk11

2 !/60

Uk,k11,k11 5 ~2rk
2 2 3rkrk11 2 6rk11

2 !/30

U1,1,15 ~26m2 2 3mr2 2 r2
2!/30

UN,N,N 5 ~6b2 1 3mrN21 1 rN21
2!/30 (A5)
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and

Wk,k21,k21 5 2Wk,k,k21 5 ~rk 1 2rk21!/~26rk 1 6rk21!

Wk,k21,k 5 ~2rk 1 rk21!/~26rk 1 6rk21!

Wk,k,k 5 rk~2rk21 1 rk11!/@2~rk 2 rk21!~2rk 1 rk11!#

Wk,k,k11 5 2Wk,k11,k11 5 ~rk 1 2rk11!/~26rk 1 6rk11!

Wk,k11,k 5 ~2rk 1 rk11!/~6rk 2 6rk11!

W1,1,15 2W1,2,15 ~2m1 r2!/~26m1 6r2!

W1,1,25 2W1,2,25 ~m1 2r2!/~26m1 6r2!

WN,N,N 5 2WN,N21,N 5 ~2b 1 rN21!/~6b 2 6rN21!

WN,N,N21 5 2WN,N21,N21 5 ~b 1 2rN21!/~6b 2 6rN21!
(A6)

It can be shown that they obey(i Wkji 5 Akj
(1) and(i Ukji 5 Akj

(2).
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