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Sedimentation Analysis of Noninteracting and Self-Associating Solutes
Using Numerical Solutions to the Lamm Equation

Peter Schuck

Molecular Interactions Resource, Bioengineering and Physical Science Program, OD, National Institutes of Health,
Bethesda, Maryland 20892 USA

ABSTRACT The potential of using the Lamm equation in the analysis of hydrodynamic shape and gross conformation of
proteins and reversibly formed protein complexes from analytical ultracentrifugation data was investigated. An efficient
numerical solution of the Lamm equation for noninteracting and rapidly self-associating proteins by using combined
finite-element and moving grid techniques is described. It has been implemented for noninteracting solutes and monomer-
dimer and monomer-trimer equilibria. To predict its utility, the error surface of a nonlinear regression of simulated sedimen-
tation profiles was explored. Error contour maps were calculated for conventional independent and global analyses of
experiments with noninteracting solutes and with monomer-dimer systems at different solution column heights, loading
concentrations, and centrifugal fields. It was found that the rotor speed is the major determinant for the shape of the error
surface, and that global analysis of different experiments can allow substantially improved characterization of the solutes. We
suggest that the global analysis of the approach to equilibrium in a short-column sedimentation equilibrium experiment
followed by a high-speed short-column sedimentation velocity experiment can result in sedimentation and diffusion coeffi-
cients of very high statistical accuracy. In addition, in the case of a protein in rapid monomer-dimer equilibrium, this
configuration was found to reveal the most precise estimate of the association constant.

INTRODUCTION

Analytical ultracentrifugation is one of the traditional tools takes the form
for the physical characterization of biological macromole-

cules. The concentration profiles of sedimenting macromol- ac  19(rdy)

ecules reveal, applying first principles, their molar masses, ot Tr or T %k

state of aggregation, diffusion coefficients, and hydrody- (1)
namic shapes. In particular, during the last decades, it has G,

been used as a powerful technique for the characterization I = [sszrck — D"ar]

of homogeneous and heterogeneous protein-protein interac-
tlong_and prote|r_1-nucle|c aC|_d |nte_ract|ons in solution. Thewhereck(r, t) denotes the concentration of solltat radius
traditional experimental configurations used are both high-

: : . : r and timet, J ,, denotes the transport flux of soluke w
speed long-column sedimentation velocity (zgxpenmentsdenotes the angular velocity of the rotsy,and D, denote

which observe the time course of the transient states, angle qegimentation and diffusion coefficients of the solute,
low-speed sedimentation equilibrium experiments  with, Q, denotes the local chemical reaction rates, respec-
shorter solution columns, in which the approached equilibyjy ey (Fyjita, 1962). In part because of the lack of analytical
rium between sedimentation and diffusion allows for thegq) tions, the data interpretation and the experimental tech-
apphcauo_n qf thermodyn_amlc pmmp_les to_ the datg ana'V'niques commonly had to be constrained to conditions that
sis. Despite its success, in both configurations the informagioy for analysis with special solutions to this equation.
tion contained in the dynamics of the sedimentation procesgedimentation equilibrium can be understood as a special
has not been exploited to its fullest potential, in particularcgse of the Lamm equation, and others are the limit of
with respect to hydrodynamic shape agbss conforma-  pegligible influence of diffusion on the sedimentation of
tion of reversibly formed protein complexes. ~noninteracting and self-associating solutes in high centrifu-
In 1929, Lamm derived the basic differential equationgg| fields (Fujita, 1962; Gilbert, 1955; Schachman, 1959;
that governs the sedimentation behavior of ideal solutionss\,edberg and Pedersen, 1940), or the limit of an infinitely
which has later been refined and generalized by Fujitdong solution column, which can be experimentally ap-
(1962) For ideal solutions of Chemlcally reactlng solutes, Itproached in high-speed experiments with |arger macromol-
ecules (Behlke and Ristau, 1997; Fujita, 1962; Holladay,
1979a; Philo, 1997; Stafford, 1992). While these special
Received for publication 20 February 1998 and in final form 2 June 1998.SOIUtlons have proven extrg:mgly useful, in prac'uge ,they, are
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Finally, they can restrict the experimenter in the choice ofMETHODS
rotor speed, sample volume, and experiment time.

With the advent of digital computers, several investiga-
tors developed methods for numerical simulation of transThe central new aspect of the numerical method for obtaining solutions to
port processes and demonstrated the principle of using:e _Lamm equations propqsed in_ t_his paper is the incorp_orgtion of a

. . . . oving frame of reference into a finite element approach. Similar to the
numerical solutions of the Lamm equation for centrifugal change of radial variables used in the derivation of approximate analytical
data analysis (see, e.g., Bethune and Kegeles, 1961a, &jutions to the Lamm equation (Faxel929; Fuijita and MacCosham,
Cann and Kegeles, 1974; Claverie, 1976; Claverie et al.}959; Fujita, 1962), the strategy here will be to transform the spatial
1975: Cox, 1965, 1969; Dishon et al., 1966; Gilbert andcoordinate such that the sedimentation term in the numerical solution of the

. . Lamm equation disappears (Zienkiewicz and Taylor, 1991). This transfor-
Gilbert, 1973; Goad and Cann, 1969; Marque, _1992; Mm'mation 0(11‘ the grid Wilplpbe de(scribed first in someydetail. )
ton, 1992; Sartory et al., 1976). More recently, with increas- The concentration distributiorgr, t) are approximated by linear com-
ing computational power readily at hand, increasing intereshinations of the elemen®,(r, t)

has been devoted to this approach. Based predominantly on

Moving grid

the numerical methods described by Claverie and co-work- N
ers (1975), its potential for the description of experimental cr, )= X c(OP(r, b (2)
sedimentation data has been shown in different experimen- k=1

tal configurations (Demeler and Saber, 1998; MacPhee et _ _ _
al., 1997; Schuck et al., 1998; Schuck and Millar, 1998; "®Y ' hat functions (Fig. 1), defined as
Staﬁorq, 1998). In principle, numericgl squti(_)ns qllow the = =T ) Tea=F=r,
analysis of any series of concentratlon. pr_oflles, mcl_udlng Pt ) ={ (s = DN = 1) M <T =Ty
those that previously have eluded quantitative analysis, e.g., 0 else
the complete approach to equilibrium in low-speed experi-
ments, and sedimentation velocity profiles that are governegrk = 2,... ,N - 1, and
by high diffusion and effects of the finite length of the
solution column. This more direct numerical analysis has
the potential for significant reduction of experimental time
(Schuck and Millar, 1998) and reduction of sample volume,
as well as an increase in the amount of data and the statis- (r0) = { (r=rv-D/ry = Iy Iea =T =iy
tical accuracy of the results. Most importantly, these nu- N 0 else '
merical approaches have the potential to rigorously take into
account and obtain information about interacting systems of"e"¢"«(t) denotes a division of the solution columnhn(usually in the
L. order of 1000) grid points lying between the meniscus and bottom. The hat

macromolecules, which is among the most useful and chalynctions P.(r, t) are similar to the elements used by Claverie and co-
lenging of the current applications of analytical ultracentrif- workers (1975), except for the nonequidistant and time-dependent, &id
ugation. Unfortunately, excessive computational cost stillused in the present study. To enable the numerical separation of the effects
appears to limit the practicability of the extension of tran-
sient state analysis to interacting systems.

The present paper first describes an efficient finite ele-
ment method for the numerical solution of the Lamm equa-r(to+Ata)
tion that extends the method described by Claverie et al.
(1975) by the use of a moving grid. Second, the error 1
surfaces of direct Lamm equation analyses are explored, and
the use of a global analysis approach is proposed, which is
already well-known to improve accuracy of results in sed- [l [l \L 4
imentation equilibrium analyses. Here, we demonstrate itset) m 15 © 1 N4 INs Inz o INa b
advantages in the simultaneous analysis of sets of nonequi-
librium data from experiments at different rotor speeds.
Finally, an analytical procedure is described for solutes thakFIGURE 1 Schematic representation of the nonequidistantrgiidland
exhibit homogeneous associations, in the ideal limit ofthe corresponding elemeni(r, t). Solid lines indicate the hat functions

- I . _Pu(r, t5) at the start of sedimentation; as an example, the hat function
instantaneous equilibria. It will be shown how both tech Py(r. ) is emphasized by double lines. At fimes-+ At all grid points

niques of using a moving grid and a global analysis can bexceptr, = mandr,, = b move to larger radii, indicated by the broken
particularly helpful for the latter problem. All proposed lines. Spacing of the grid (Eg. 5) and the stretching in time (Eg. 4) is such
methods have been imp|emented inaPC Computer programat after the timatswap(Eq. 6) the grid is mapped onto itself (Eq. 7). Grid

: : : : positions at timeg, andt, + Atg,,,are indicated by solid vertical lines on
running on the Wmc_jows ope'ratling system TOI’ thef analy3|§he bottom and on top of the hat functions, respectively. At the tyme
of data from the Optima XL-A, this software is available on Atgap grid pointry_4(t, + At) (dotted ling is removed and inserted at

request. ro(to).

Pr 1) = { gz —0l(r;—ry rellsSer =r, 3)

I I3 N4 N3 In2

R
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of sedimentation and diffusion, the grid is moved according to Insertion of Eq. 2 leads to a system Nfequations forc(t)
r(t) = roalt — to) ac [P boP,
0=27 | PPadr+ ¢ [ — Padr
= explsew(t — to)} for k=2,...,N i m i m
rt) =m, ry(t) = b, 4) b 9P, 9P,
—wZSECJ- P—rzdr+DEc W?d
where m and b denote the meniscus and bottom, respectively, of the i m m
solution column (Fig. 1). Except for the constant boundaries at mand
rn = b, this propagation(t) describes that of an ideal sedimenting particle (10)
atr, o, with a sedimentation coefficiers; and in the absence of diffusion.
With the choice of the starting grid The time derivative of the hat functions with= 3, ...,N — 2 can be
written as
— (k—3/2/(N-1) — —
r.o = m(b/m) for k=2,...,N=1 (5 P (e =Ty Mo =r=r,
K
. o . — =@’ X Mg —=1)  e<I=rg (12)
it follows that after a time interval of propagation at
0 else
Atgyap= [0°Se(N — 1)]In(b/m) (6)  and similar expressions can be found for the elements N, 2,1, andN,
taking into account that, = mandr,, = bremain constant in time. Finally,
the grid is mapped precisely onto the starting grid we can transform Eqg. 10 into the moving frame of reference using the

change of variableg(r, t) = r/a(t — ty), which allows us to separate the
time-dependence(t) out of the integrals. The results of the integrals are
listed in the Appendix, expressed as tridiagonal matrize&®, A, and
A®. Unfortunately, it is not possible to obtain time-independent expres-
This can be exploited to fall back on the starting gyid in our description  sions for those integrals involving hat functioRg, P,, Py_,, andPy,

of c(r, t), simply by incrementing all indices ig, from 2 toN — 2 by one, because in the moving frame of reference the position of menisgus
and by addinght,,,,,to the reference timg, in Eq. 4. Additionally, the grid ~ and bottomp(b) will be time-dependent. Therefor&(t), A®M(t), A®(t),
point atry,_, is removed, and a new grid poing = r, ois inserted (Fig. 1). ~ andA®(t) are time-dependent only in the corner diagonat 2 subma-
The concentratiore, assigned to the new grid poinj is given by linear  trices due to the time-dependent transformatigs) and p(b). This
interpolation betweem andr, whereas the effects of eliminating the grid simplifies Eq. 10 to

pointry_, can be taken into account by recalculatiqg preserving total

mass.

Ndto + Atgwap = rs10 for k=2,...,N—2 (7)

This definition ofr,(t) retains a constant average density of points along 2 Bk] ) = E{MZ[SA(Z)(D - (3)(0]
the solution column. However, this grid constitutes a frame of reference j
that moves with the sedimenting solutes and therefore lends itself to (12)
description of sedimentation, particularly in the limit of small diffusion — Da 4t — to)A (t)}Cl
influence.

This matrix equation is analogous to that derived by Claverie and
co-workers using hat functions on a static and equidistant grid (see Eq. 11
in Claverie et al., 1975). However, it is generalized by a tega?A®)(t),

Solution of the Lamm equation in the absence of that describes the movement of the frame of reference, and by the factor
chemical reactions a”~ () that corrects the diffusion term for the stretching of the frame of
reference.
In the following treatment, the absence of chemical reactions is assumed, It can be shown thaA® — A® = —2B is true for all elements except
i.e.,, Q¢ = 0in Eq. 1. With the approximation of Eq. 2, equations for the those withk, j = 1, 2, N — 1, or N. Ignoring these elements would
coefficientsc,(t) can be derived by integrating the Lamm equation over the correspond to the common ideal assumption of an infinite solution column.
elementsP, In this limit, for s = s, the first term on the rhs coincides with the
well-known expression for the radial dilution in the sector-shaped solution
b by column, superimposed by the second term describing the diffusion. Sedi-
ac dr = ( rJ) d 8 mentation does not explicitly occur anymore in Eq. 12, it has been trans-
Epk(r’ frdr = — Pk(r Ordr (8) formed into the movement of the grid. Howeversif = 0 the grid remains
m m static and the method approaches that reported previously (Claverie et al.,
1975).
and integration by parts of the rhs, exploiting the vanishing flux at the For the discretization of Eq. 12 in time, a Crank-Nicholson scheme
meniscus and bottom (Claverie et al., 1975), which leads to (Crank and Nicholson, 1947) is useful in providing stability for larger time

steps (Goad and Cann, 1969; Press et al., 1992). Evaluation of the time
derivative on the Ihs of Eq. 12 using the average of the rhs between time

b Z—(;Pk(r, Drdr = sa? b EJP;(II", t) dr tandt + At gives the matrix equation
m m © [B(t) + B(t + At) — AtJ(t + At)Jc(t + At)
b ac aP(r, t) =[B(t) + B(t + At) + AtJ(t)]c(t)

ar ar o I) = oA — SAP(H] — Da 2t — t)AP(®)  (13)
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(using the abbreviation for the vector of concentratiorgg), which canbe N, again, they do not change for time stefts,,., Generalization of the
efficiently solved. Obviously, if the grid is moved with, = sthe time step ~ flux matrix J in Eq. 13 to

At cannot exceed 3/X Aty without violatingry_; = b. A particularly . 5 @

attractive choice for the time stepAd = Atg,,,, for which each step with Jiy(C 1) = w(—ScAL (1) + > Sw,i(C)Uy (D)

Eqg. 13 is followed by incrementing the indices of concentrations. In i

accordance with the method of mapping the grid onto itself in time

intervals At,,,, (as outlined above, using Eq. 7), it follows that for each — a‘z(t — tO)E Dgyi(ci)iji(t) (18)
propagation step in Eq. 13 the matrices remain identical: i

[B* — AtIR]C(t + Atgue) = [B* + AtJ*]C(t) (14)  leads to an equation identical to Eq. 14. One additional complication of
interacting systems is the concentration dependence of the fluxes, making
with B* = B(ty) + B(ly + Atgyag, J* = J(tp), andJ*, = J(ty + Atgy)- Eqg. 14 nonlinear. It can be addressed by using a two-step approximation
Therefore, they need to be calculated only once and the movement of the
grid essentially does not increase the computational cost of the approackP®9(t + At) = {B* — AtJ[C(t)]} {B* + AtI*[C(t)]}C(t)

. . (C) + P\ ]
Solution of the Lamm equation in the limit of ct+ At) = | B* — At} 2
rapid self-associations

5 (19)

The simplest system of reacting solutes is that of monomers in rapid B* + AtJ*(
self-association equilibrium with oligomers. As outlined by Cox (1969),

this case can be approximated by the introduction of locally concentration o . _ . )
dependent weight-average sedimentation coefficiepts) and gradient- I Which first a concentration vect@e?is calculated for the time+ At.

& + a<pred(t))]a(t)

average diffusion coefficientd, (c): In a second step, thig®® predicted att + At is averaged with the
9 concentratiorg(t) and taken as a basis for the calculation of the fluxes. This

SN(C) = E K-S(j)ijl/E K,lefl approximates the average fluxes during the time Atejft should be noted
i ! i ! that in this treatment of the nonlinearity in Eqg. 19, the accuracy of the
(15) concentration-dependent flux term is enhanced by the fact that in the
_ e Ni)e—1 e -1 moving frame of reference the concentration changes in each compartment
Dg(C) E ]KJD G /Z JKJCl will remain small.
j j

whereK; denotes the association constant for the mongrmeer interac- RESULTS
tion (with K, = 1), ¢, denotes the monomer concentration, gicandD®

denote the sedimentation and diffusion coefficientsjefreer, respectively.  Moving grid solutions of the Lamm equation
The monomer concentratiortg can be calculated locally from the total

concentratiorc using the mass action law. With the approximation Fig. 2 shows the results of simulations with the moving grid
approach (Eq. 13, using the maximal time steps according to
Su(f, 1) = 2 Sy(GD)IPW(r, 1) = X s, (GIPK(T, 1)
k k

(16)
Dy(r, t) = > Dy(C()Py(r, t) =: > Dy d(CIP(r, 1) ' ' ' T 'o%
K K :

we can extend the ideal single noninteracting solute calculations shown
above. This follows a procedure similar to that described already by
Claverie (1976) for the case of concentration-dependent sedimentation, /
here generalized to moving elements. The sedimentation coefficient of the = B g’ ;
grid was chosen to be the average of the monomer and oligomer sedimen- £ 04 — ;f I
tation coefficients. Insertion into Eq. 9 leads to an extension of Eq. 10.

elative units)
T
~

(

concentratio
\

ac [® b 9P
0= ZNJJ P,P,rdr + Ecjf a—t'Pkrdr
: m bom 652 653 654 655 656 657 658

b radius (cm)
2 P ,
- z stw,i(ci) PinTr dr . . ) . . .
i r FIGURE 2 Calculated sedimentation profiles for different discretiza-
m tions and computation methods under fast transport conditiors 0,000
) rom,s = 10 S,D = 2 X 10 7 cn?/s). Shown are the calculated profiles at
aP; 0Py t = 200 s, for a solution column from 6.5 cm to 7.2 cm, with uniform initial
+ > cDgi(c) | Pl rd 17
GDg.ilGi tor or rar 17) distributionc(r, 0) = 1. Lines show results with a very fine grid and small
Inl m time stepsi = 10,000,At = 0.26 s). Both the moving hat approach of Eq.

13 (- - -), and the analog equation based on the Claverie approach in the
Again, the integrals over threefold products of hat functions evaluate taCrank-Nicholson scheme (—-) converge (maximum differesc&0 ).
simple polynomials and can be abbreviated as teridgrandW,;, which Symbols show results from a very coarse discretizathr=(125, At =
are non-zero only fojk — j|, [k — i, | — i| < 2 (see Appendix). Although  20.9 s) in the Claverie approachk), and in the approach of Eq. 13 using
they are time-dependent in their corner elemdnijsi = 1, 2,N — 1, or a stationary grid V) and Eq. 13 using a moving grsl= s5 (O).
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Eqg. 6) and the correspondent Claverie approach in a Cranketor, or by the use of artificial layering techniques (Cox,
Nicholson scheme (Claverie et al., 1975; Schuck et al.1966).
1998). For very fine grids and small time steps, both meth-

i i < o
ods lead to virtually the same profile&Aq << ¢, X 10> for Global analysis of low-speed and high-speed

N > 10,000). However, for a coarse grid and large timeex eriments for a sinale noninteracting solute
steps, the Claverie approach (as well as Eg. 13 at a station- P 9 9

ary gridsg = 0) can lead to significant errors; in cases of Data analysis with numerical solutions of the Lamm equa-
high transport fluxes, even negative concentrations and ogion allows for the extraction of sedimentation coefficients
cillations near the sedimentation boundary are found. Howfrom the approach to equilibrium in conventional short-
ever, application of the moving grid with; = sleads to  column low-speed sedimentation equilibrium experiments
more stable results, and converges much more rapidly tdDemeler and Saber, 1998; Schuck et al., 1998). Since this
ward the fine grid results (Fig. 2). With a decreasing numbeimethod can take into account the end effects of the solution
of compartment$, both approaches can lead to oscillationscolumn, it also allows investigators to perform short-
in the regions close to both ends of the solution columns, bugolumn high-speed sedimentation velocity experiments.
they decay very rapidly with increasing distance from theFig. 3 shows low-speed and high-speed sedimentation pro-
meniscus and bottom, respective|y_ ﬁIeS, respectively, Simulating the experimental Configura—
The precision of the results was first tested for a nonin-ion of a sedimentation equilibrium experiment, followed by
teracting solute at different rotor speeds, sedimentation, anghaking of the cell allowing for redistribution of the protein,
diffusion coefficients. In calculations using similar discreti- @1d a rapid high-speed sedimentation.
zation, the moving and the stationary grid results were 'he data were analyzed using the Lamm equation, and
comparable at low ratio of transport to diffusional flux tréating the loading concentration and a small baseline
(0?ID < 500 rpni?/cm?), for larger ratiosw?s/D, the offset as unknown variables. From both parts of the exper-

moving grid did lead to an increase in precision by a factor
of ~5. Correspondingly, the same precision was achieved
by the moving grid method by a factor 2 fewer grid points - .
than in the Claverie method. For example, with a moving
grid using Eq. 13 and Eg. 6, a division of a 7-mm solution
column intoN = 500-1000 grid points, and faktg,, <
200 s, the maximum error was<c, X 0.001 and the rms
error was<<c, X 0.0001, independently of rotor speex,
andD. This numerical error is below the experimental error
of data acquisition in a centrifuge experiment.

Calculations for self-associating solutes were imple-
mented for monomer-dimer and monomer-trimer associa-
tions and tested in several ways. First, they obeyed mass
balance and approached the correct sedimentation equilib-
rium distributions, as analyzed by independent conventional
sedimentation equilibrium methods. Second, in the limit of
very small or very large association constants, respectively &
the calculated distributions converge correctly to those of al
single noninteracting monomer or oligomer, respectively. §
Third, independent calculations both with a static equidis- ‘é‘
tant grid, as described in Claverie et al., 1975, and with a 3
moving grid, converge with finer discretization in space and &
time toward the same profiles, which have been shown by
Claverie (1976) to represent the correct sedimentation dis- i [ ]
tributions. For large self-associating solutes at high rotor
speeds, the gain in precision by the moving grid method was
found to be approximately a factor of 10.

Noninteracting and homogeneous associating systems 8HGURE 3 Calculated sedimentation profiles of a protein Witk 100
similar in that they both allow the use of experimental scanpa (at a partial specific volume of 0.73 &g) ands = 7 S. Simulations
at an early time of an experiment as initial condition for thewere performed for a 4-mm solution column at a rotor speed of 8000 rpm,
solution of the Lamm equation. This option has been im-with distributions recorded at time intervals of 3600 s and radial incren_wents
plemented as described in Schuck et al., 1998. It can avoigf :00% cm ¢pper pandk and for a 4-mm column at 40,000 rpm with
= . . ” ! . Istributions at time intervals of 300 er pane). The initial absorbance
initial experimental imperfections that can be introduced,yas 0.5 OD, and Gaussian distributed noise of 0.01 OD and a baseline
for example, by the finite time needed for acceleration of theoffset 5 of 0.01 OD were added.

absorbance (OD)

6.9 7.0 71 7.162 7.2

radius (cm)
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iment, the diffusion coefficienD (or the buoyant molar short-column data sets, as demonstrated by the correspond-
mass) as well as the sedimentation coefficisntan be ing contour maps of the error surface in Fig.B4 The
obtained. This is demonstrated in FigAdwhich shows the accuracy can be further increased if the baseline offset

one-standard-deviation contour maps of the error surfacegnd/or the loading concentration can be assumed equal in

of the nonlinear regression, expressediandM as inde-

both parts of the experiment. This can be fulfilled experi-

pendent parameters. As can be expected, the low-speadentally if the buffer absorption remains constant and if the

experiment gives relative precise information Mdn while
yielding only moderate accuracy far At a higher rotor
speed, this contour map changes its shape toward a ve
well-defineds, but with a relative high uncertainty iM.

protein does not pellet or absorb to the cell walls during the
first equilibrium experiment. For the global analysis of a

tgng-column high-speed and a short-column low-speed ex-
periment, it may not be possible to assume the loading

This situation remains virtually unchanged for larger col-concentration and the baseline offset to be identical. Com-
umn heights and a correspondingly larger amount of data, gzared to the global short-column analysis, this results in
indicated by the contour of a 10-mm column height exper-higher precision irs, but lower precision irM.
iment shown in Fig. 4A.

High statistical accuracy simultaneouslysrand M can

be achieved in a global fit to both low- and h'gh'SpeedGIObal analysis for a solute in monomer-dimer

self-association

7.2 T T T T
B ! ! ! 8050 pm, 4n|'1m 4 To simplify the treatment of self-associating systems, it was
74 A - assumed that no volume change occurs during association.
B 40000 rpm, 4mmn This allows the application of the Svedberg equation (Sved-
70 | | berg and Pedersen, 1940) to relate the diffusion coefficients
& i Lsooo o | of monomer and dimer, and to map the parameter space in
< 69 L 1omm | the data analysis froms{, s,, D;, Dy) to (M, s;, S)).
i ] Sedimentation profiles were calculated for a solute of
68 _ monomer molar mass 100,000 Da amd= 6.5 S, dimer-
' ] izing with an equilibrium constantk, = 3.98/0OD
67 I I T [log,o(K,) = 0.6] to a component with a molar mass of
© 96000 98000 100000 102000 104000 200,000 Da and, = 10 S, at a loading absorbanceagf=
——r T 0.5 OD and 0.01 OD Gaussian distributed noise.
7.06 - First, in order to study the ability to identify the presence
708 |- _ of a monomer-dimer equilibrium, we analyzed the simu-
L . lated data with an impostor single noninteracting species
7.02 - N model. Usig a 4 mmcolumn at 8000 rpm, statistically
—~ 700 _ acceptable fits could be achieved for a single species of
23 - . M = 164300 Da and = 8.84 S (rms deviation 0.010014).
® 698 - - For high-speed experiments, high deviations were found
606 _ only in the steepest gradient near the bottom of the column.
- - Excluding the outer 0.5 mm of the solution column, which
694 — LT can be necessary in practice due to optical artifacts in the

vicinity of the cell bottom, reasonable fits could be achieved
with M 97600 Da ands 8.29 S (rms deviation
0.01097). Remarkably, the ability to fit the monomer-dimer
- . _ _equilibrium data with a single species model using these
FIGURE 4 Statistical analysis of the short-column concentration profiles L .
shown in Fig. 3 and of calculated sedimentation profiles for the same solutpa‘lram61:ers was fo,und to be qua“tatIVEIy Independent of the
(X), in a 10-mm long-column experiment at 45,000 rpm with distributions l€Ngth of the solution column. It should also be noted that
recorded in 500-s intervals (data not showr)) One-standard-deviation the broadening of the sedimentation boundary caused by the
contour maps of the error surface for the independent analysis of each dafgeterogeneity of the association state closely resembles dif-
set. Data analysis was based on F-statistics (Bevington and ROb'nSOﬁJSionaI broadening of a solute smaller than the monomer.

1992), treating andag as unknown, floating parameters. Data points in the | trast. alobal lvsis of short-col . ts at
steep part of the high-speed sedimentation profiles near the bottom ( n contrast, giobal analysis of short-column experiments a

7.162 cm) were excluded from the analysB) Results of global analyses  different speeds' 4 mm, 80.00 rpm and 451000 rpm, similar
of the short-column data shown iA and B, with baseline and initial  to those shown in Fig. 3) did not allow satisfactory model-
absorbance treated as independent parameters i\ setd B (—), con- ing of the data with the impostor model (best-fit =

straining the baseline to be identical while using independent initial ab-163 160s = 8.33 S. rmsd= 0.01266).

sorbancies (- -), and constraining both the baseline and initial absorbance For th f th t licati f
to be identical {- -). Global analysis of the 10-mm column at 45,000 rpm, or the case o € correct application ot a monomer-

and the 4-mm at 8000 rpm, using independent baseline offsets and loadifgimer model with known monomer bu?}/ant molar mass
absorbancies (~). (e.g., from known amino acid composition), the contour

98000 99000 100000 101000 102000

molar mass (Da)
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maps corresponding to the confidence level of one standartiibn coefficients, while containing very little information on
deviation together with the statistical accuracy of the equithe equilibrium constant (Igg(K,) € [0.35, 0.91]). The use
librium constant are shown in Fig. 5. As can be expectedof an increased column height of 10 mm, which leads to a
the short-column low-speed data have much more informaeonsiderably increased data base, improves the precision of
tion on the equilibrium constant (IgK,) € [0.52, 0.66]), the sedimentation coefficients,(€ [6.0, 6.9],s, € [9.84,
while the sedimentation coefficients are highly correlated10.26]), but still does not lead to satisfactory precision of
and little information can be obtained (Fig. A). The the association constant (IggK,) € [0.40, 0.75] (Fig. 5A).
high-speed experiment at the same column height of 4 mm Therefore, global analysis procedures were applied to
offers improved, but still poor, accuracy of the sedimenta-different configurations. The highest accuracy in the sedi-

mentation coefficients was achieved in the combined anal-
ysis of two high-speed experiments with 7-mm columns and

180 gy T Ty loading concentrations at a ratio 10:1 (simulatedagy-= 1,
125 E-. 4mm, 8000 rpm — . i .
120 B - < log (K) = [0.52, 0.66] A 3 anda, = 0.5 at a second wavelength with fivefold higher
ns £ 0 E solute extinction). This resulted in sedimentation coefficient
110 E : 10mm, 45000 rpm 3 estimates with relative errors of only 1.2% and 1% for the
g - log,,(K,) = [0.40, 0.75F . . .
—~ 105 E 3 monomer and dimer, respectively, and an estimate for the
@N 100 E = association constant of lggK,) € [0.535, 0.678] (Fig. 5
95 & 4mm, 45000 rom E B). The highest accuracy in the equilibrium constant was
90 B jog, (K, = [0.35, 0.91] E achieved by the global analysis of both low- and high-speed
:'g 3 E short-column experiments in the configuration similar to
75 N T that of Fig. 3. Assuming the loading concentration and/or
' 4 5 6 7 8 9 the unknown baseline offset to be identical for each part of
10.4 — T T T T the experiment, an association constani §€,) € [0.565,
| | _ | 0.632] and relative errors of the monomer and dimer sedi-
.. 0g,,(K,) = [0.57, 0.63] . . .
A B_ mentation coefficients of 5% and 3%, respectively, were
102 7 < (K,) = [0.55, 0.65] obtained. The extension of the solution column in the high-
" / T speed experiment introduces an increased number of data
& 100 | BN — points. However, since the baseline offset and the initial
s L N J absorbance in the different solution columns may not nec-
AN . . . . . . .
o8 L N essarily be identical, this configuration did lead to only
' \\\ b slightly improved precision of the sedimentation coeffi-
B T cients, and to a less precise estimate of the equilibrium
op b——1 L o 1 1 . 1 | constant (logy(K,) € [0.545, 0.651]).
62 63 64 65 66 67 68

DISCUSSION

FIGURE 5 One-standard-deviation contour maps of the error surface inl he applicability and the advantages of using direct fitting
the analysis of a monomer-dimer self-association. Data were generategf the Lamm equation to analytical ultracentrifuge data for
usingM = 100 kDa (at a partial specific volume of 0.73 ¥g), monomer the analysis of hydrodynamic shapes and gross conforma-
= 6.5 S and dimes, = 10 S (X), with an association constakt, = . . .
298/0D[|OQO(K2) = 0%]. Data analysis was based on F—statisticst,ztreatingtl,On of solutes has been demonstrated in different laborato-
association constari,, baseline offses, and loading absorbanag as €S (Demeler and Saber, 1998; MacPhee et al., 1997,
unknown, floating parameters. Separately calculated confidence intervalSchuck et al., 1998; Schuck and Millar, 1998; Stafford,
of the equilibrium constank, (using the sedimentation coefficients as 1998). Among its virtues is the ability to describe the
floating parameters) as indicated for each experimental configurationl?oundary effects at the end of the solution column, which

Radial data increments were 0.001 cm. Unless noted otherwise an initial I the study of I lut ith hiah diffusi "
absorbance, = 0.5 OD was used, and Gaussian distributed noise of0.0la ows the study of small solutes wi 9 ifrusion coet-

OD and a baseline offsétof 0.01 OD were added. Data points in the steep fICiENt Or, complementary to that, it allows for t.he use of
part of the high-speed sedimentation profiles near the bottom were exsmaller sample volumes and lower rotor speeds in studies of
cluded from the analysisA} Independent analyses: solution column of 4 large solutes. In addition, due to the lack of analytical
mm at a rotor speed of 8000 rpm, with distributions recorded at t|meso|utionS describing the sedimentation of systems of inter-

intervals of 3600 s:(- ©), 4-mm column at 45,000 rpm recorded at time tin lut nlv numerical intearation of the Lamm
intervals of 300 s (—), and 10-mm column at 45,000 rpm at time intervalsac g solutes, only numerica €gration o € lLa

0f 300 s (~ -). B) Global analyses: two 7-mm columns at 45,000 rpm with €guations has the potential to rigor_0U5|y obtain infor'mation
a ratio of loading concentrations of 10:1, achieved by loading absorbancieen hydrodynamic shapes of reversibly formed protein com-
8, = 1 anda, = 0.5 at wavelengths with fivefold different solute extinction plexes from analytical ultracentrifugation experiments. This
(Such asegd/ez3q) (—); one 4-mm column at rotor speeds of 8000 rom and ethod could provide insights into the gross conformation
45,000 rpm, constraining and a, to be identical in each set (—-), or f | d tl ide insiaht t

constrainingd to be identical and independently floatirsg in each set 0 COI‘np exes, an Consequgn y prgw e Insig 0 some
(- ); a 4-mm column at 8000 rpm combined with a 10-mm column at €Xt€Nt into the mechanism of interaction for a large class of

45,000 rpm, with independently floatinganda, (- - -). protein-protein and protein-DNA systems.
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To achieve this goal, two major current difficulties have experiments and their global analysis (Beechem, 1992; Staf-
to be resolved. First, the computational cost of the analyticalord, 1998). While traditional analytical ultracentrifuge ex-
approach in most cases still seems to be prohibitive, despitgeriments already allow a broad variety of experimental
considerably increased computational capacities. This difeonfigurations (for example, with different loading concen-
ficulty increases with higher sedimentation fluxes and lowertrations, rotor speeds, and column heights), even more con-
diffusional fluxes, or with increasing size of the solutes andfigurations are possible by the use of direct Lamm equation
increasing rotor speed, respectively. In the present paper witing. These include approach to equilibrium analysis in
have addressed this problem by combining the most comlew-speed sedimentation equilibrium experiments, and
monly used numerical strategy devised by Claverie (Clashort-column high-speed sedimentation velocity experi-
verie, 1976; Claverie et al., 1975) with a moving grid ments that do not exhibit clear solvent and solution plateaus.
technique. In contrast to other moving or adaptive gridSince it is not obvious how to utilize such experiments for
approaches (Cox and Dale, 1981; Dishon et al., 1966; Canrigorous hydrodynamic shape analysis of reversibly formed
and Kegeles, 1974), the exponential spacing and movemeptotein complexes, we have investigated their information
of the grid points in Egs. 4 and 5 has the unique propertiesontent by analyzing their respective error surfaces for
of constantly traveling with the solute while mapping onto simulated noisy ultracentrifuge data.
itself after certain time intervals. Transformations of the As can be seen in the contour maps of Figs. 4 and 5, the
radial variable similar to Eq. 4 have proven extremely usefuinformation content strongly depends on the centrifugal
in the derivation of approximate analytical solutions to thefields used in the experiments. This is in accordance with
Lamm equation for ideal noninteracting solutes (Faxe common experimental experience and relates to differences
1929; Fujita and MacCosham, 1959; Fujita, 1962; Holladay|n the conditioning of analyses of a translatory movement of
1979a), their subsequent application to nonlinear regressioa boundary, diffusional boundary spreading, and exponen-
of sedimentation velocity data (Philo, 1997; Behlke andtial equilibrium analysis, which, to a rotor-speed dependent
Ristau, 1997; Holladay, 1979b, 1980), and to the time-degree, govern the analysis. It is noteworthy that for a
derivative analysis in the determination g@f(s) (Stafford, = noninteracting solute in high-speed sedimentation velocity
1992). The introduction of this transformation into the nu- experiments the sedimentation coefficient confidence limits
merical finite element solution provides a frame of refer-are very narrowly confined, while only poor estimates of the
ence in which, for ideal noninteracting solutes, sedimentadiffusion coefficient seem possible. This was found to be
tion is virtually absent, and the Lamm equation essentiallygualitatively independent of the column length, indicating
reduces to a diffusion equation that is easier to solve. Théhat analysis of the boundary spreading during the relative
corresponding gain in accuracy is demonstrated in Fig. 2short duration of a high-speed experiment is an ill-condi-
which shows how a very small number of moving grid tioned problem.
points can describe a sedimentation boundary compara- Precise parameter estimates were obtained with a global
tively well. For interacting solutes, although the movementanalysis of an approach to equilibrium experiment and a
of the grid does not match that of all components, theshort-column high-speed experiment. This combines the
sedimentation fluxes are still greatly reduced. This carstrength of an equilibrium analysis, which is its indepen-
substantially diminish the magnitude of the nonlinear termsdence of hydrodynamic parameters, with the strength of
of the Lamm equation that are introduced by chemicalsedimentation velocity studies; i.e., the ability to very pre-
reactions among solutes and, in turn, improve the accuracgisely measure the translation of the boundary. In practice,
and efficiency of the numerical solutions. this sequence of experiments would only slightly differ

As pointed out by Demeler and Saber (1998), instabilitiesfrom the commonly used sequence of a conventional sedi-
can occur at the end of the solution column using thementation experiment followed by a final overspeeding
Claverie approach. This problem was found in a similarphase intended for the measurement of the background
magnitude in the Claverie approach and with the movingabsorption offset. The only additional requirements would
grid approach presented here. Consistent with the findingbe scanning of the transient states in both parts and mixing
of Demeler and Saber, these oscillations rapidly decay witlof the solution in between. The advantage over separate
increasing grid size and distance from the bottom of theraditional equilibrium and long-column sedimentation ve-
solution column, and in practice remain well within the locity experiments is the considerably smaller amount of
range of the well-known artifacts of the optical detectionsample needed by using only one single short column and
system of the analytical ultracentrifuge. the identical baseline offsets and loading concentrations.

The second major difficulty in sedimentation studies of Also, it is noteworthy that a final high-speed phase follow-
reversibly interacting solutes is their high number of un-ing sedimentation equilibrium experiments can substantially
known hydrodynamic parameters in addition to unknownimprove the ability to identify the presence of self-association.
binding constants. In particular, in contrast to heterogeneous Interacting systems provide a much more complicated
interactions (Stafford, 1998), for self-associating solutes ngroblem, but as demonstrated for the case of monomer-
independent measurement of the sedimentation coefficierdtimer self-association, the same principles lead to the most
of the species can be performed. Key to this problem couldnformative experimental configuration. It was found that
be the use of a large experimental database from differerthe high-speed data alone can only poorly measure the
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association constant, while also giving only modestly pre- Bk = (Neps = Me—)(Ne—g + 2r + r.)/12
cise estimates of the sedimentation coefficients (Fig).5 ,
Conceptually, this can be understood by considering the B11= (2mr, — 3n? + r3)/12

Lamm equation analysis a transformation of the sedimen- s 5
tation data into a binding isothers),(c). It is well known By = (30" = 2bry-; — ry /12 (Al)
that the reliable analysis of a binding isotherm requires the, e integralAL = [5(3P/ar)(aPJar)rdr, AR = [5 P,(aPJarrdr,
data to span two orders of magnitude in concentrationand AY = b(aP/at)Pkrdr governing the diffusion ‘and sedimentation
which can be difficult to achieve in the absorption optical fluxes and the movement of the grid, respectively, we get

system of the analytical ultracentrifuge at the given linear B

range and experimental noise. This uncertainty of the asso- Ak = A 1= 081+ N )Ty = 11
ciation constant in turn affects the precision of the monomer

AL =1 fer — MDA — e ) (g, — 1
and dimer sedimentation coefficients, respectively. Low- ok = Mlfiers = M)A = M) (e = 1)

speed data'alone have information on the gquilibrium con- AL = 0.5, + m)/(r, — m)

stant, but virtually none on the sedimentation coefficients.

Therefore, global analysis seems to be essential in treating AN =0.5b+ ry /(b —ry_y) (A2)
and identifying interacting systems. As suggested by the

error contours in Fig. B, the determination of the equilib- A1 = (g + 2ray + 3re_p)/12

rium constant using the short-column approach to equilib-
rium technigue again can be combined with the hydrody-
namic information of the high-speed data set. The error
analysis also indicates that, in an alternative configuration,

A= (e = M) (feg + 2+ 1 )/12

Ak i = (—TE = 2n0req — 3r /12

the g!obal analysis of .different Iong-colqmn high-§peed A<1%>1: (—3n? — 2mr, — r3)/12
experiments would require the use of considerably different
loading concgptrationg which may be ac.hieved, for exam- A2\ = (30% + 2bry_, — r5_))/12 (A3)
ple, by exploiting multi-wavelength techniques.

In summary, we have presented a numerical method and AZ = @i+ 2nn 12 )12
have explored experimental strategies for the efficient quan- ;
titative sedimentation analysis for ideal noninteracting and A= (s — e DNy + 2n + 1,.0)/12

self-associating systems. Previous methods for this problem
include the study of the concentration dependence of the
second moment of a sedimentation boundary (Adams,
1992), and the qualitative analysis of the boundary shape

Ak ki1 = (=3rk = 2rrey — r,q)/12

A(13)1 = _A(13,)2 =ry(m+r)/12

assuming vanishing diffusion in 'Gllbert theory (Qllbert, . A<227>1: r,(M+ 3r,)/12

1955). The presented approach is more general in that it

allows the complete use of several series of concentration <23>2 = (—mr, + 2r,r; + r3)/12
distributions in different centrifugal fields in a global quan-

titative analysis. While the data simulation was based on the A(N?’),l,hH = (bry_1 — 2ry_afn_2 — F3_0)/12
use of an absorbance optical system, the approach can be

incorporated in the time-derivative analysis of interference AR N = —Inoa(b + 3ry_y)/12

optical ultracentrifuge data that can provide enhanced sen- o, = @ _
sitivity (Stafford, 1994). The described numerical and ex- Afn-1 = —ARN = Inoa(b +ry)/12 (A4)
perimental strategies could also prove useful in the sedifegrals of higher orderly, = [& PP,(9PJan)rdr and Wy, = [5,

mentation analysis of heterogeneous interactions. Pi(aP;/ar)(aP,/or)rdr, occur in the Lamm equations for multi-component
mixtures of interacting macromolecules, concentration dependent or radial
dependent sedimentation. The nonzero integrals are

APPENDIX Uki1xcr = (2 + 3rs + 6r2_)/30

In the following, the results of integration over the elements and their
derivatives are given. The produd®gP; are non-zero only for neighboring kk=1,k = Uk,k,kfl = (Brﬁ T Ande, + 3[‘&71)/60
elements withj = k — 1, k, ork + 1, and consequently the integrals can
be expressed as tridiagonal matrices of simple polynomials. They have to Uik = (fk=1 = M) (3r + Mg + 11)/30
be calculated only once using the initial grig,, since the propagation of
the grid according to Eq. 4 leads to a uniform stretching that can be Uy k1 = Uk ek = (— 3r2 — 4ar . — 3ré, )60
accounted for separately in Eq. 12.
In accordance with the terminology introduced by Claverie etal. (1975)Uy 1 41 = (—r& — 31 — 6r§+1)/30
and the integrals tabulated by Cox and Dale (1981) for the special case of
an equidistant grid, the integrals of the elemeBts= [5, P,P,rdr give U; ;1= (—6m? — 3mr, — r3)/30

Bk k=1 " Bk 1.k (rk I’Efl)/l2 UN,N,N = (6b2 + 3mI‘N_l + rN_lz)/3O (A5)
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and Crank, J., and P. Nicholson. 1947. A practical method for numerical
evaluation of solutions of partial differential equations of the heat-
Wik-1k1 = —Wikk-1 = (re + 2r-)/(—6ry + 6ry_1) conduction typeProc. Cambridge Philos. Sod3:50—67.
Demeler, B., and H. Saber. 1998. Determination of molecular parameters
Wy o1k = (2r + 1 /(—6r + 6r,_,) by fitting sedimentation data to finite element solutions of the Lamm
equation.Biophys. J.74:444-454.
Wk = Nd—=req + n)[2(ne — re) (= + o) Dishon, M., Weiss, G. H., and D. A. Yphantis. 1966. Numerical solutions
of the Lamm equation. I. Numerical procedurBiopolymers.
Wik = ~Wiksa ks = (e + 2r )/ (—6ry + 6ry,) 4:449-455.
Faxen, H. 1929. Wer eine Differentialgleichung aus der physikalischen
Wi k1 = (2rg + re)/(Br — 6riq) Chemie.Ark. Mat. Astr. Fys21B:1-6.
Fujita, H. 1962. Mathematical Theory of Sedimentation Analysis. Aca-
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