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ABSTRACT In this paper we present a model that simulates the role of microtubules in depolymerization-driven transport.
The model simulates a system that consists of a 13-protofilament microtubule with “five-start” helical structure and a motor
protein-coated bead that moves along one of the protofilaments of the microtubule, as in in vitro experiments. The
microtubule is simulated using the lateral cap model, with substantial generalizations. For the new terminal configurations in
the presence of the bead, rate constants for association and dissociation events of tubulin molecules are calculated by
exploring the geometric similarities between different patterns of terminal configurations and by decomposing complex
patterns into simpler patterns whose corresponding rate constants are known. In comparison with a previous model, in which
simplifications are made about the structure of the microtubule and in which the microtubule can only depolymerize, the
detailed structure of the microtubule is taken into account in the present model. Furthermore, the microtubule can be either
polymerizing or depolymerizing. Force-velocity curves are obtained for both zero and non-zero tubulin guanosine 59-
triphosphate (GTP) concentrations. By analyzing the trajectory of the bead under different parameters, the condition for “run
and pause” is analyzed, and the time scale of “run” and “pause” is found to be different for different motor proteins. We also
suggest experiments that can be used to examine the results predicted by the model.

INTRODUCTION

Microtubules are long, stiff polymers made of tubulin; they
are present in almost all eukaryotic cells and play important
roles in many cellular processes, such as cell division and
intracellular transport (Wade and Hyman, 1997; Hyams and
Lloyd, 1994; Roberts and Hyams, 1979). During mitosis,
microtubules form the mitotic spindle, which organizes
chromosomes spatially and divides them between the two
daughter cells (Inoue´, 1981; Alberts et al., 1994; Rieder and
Alexander, 1990). Many antimitotic drugs for cancer treat-
ment, such as taxol, function by interfering with microtu-
bule assembly or formation in cells. Because of its impor-
tance, better understanding of the roles of microtubules in
intracellular transport and during mitosis has been the goal
of experimentalists and theorists alike for many years.

A microtubule consists of tubulin heterodimers arranged
in a helical structure. Typically, the heterodimers align
along 13 different protofilaments that are parallel to the axis
of the microtubule (Roberts and Hyams, 1979). Microtu-
bules grow and shrink by association or dissociation of
tubulin dimers at the ends. It is important to note that the
two ends of a microtubule are different because of the
polarity of the dimers. The “plus” end grows and shrinks
faster than the “minus” end (Wade and Hyman, 1997;
Alberts et al., 1994). In the cell, the minus end of a micro-
tubule is generally embedded in a microtubule-organizing

center, such as the poles of a mitotic spindle, whereas the
plus end is often located near the plasma membrane (Alberts
et al., 1994). During mitosis, the plus end may be connected
to a chromosome at the kinetochore, and the minus end-
directed motion of the chromosomes along the microtubules
provides the traction mechanism for moving each of the two
sister chromatids into one of the daughter cells (Alberts et
al., 1994; Seme¨nov, 1996).

Microtubules are extremely labile: they display the prop-
erty of dynamic instability when the concentration of tubu-
lin-GTP in the environment is near a critical level. In such
an environment a microtubule alternates between the state
of “catastrophe,” when the microtubule shrinks quickly, and
the state of “rescue,” when the microtubule regains length.
Many experiments have been performed to study dynamic
instability (Mitchison and Kirschner, 1984; Walker et al.,
1988; Mandelkow et al., 1991; Odde et al., 1995), and
several models are available (Hill, 1984; Hill and Chen,
1984; Bayley et al., 1990; Martin et al., 1993; Dogterom and
Leibler, 1993).

Two molecular processes underlie the roles of microtu-
bules during mitosis, namely the change in the lengths of
microtubules by polymerization and depolymerization, and
the mechanochemical actions of motor proteins (Hyams and
Lloyd, 1994; Koshland et al., 1988).

Motor proteins bind at one end to various cellular objects
they are transporting and at the other end to the microtubule.
There are basically two kinds of microtubule-associated
motor proteins: plus motors, such as axonal kinesin, move
toward the plus end of the microtubules; minus motors, such
as cytoplasmic dyneins and aDrosophila kinesin called
NCD, move toward the minus end of the microtubule (Al-
berts et al., 1994; Desai and Mitchison, 1995).
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In vitro, chromosomes have been replaced by tiny beads
coated with microtubule-associated motor proteins. Such a
system is illustrated in Fig. 1. Experiments (Lombillo et al.,
1995; Coue et al., 1991) have revealed a paradoxical pic-
ture: transportation of the bead toward the minus end of the
microtubule by depolymerization at the plus end is en-
hanced in the presence of ATP, which fuels the motor action
of the plus motor protein coated on the bead. Experiments
have also shown that the motion of the bead is saltatory,
with periods of runs and pauses.

A model was proposed by Peskin and Oster (1995) to
explain these experimental results. The force-velocity curve
obtained by using that model has a peak velocity: initially,
when the load is smaller than the force that corresponds to
the peak velocity, an increase in the plus end-directed force
actually speeds up the minus end-directed transport of the
bead. This result is consistent with the paradoxical phenom-
enon that has been observed in experiments. The model also
predicts a saltatory trajectory of the bead, which is consis-
tent with the run and pause characteristics observed in
experiments.

The model presented by Peskin and Oster (1995) is based
on several simplifications: first, the structure of the micro-

tubule is simplified in that model. The model assumes that
the basic building block of the microtubule is a circular ring
that consists of 13 tubulin dimers, one from each protofila-
ment. These rings are placed next to each other, and the
resultant hollow cylinder is the microtubule. With such a
model, the lengths of the 13 protofilaments in the microtu-
bule are always the same, because when the microtubule
depolymerizes; it is assumed that a whole ring of 13 dimers,
one from each protofilament, comes off. In reality, poly-
merization and depolymerization are achieved by associa-
tion or dissociation of individual tubulin dimers to or from
the end of a protofilament. As a result, the end of the
microtubule is almost always ragged. Furthermore, because
the bead can catalyze the depolymerization of the proto-
filament on which it is moving, the length of that protofila-
ment could be much shorter than those of the other proto-
filaments. Second, the model assumes that a stand-alone
microtubule without anything attached to it would depoly-
merize at a constant rate. In reality, however, the depoly-
merization rate is not a constant of time due to the random
nature of the depolymerization process. In general, the
microtubule can grow or shrink and does so in a compli-
cated way, involving the phenomena of dynamic instability
as described above. Third, the model of Peskin and Oster
(1995) deals only with the situation when [Tu-GTP], i.e.,
the concentration of tubulin-GTP, is zero. This eliminates
the possibility that a protofilament can grow at times.

In this paper we extend the model of Peskin and Oster
(1995) by presenting a more realistic model of the latex
bead attached to a microtubule that may be polymerizing or
depolymerizing at its plus end. Although more sophisticated
microtubule models are available (Martin et al., 1993), for
the purpose of this paper, in which the microtubule has a
13-protofilament A-lattice, we will simply use the lateral
cap model of Bayley et al. (1990). The microtubule in our
model has 13 protofilaments and a five-start helical struc-
ture. It incorporates a “lateral cap,” which means that the
tubulin dimer at the plus end of each protofilament may be
in either of two states with different polymerization and
depolymerization kinetics. The novel feature of the present
paper is that we include a latex bead attached to the micro-
tubule by motor protein molecules and the bead influences
the dynamics of the system. This requires a substantial
generalization of the Bayley model, since the bead generates
many new terminal configurations that the microtubule can-
not have when the bead is not present.

Simulations using the new model for the system generate
a similar force-velocity curve as the one presented by Pes-
kin and Oster (1995). The old and new models agree well at
all loads, but especially at large load. This could be attrib-
uted to the fact that at very large load there is not much
difference between the lengths of the protofilaments, and
therefore the assumption of using rings as basic blocks for
the microtubule is more reasonable. At small load, however,
the new model shows that the length of the protofilament on
which the bead moves can be much shorter than those of the
other protofilaments; this difference is noticeable from the

FIGURE 1 A latex bead is coupled to the microtubule by motor protein
molecules. Notice that this figure is not drawn to scale. If it were, the bead
would be much larger.
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force-velocity curves, but the difference is perhaps too small
to allow experimental discrimination. Finally, under certain
conditions, the trajectory of the bead produced by the new
model exhibits the run and pause characteristic, which is in
agreement with what has been observed in the model of
Peskin and Oster (1995) and in experiments. Both the force-
velocity curve and the time scales of the run and pause
behaviors are different for different motor proteins, such as
NK350 and kinesin. Such differences as predicted by the
model could be examined in experiments.

THE MODEL

There are two major components in the system: the micro-
tubule and the motor protein-coated bead that is attached to
the microtubule.

The microtubule

For the purpose of this paper, the microtubule part of our
model will be based on the lateral cap model presented in
the paper of Bayley et al. (1990). However, because of the
interaction between the latex bead and the microtubule, the
lateral cap model needs to be substantially generalized.

Before we introduce the complete model for the micro-
tubule with the bead attached, we will first briefly describe
the lateral cap model for a stand-alone (without the bead)
microtubule, as discussed in the paper of Bayley et al.
(1990).

The dynamics of the microtubule simulated with a lateral
cap model are determined by a single terminal layer of
tubulin molecules. This model assumes that it is impossible
for a tubulin molecule to dissociate from the microtubule
when it is in the middle of a helix or a protofilament, where
the affinity for the microtubule is strong. For example, in
Fig. 2 a, the molecule in unitb cannot dissociate from the
microtubule because it is in the middle of a protofilament,

and the molecule in unitd cannot dissociate from the
microtubule because it is in the middle of a helix. Therefore,
a possible site for a dissociation event must be at the end of
a helix and the end of a protofilament simultaneously. For
example, in Fig. 2a, it is possible for the molecule in unit
e to dissociate from the microtubule.

Similarly, the criterion for a possible binding site is that
at such a site, the incoming tubulin molecule will be at both
the end of a helix and the end of a protofilament. For
example, the vacant positionX in Fig. 2 a is a possible
binding site at which an incoming tubulin molecule can
attach itself.

According to the criteria discussed above, a possible site,
whether it is for association or dissociation, will be at the
corner formed by two tubulin molecules, one of which
interacts laterally with the incoming or the outgoing mole-
cule, and the other accounts for the longitudinal interaction.
For siteX in Fig. 2 a, b andd are two such molecules. The
rate constant for an association or a dissociation event at the
site is determined primarily by what each of these two
molecules is (tubulin-GDP or tubulin-GTP). Furthermore,
we assume that apart from these two immediate neighbors
of a site only the next-to-immediate neighbors (a ande for
site X) will have contributions by modifying the rate con-
stant by a certain factor. Therefore, an examination of the
end of a protofilament in relation to its two adjacent proto-
filaments is enough to determine whether a site for associ-
ation or dissociation exists at the end of that protofilament
and the rate constant for an event at the site. In Fig. 2a, the
rate constant for an association event at the binding siteX is
determined primarily by what is inb and what is ind, with
the molecules ina and e each contributing a factor of 2.
Similarly, for a dissociation event, next-to-immediate
neighbors will contribute a factor of1⁄2 to the rate constants.
Fig. 3 shows all possible configurations at the end of a
protofilament of a stand-alone microtubule.

It is important to note the “hydrolysis rule” (Bayley et al.,
1990): in the lateral cap model, tubulin-GTP molecules are
confined to the terminal layer (lateral cap) of the microtu-
bule. One way to determine whether a molecule is in the
terminal layer is to check the number of its immediate
neighbors (including diagonal neighbors). Usually, a mole-
cule inside the microtubule has eight neighbors, but for one
in the terminal layer, the number of neighbors is less than
eight. Therefore, after an association event, tubulin-GTP
molecules that are not in the terminal layer would hydrolyze
and become tubulin-GDP molecules. For example, in Fig. 2
a, a–e are all in the terminal layer before the attachment at
X. After the attachment, a tubulin-GTP molecule previously
at sitec will be hydrolyzed into a tubulin-GDP molecule.

When there is a bead moving along the microtubule, the
terminal configurations can get much more complicated. As
a result, the lateral cap model described above must be
generalized: the assumption that a tubulin molecule cannot
dissociate when it is in the middle of a helix does not apply
here any more. This is because there is now a new depoly-
merization mechanism: when the bead is at the plus end and

FIGURE 2 (a) The cylindrical projection of a 13-protofilament micro-
tubule with five-start helical structure. The protofilaments are numbered
from 1 to 13. Both 1 and 13 are each drawn twice to show that they are next
to each other and to give a better picture of the helical structure. (b) For
convenience, we use lettersa throughg to label the units surrounding a
possible site X.
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rolls toward the minus end, the tubulin molecule at the plus
end of the protofilament along which the bead is moving
might be pulled off by the bead. This new depolymerization
mechanism will lead to many new terminal configurations
in addition to those configurations of a stand-alone micro-
tubule. These new terminal configurations are illustrated in
Figs. 4 and 5, with Fig. 4 showing all the possible sites for
association and Fig. 5 showing all the possible sites for
dissociation. Consequently, a new set of rate constants
needs to be obtained for events that occur at these new
terminals. The method to obtain the rate constants will be
discussed in detail later in this paper.

The bead

Modeling the movement of the bead is relatively straight-
forward. We need only to keep track of the position of the

bead in relation to the plus end of the protofilament along
which the bead is moving. It turns out that only one variable
is needed to describe the position of the bead. This is based
upon the experimental evidence (Lombillo et al., 1995) that
the movement of the bead is usually one-dimensional: the
bead is traveling along one single protofilament, the dis-
placement of the bead is always parallel to the microtubule
axis, and there is no movement in the direction perpendic-
ular to the microtubule axis. A detailed discussion of this
issue can be found in the review by Howard (1995). Fur-
thermore, we assume that the bead moves in steps of sized,
the length of a tubulin heterodimer, which is typically 8 nm.
As discussed in the review by Howard (1995), for micro-
tubules with different structures the step size might be
different; it might even alternate between two different
values for two consecutive walks in the same direction. In
this paper, however, we will be content with a constant step
size of 8 nm. It is not difficult to modify our model to
accommodate different step sizes.

Our model also assumes the following when the bead is
located at the plus end the protofilament: first, the possibil-
ity for the bead to move further toward the plus end is zero,
which means that the bead cannot fall off the microtubule.
This assumption is reasonable only when the plus end-
directed force applied on the bead is not extremely strong;
otherwise, a separate process, namely the detachment of the
bead from the microtubule, needs to be introduced. Second,
if the bead is moving toward the minus end, it is possible
that the bead can pull the terminal unit off. To simplify the
problem, we assume that the possibility for the bead to pull
off that unit is a constant,poff. Of course, in reality one
would expect thatpoff would depend on the terminal con-
figuration in a similar fashion, as in the cases for association
and dissociation events. Such dependence will be studied in
future work. Third, the molecule at the plus end of the
protofilament along which the bead is moving cannot dis-
sociate when the bead itself is at the plus end unless it is
pulled off by the bead. This assumption is based upon the

FIGURE 3 All possible terminal configurations for a stand-alone micro-
tubule. In each case, the length of each protofilament from left to right is
A, B, andC, respectively. The protofilament in the middle, i.e., the one with
lengthB, is under consideration for possible sites of association or disso-
ciation. Arrows indicate whether the site is for association or dissociation.

FIGURE 4 All possible association sites in addition to those shown in
Fig. 3 for a microtubule with a bead attached. The notations are same as in
Fig. 3.

FIGURE 5 All possible dissociation sites in addition to those shown in
Fig. 3 for a microtubule with a bead attached. The notations are the same
as in Fig. 3.
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consideration that the affinity for the bead makes it very
difficult for that molecule to come off the microtubule
unless it is pulled off by the bead when it moves.

One can also speculate that even if the bead is not at the
end of the protofilament, it is still possible for the bead to
pull off a molecule in the middle of the protofilament,
thereby leaving holes in the microtubule (Seme¨nov, 1996).
However, it is reasonable to argue that the possibility for
creating such holes is small, because a molecule in the
middle of the microtubule is surrounded by other molecules
and is therefore strongly bonded to the microtubule. Our
model does not allow tubulin dimers in the middle of a
protofilament to be pulled off by the bead.

The interplay between the movement of the bead and the
polymerization and depolymerization of the microtubule
makes the dynamics of the system extremely interesting: on
one hand, because of the possibility of the bead pulling off
the tubulin molecule at the plus end, many new patterns of
terminal configurations are created; these new configura-
tions give rise to new possibilities of polymerization and
depolymerization that would otherwise not be present in a
stand-alone microtubule. Furthermore, we assume that the
tubulin molecule at the plus end of the protofilament to
which the bead is attached cannot dissociate by itself if the
bead is at the plus end. This would also have an effect on the
dynamics of the microtubule by preventing certain dissoci-
ation events from taking place. On the other hand, depoly-
merization of the microtubule has an effect on the move-
ment of the bead: it is assumed that the bead cannot fall off
the microtubule. Therefore, when the bead is at the plus end,
the possibility for it to move toward the plus end is zero. As
a result, the movement of the bead is biased toward the
minus end whenever the plus end of the protofilament along
which the bead is moving catches up with the bead.

A Monte Carlo method is used in the simulation. There
are three major kinds of events that might take place in the
system: association of tubulin molecule to the microtubule,
dissociation of tubulin molecule from the microtubule, and
movement of the bead. Because of the stochastic nature of
the system, the time interval between two consecutive
events is random, and follows an exponential distribution.
By repeatedly selecting an event and allowing it to occur,
the dynamics of the system can be simulated. The rules for
selecting the events will be discussed below.

SELECTION OF EVENTS

The simulation procedure will produce a sequence of events
(association, dissociation, or walk of the bead). The dynam-
ics of the system are obtained by monitoring the length of
each protofilament of the microtubule as well as the position
of the bead as a function of time. The Monte Carlo method
is used to determine, on a probabilistic basis, which of the
possible events is the first to take place and should be
selected.

We first consider a stand-alone microtubule, with no bead
attached. The simulation program examines the end of each

protofilament for possible sites for association or dissocia-
tion, according to the criteria discussed above. There could
be several possible sites of association or dissociation for a
particular terminal configuration. The random time interval
Dti at which an event associated with a sitei would occur
relative to the previous event follows an exponential distri-
bution, which can be sampled as follows:

Dti 5 2
ln~1 2 r i!

ki
, (1)

whereki is the rate constant for the individual event at site
i, andr i is a random number uniformly distributed in [0,1),
independent for differenti.

The event that would occur the earliest is allowed to take
place, and the time is advanced byDt, which is given by the
following equation:

Dt 5 min$Dti%. (2)

In the presence of the bead, the movement of the bead,
either toward the plus end or the minus end, is also a
possible event. If the rate constant for the bead to move
toward the plus end isg1, then the time at which the bead
could be moving toward the plus end,Dt1, is given by

Dt1 5 2
ln~1 2 r1!

g1
, (3)

wherer1 is, asr i, independently chosen from the uniform
distribution on [0,1).

Similarly, if the rate constant for the bead to move toward
the minus end isg2, thenDt2, the time at which the bead
could be moving toward the minus end, is given by

Dt2 5 2
ln~1 2 r2!

g2
, (4)

wherer2 is defined in the same way asr1.
In summary, the next event that occurs is the one that

corresponds the smallest of allDti, Dt1, andDt2, and the
time is advanced byDt, which is given by

Dt 5 min$Dti , Dt1 , Dt2%. (5)

RATE CONSTANTS

Rate constants play key roles in determining the frequency
of different kinds of events, and hence the dynamics of the
system. However, the lack of understanding of the micro-
scopic details of each process and the scarcity of experi-
mental data make it difficult to determine an appropriate set
of rate constants.

Rate constants for bead movement

At zero load it is assumed that it is equally possible for the
bead to move toward either end of the microtubule, i.e., the
rate constant for moving toward the plus endg1 is equal to
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the rate constant for moving toward the minus endg2,
unless the bead is at the end of the microtubule and a further
step toward the end would cause it to fall off the microtu-
bule. However, when the load is not zero, the movement of
the bead is biased, andg1 andg2 are different. If the force
acting on the bead isf, then the relationship betweeng1 and
g2 can be determined by thermodynamics:

g1/g2 5 exp~j!, (6)

where

j 5 fd/~kBT!, (7)

kB is the Boltzmann constant,T is the absolute temperature
of the environment, andd, as before, is the size of a single
step, which is the same as the length of a tubulin het-
erodimer in our model.

Equation 6 gives only the ratio ofg1 to g2; if one of
them is known, the other can also be determined. We
introduce a parameterg, such that

g1 5 g exp~j/2!, (8)

g2 5 g exp~2j/2!. (9)

Strictly speaking,g could also be a function ofj; however,
for simplicity, we assume thatg is a constant. When the
load is zero, it is obvious thatg1 5 g2 5 g.

Rate constants for association and dissociation

For the association or dissociation events, the rate constants
are far more difficult to determine. Again, we will start from
a stand-alone microtubule as discussed in the paper of
Bayley et al. (1990), and then make substantial generaliza-
tions to accommodate the new terminal configurations in
the presence of the bead.

As mentioned above, the rate constant for an event at a
site is determined predominantly by the two molecules that
immediately surround the site. In Fig. 2a, the principal part
of the rate constant for an event at siteX depends on what
is in b and what is ind. Furthermore, to account for the roles
of the next-to-immediate neighbors in the terminal layer,
such asa ande for X in Fig. 2 a, we assume that they each
contribute a factor of 2 (for association) or1⁄2 (for dissoci-
ation) to the rate constants. For association, the rate con-
stants will also depend proportionally on the concentration
of tubulin-GTP in the environment.

For convenience, we use lettersa throughf to label the
neighboring units of a site, as shown in Fig. 2b. The basic
set of rate constants, i.e., the rate constant for either an
association or a dissociation event at siteX, given the
contents of unitsb and d, is adopted from the paper of
Bayley et al. (1990), as shown in Table 1.k(1T) stands for
the rate constant of attaching a tubulin-GTP molecule to a
vacant site atX, k(2T) stands for the rate constant for a
tubulin-GTP molecule at siteX to dissociate from the mi-
crotubule, and so on. To take into account the effects of

next-to-immediate neighbors of a site,k(1T) is doubled for
each molecule ina or e, and k(2T) and k(2D) are both
halved for each molecule ina or e.

As shown in Fig. 3, for a stand-alone microtubule, geo-
metrically speaking, there are only two patterns of associ-
ation sites and two more of dissociation sites; the rate
constants for all of these four basic patterns can be found in
Table 1. However, when the bead is on the microtubule, in
addition to these patterns, there are five new patterns of
association sites and another five new patterns of dissocia-
tion sites, as shown in Figs. 4 and 5. We need the rate
constant that corresponds to each of these patterns in our
model.

The method we will use is to explore the geometric
similarities between different patterns and try to decompose
the complicated new patterns into simpler patterns whose
corresponding rate constants can be found directly from the
four basic patterns shown Fig. 3. Furthermore, we assume
that for association events, fewer molecules surrounding a
site will lead to a smaller rate constant; for dissociation
events, fewer molecules surrounding a site will lead to a
larger rate constant.

Take the fourth pattern in Fig. 4, for example. It is
geometrically similar to the second pattern in Fig. 3, so we
assume that the rate constants are the same for these two
patterns.

The first pattern in Fig. 4 is a case where we can apply the
geometric decomposition method. According to the as-
sumptions we made above, the rate constant for an associ-
ation event in this case should be greater than that for the
fourth pattern in Fig. 4 or the second pattern in Fig. 3.
Therefore, we simply use the sum of the rate constants for
these two simpler patterns as the rate constant for this
pattern, as shown in case 1 of Fig. 6.

A more complicated example is the first pattern in Fig. 5.
Here the outgoing molecule has direct contact with only one
molecule in the microtubule, according to the assumptions
we made above; the dissociation rate constant in this case is
larger than that for the pattern when a molecule is at the
corner of two molecules, such as the fourth pattern in Fig. 3.
Therefore, we simply use the sum of the rate constant for the
fourth pattern in Fig. 3, and that for the fourth pattern in Fig.
5, as the rate constant for this case. This is shown as case 3

TABLE 1 Rate constants of association and dissociation
events for the basic patterns of terminal configurations

Contents of sites
b andd

1026 3 k(1T)bd

(M21 s21)
k(2D)bd

(s21)
k(2T)bd

(s21)

DD 0.33 111.66 66.66
DT, TD 1.00 — 8.33
TT 1.25 — 1.25

The basic set of rate constants for association and dissociation events, taken
from Bayley et al. (1990).T stands for tubulin-GTP,D stands for tubulin-
GDP.k(1T) is the rate constant for adding a tubulin-GTP molecule to site
X, at the corner formed byb andd (see Fig. 2),k(2T) is the rate constant
for a tubulin-GTP molecule at siteX to dissociate, and so on. — stands for
events that are not allowed.
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in Fig. 6. Notice that in Fig. 6 certain units are shaded,
which means that they are occupied by the same kind of
molecules (tubulin-GTP or tubulin-GDP).

Similarly, the rate constants for all other patterns can be
obtained either by exploring their geometric similarity with
the known patterns or by decomposing them into the sim-
pler patterns. As one can see, in the presence of the bead
there are seven possible patterns of association sites and
seven possible patterns of dissociation sites. For each pat-
tern the rate constant is dependent on the contents of unitb
and unitd, and in the case of a dissociation event, whether
the outgoing molecule is tubulin-GTP or tubulin-GDP. This
results in a much larger set of rate constants than the set for
a stand-alone microtubule.

RESULTS AND DISCUSSION

Force-velocity curve

The relationship between the plus end-directed force and the
velocity of the bead toward the minus end is calculated. The
force-velocity curves corresponding to two different motor
proteins, NK350 and kinesin, are shown by the two solid
curves in Fig. 7. According to the present model, the dif-
ference in force-velocity curves of different motor proteins
is due to the difference inpoff, i.e., the probability for the
bead to pull off the molecule at the plus end of the proto-
filament along which it is moving. In this paper we use the
same values ofpoff as in Peskin and Oster (1995), where
NK350 supposedly has a biggerpoff than kinesin. For both
curves the concentration of tubulin-GTP in the environment
is zero, which according to the model means that the mi-
crotubule can only depolymerize.

FIGURE 6 Calculating the rate constants for complex terminal config-
urations by decomposing them into simpler patterns whose corresponding
rate constants are known. In each case, shaded units are occupied by the
same kind of molecules (tubulin-GTP or tubulin-GDP).

FIGURE 7 Force velocity curves at
zero tubulin-GTP concentration. The
solid lines indicate the force-velocity for
two motor proteins, NK350 and kinesin,
calculated using the present model. The
dotted curves are calculated using the
model in Peskin and Oster (1995). No-
tice that the force-velocity curves given
by the two models are almost identical
except for some difference at small load.
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Each of these force-velocity curves has a maximum ve-
locity, vmax, corresponding to a loadf1. When the force is
less thanf1, an increase in the plus end-directed force
actually speeds up the minus end-directed motion of bead.
This has been observed in experiments as the paradoxical
phenomenon that we described before: the addition of ATP
to the environment, which fuels the plus motor protein,
results in an increase in the velocity toward the minus end.
Moreover, for the same load in our simulations, the bead
travels faster whenpoff is bigger, a bead coated with NK350
travels faster than one coated with kinesin.

When the force is greater thanf1, an increase in the plus
end-directed force acting on the bead will start to slow down
the motion of the bead toward the minus end. As the force
increases, the velocity of the bead decreases very fast. For
example, for NK350, corresponding toj 5 7.8, orf 5 4 pN,
the velocity is only;3% of the peak velocity. According to
the lateral cap model, when the concentration of tubulin-
GTP is zero the microtubule will be depolymerizing all the
time; therefore, the force-velocity curve will never fall
below the axisv 5 0. When concentration of tubulin-GTP
is not zero, however, the model does allow the velocityv to
be less than zero, as we discuss later.

To get a smooth force-velocity curve from the Monte
Carlo simulations, we calculated the velocity corresponding
to each different force 50 times using different sequences of
random number, and use the average velocity of these 50
runs in the force-velocity curve.

In Fig. 7 a comparison is made with the force-velocity
curves given by the model of Peskin and Oster (1995),
which are given by the dotted lines and described by the
following equation:

v 5
~dG 2 vact!~bd 1 poffvact!

d@2b 1 G~1 2 poff!# 1 vact~1 1 poff!
, (10)

wherev is the velocity toward the minus end,G 5 g1 1 g2,
vact 5 d(g1 2 g2), andb is the average depolymerization
rate (in dimers/s) of a stand-alone microtubule that has no
bead attached to it. Notice thatb is a constant in the model
of Peskin and Oster (1995); however, in the model pre-
sented in this paper, the depolymerization rate of the mi-
crotubule is no longer a constant. To make the comparison
we first simulated a stand-alone microtubule at zero tubulin-
GTP concentration and calculated the average depolymer-
ization rate, which is accepted asb in Eq. 10.

One can notice in Fig. 7 that there is no significant
difference between the force velocity curves given by the
two models. The only noticeable difference (although still
very small) is found at small load. This closeness is striking,
considering the fact that in the model of Peskin and Oster
(1995), a whole ring of 13 tubulin dimers comes together off
the microtubule; therefore, each of the 13 protofilaments
always has the same length. In the present model, individual
tubulin molecules dissociate one by one, and there could be
a very big discrepancy between the length of the protofila-
ment along which the bead is moving and those of the other

protofilaments. The fact that the force-velocity curves ob-
tained from these two models are almost identical when the
force is relatively large can be explained as follows: when
the force is large (much greater thanf1), the bead is held at
the end of the protofilament most of the time, and the
movement of the bead toward the minus end is greatly
hampered. Under such a condition there would not be too
much difference between the length of individual protofila-
ments; hence the assumption that when the microtubule
depolymerizes, a whole ring of 13 molecules comes off is
very close to the real picture. However, even at small load,
the difference in the force-velocity curves given by the two
models is perhaps still too small to be differentiated in
experiments. One could possibly argue that the force-veloc-
ity relationship is insensitive to the exact geometry of the
end. Also, one should note that the force-velocity curve and
the corresponding maximum velocity are remarkably dif-
ferent for kinesin and NK350. This suggests that it is
possible to determinepoff by observing the force-velocity
curve.

Run and pause

Fig. 8 shows one of the simulated trajectories of the bead
obtained from the model. Fig. 8,a andb correspond to two
different simulations for NK350 using different sequences
of random numbers,c andd correspond to kinesin, and both
are at zero load. Run and pause behavior is evident for
NK350, as observed in experiments. The most rugged curve
gives the trajectory of the bead, the uppermost curve gives
the position of the tip of the protofilament along which the
bead is moving, and the other curve gives the average
position of the other 12 protofilaments. One conclusion that
can be drawn from this figure is that run occurs when the
bead is near the tip, while pause takes place when the bead
departs away from the tip. This observation can be ex-
plained as follows: at zero load, the rate constants for the
bead to move toward either end of the microtubule are the
same; therefore, if the bead is not near the tip, on average
the bead will be standing still, i.e., in the pause phase.
Alternatively, when the bead is at the terminal unit, it could
pull the terminal tubulin molecule off the protofilament,
thus catalyzing the depolymerization of that protofilament.
Note that after this happens the bead is still at the (new) end
of the protofilament, so the process could be repeated, and
the bead enters the run phase. In each of the subplots of Fig.
8, the uppermost line gives the average position of the tips
of the other 12 protofilaments that the bead is not on. As one
can see, for NK350 the tip of the protofilament along which
the bead moves could be far away from the tips of the other
protofilaments most of the time, suggesting that this proto-
filament depolymerizes much faster than the others. How-
ever, when the bead is in the pause phase, it is possible for
the other protofilaments to catch up with the one that the
bead is on; this is because when that protofilament is much
shorter than the other protofilaments, the chance for a dis-
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sociation site being selected at the end of that protofilament
is almost zero according to the criteria that we have set
before.

For kinesin, which supposedly has a lowerpoff than
NK350, run and pause is not so evident, as shown inc and
d of Fig. 8. Furthermore, there is not much difference
between the length of the protofilament along which the
bead is moving and those of the other protofilaments.

It is important to point out that the parameterpoff is
critical in determining the role that the bead plays in the
system. One extreme case is whenpoff 5 0; in that case, we
would expect that the behavior of the system will not differ
too much from that of a stand-alone microtubule. For kine-
sin, which has a smallpoff, run and pause is not so evident,
and there is not much discrepancy between the length of the
protofilament along which the bead is moving and those of
the other protofilaments.poff is dependent on the affinity of
the tubulin molecules for the bead, or more precisely, for the
motor protein that is coated on the bead. Therefore, distinct
motor proteins will lead to different dynamics of transport.

The time scale of the run and pause for NK350 as shown
in Fig. 8 is consistent with that observed in experiments
(Lombillo et al., 1995). Furthermore, by measuring the time
scale for run and pause and noticing the difference between
the length of the protofilament along which the bead is
moving and those of the other protofilaments, one can also
make a rough estimate of the important parameterpoff.

In summary, the condition for the protofilament that the
bead is on to depolymerize is either the bead at the tip of the
protofilament, when the bead could pull the terminal molecule
off the protofilament, or the length of that protofilament is very

close to those of the other protofilaments, when it depolymer-
izes in a similar fashion as the other protofilaments.

Transport along a polymerizing microtubule

One of the new features of our present model in comparison
with the previous model of Peskin and Oster (1995) is that
in the present model, the microtubule could be polymeriz-
ing. Fig. 9 shows the simulated trajectory for NK350 when
the concentration of tubulin-GTP is 5mM. At this low level
of tubulin-GTP concentration one can still find the run and
pause characteristics in the trajectory. When the concentra-
tion of tubulin-GTP is at a much higher value, such as 20
mM, the protofilaments are polymerizing very fast, and the
chance for the bead to catch up with the plus end of the
protofilament is small; therefore, there is no longer any sign
of run and pause in the trajectory of the bead.

For the force-velocity curve, when the concentration of
tubulin-GTP is zero, the bead can move only toward the
minus end; therefore, the velocity of the minus end-directed
motion can never be less than zero. This is no longer the
case when the concentration of tubulin-GTP is not zero,
when the protofilaments could be polymerizing and it is
possible for the bead to move toward the plus end. The force
that corresponds to zero velocity is defined as the “stalling
force.” The force-velocity curve shown in Fig. 10 corre-
sponds to NK350 at tubulin-GTP concentration of 20mM,
the calculated stalling force in this case is 4.8 pN. Of course,
this only gives a rough estimate of the stalling force, be-

FIGURE 8 Run and pause. Both
the load and the concentration of tu-
bulin-GTP are zero. The most rugged
curve shows the position of the bead,
the uppermost curve shows the aver-
age position of the other 12 protofila-
ments, and the other curve shows the
position of the tip of the protofila-
ment on which the bead moves. (a)
and (b) are the simulation results for
NK350 (using different seeds for the
random number generator), (c) and
(d) are for kinesin. Notice that run
and pause is much more evident for
NK350 than for kinesin.
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cause as we mentioned before, when the force is large, the
assumption that the bead will not fall off the microtubule
when it is at the plus end might not be valid any more. There
are no experimental data available for this situation. In
comparison with the movement toward the minus end, the
velocity of the bead toward the plus end is very small. This
indicates that the primary role of microtubules in this case is
to facilitate the transport toward the minus end.

Non-zero load

The trajectories of the bead shown above are obtained when
the load is zero. When the load is not zero, simulated results
show that the protofilament along which the bead is moving
could depolymerize extremely fast in relation to the other
protofilaments. Obviously, the role of the bead in catalyzing
depolymerization is directly dependent onpoff, which is

FIGURE 10 Force-velocity curve when the concen-
tration of tubulin-GTP is not zero. Here [Tu-GTP]5 20
mM. Unlike the case when the concentration of tubulin-
GTP is zero, here the force-velocity curve crosses the
axis v 5 0, as shown in detail in the inset. The force
corresponding tov 5 0 is the stalling force. Notice that
when the force is larger than the stalling force, the
velocity toward the plus end is extremely small in com-
parison with the velocity toward the minus end when the
force is much smaller than the stalling force.

FIGURE 9 The trajectory of a bead
coated with NK350 at zero load,
when [Tu-GTP], the concentration of
tubulin-GTP, is not zero, but still at a
low level (5 mM). One can still find
the run and pause characteristics, but
the protofilament can grow some-
times.
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determined by the affinity of the motor protein for the
tubulin molecules.

For any motor protein having a certain value ofpoff the
depolymerization rates at different loads are also different.
At low loads, an increase in load causes the microtubule to
depolymerize faster. This is because a larger plus end-
directed force keeps the bead near the plus end, where
catalysis due to the bead is most effective. Recall, however,
that this catalyzing effect depends on the motion of the bead
away from the plus end. At high loads the bead is held so
tightly to the plus end of the protofilament that it actually
stabilizes the protofilament by preventing the depolymer-
ization of the terminal unit. Of course, how strong the load
(plus end-directed force) can be before the detachment of
the bead from the microtubule takes place is something yet
to be determined by experiments.

Experiments suggested by the model

With the advent of new experimental techniques such as
laser trapping (Svoboda et al., 1993; Coppin et al., 1997), it
is possible to apply a specific load to the bead. Previously,
different “loads” were obtained by using an active motor
and varying the ATP concentration. This resembles the
application of a load force since the activity of the motor
biases the random walk of the bead toward the plus end of
the microtubule, but the interpretation of that is complicated
by not knowing the dynamics of the motor in detail. As a
result, it is difficult to determine quantitatively the exact
load. So it would be more clearcut to use a passive motor
(i.e., one that is not functioning as a motor), and to subject
the bead to a known force with a laser trap.

The model makes specific predictions of several things as
functions of the applied load, namely 1) the mean velocity
of the bead, 2) the time scale and statistics of runs and
pauses, and 3) the statistics of the average length of the
other protofilaments beside the one that the bead is on. All
of them can be measured in experiments.

Furthermore, the model is able to simulate the situation in
which the concentration of GTP-tubulin is not zero, so it
predicts all of the above not only as a function of the applied
force, but also as a function of the concentration of GTP-
tubulin.

Experiments could be done for different (passive) motor
proteins linking the bead to the microtubule. By changing
the parameterpoff in the model and fixing the other param-
eters, one should be able to simulate the behavior of several
different motor proteins.

One way to test the validity of the model is to use the
model together with part of the experimental data to calcu-
late the value ofpoff of a particular motor protein and then
to use the model to predict the rest of the data for that motor
protein by setting the value ofpoff in the model to the one
we just obtained.

One approach would be to use the force-velocity curve to
determinepoff. As one can see from Fig. 7, for different

motor proteins that have differentpoff, the force velocity
curves are different. One way to tellpoff from the force-
velocity curve is to measure the maximum velocity the
bead. As we can see, corresponding to different values of
poff, the maximum velocities as given by the simulated
force-velocity curves are different. However, the model also
predicts that run and pause behavior could be noticeably
different for different motor proteins. this corresponds to
different values ofpoff in the model.

Therefore, withpoff obtained from the first approach, i.e.,
the measurement of the force-velocity curve, one can sim-
ulate the run and pause statistics using the model. The time
scale and statistics of such behavior given by the simulation
should be consistent with what is observed in experiments.

An interesting new feature of the present model in com-
parison to the one of Peskin and Oster (1995) is its capa-
bility to simulate the situation when the concentration of
GTP-tubulin is greater than zero. Few experimental data are
available in this realm. But as the model predicts, one can
still notice the run and pause behavior at relatively small
concentration of GTP-tubulin. At high concentration, how-
ever, there will be little chance for the bead to catch up with
the end of the microtubule and, therefore, run and pause
behavior would no longer be evident. Experiments can be
performed to verify these results and test the validity of the
model.

By repeating this procedure for several different motor
proteins, one would considerably sharpen the test of the
model. Note that most of the parameters of the model are
independent of the motor protein and can be found from
experiments on a stand-alone microtubule. The rate constant
g that characterizes the random walk of the bead on the
microtubule may depend on the motor protein, but it can be
directly measured by observing the random walk of the bead
on a stabilized microtubule (one that is neither polymerizing
nor depolymerizing). Thuspoff is the only parameter that
has to be determined by curve-fitting, and it should be
possible to fit the data for a whole variety of motor proteins
with all model parameters constant except forg andpoff.

Yet another test of the model would be to vary the size of
the bead, which would be expected to changeg (in a
measurable way, as above) and possiblypoff. Again, the test
would be to predict a whole family of data for beads of
different sizes while changing only those two parameters.

CONCLUSIONS

In this paper we have presented a numerical model that can
simulate a system consisting of a microtubule and a latex
bead coated with motor protein. Substantial generalizations
are made to the lateral cap model to accommodate the new
terminal configurations due to the movement of the bead
along the microtubule. The rate constants for association
and dissociation of tubulin molecules at these new terminal
configurations are obtained by exploring the geometric sim-
ilarities and by decomposing new terminal patterns into
simpler patterns whose rate constants are known.
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When the concentration of tubulin-GTP in the environ-
ment is zero, the force-velocity curve calculated with the
present model bears a striking resemblance to the one ob-
tained with the model presented by Peskin and Oster (1995).
Unlike their model, the present model can also be used to
calculate the force-velocity curve for the case when the
concentration of tubulin-GTP is not zero. An experimental
result for this situation does not seem to exist so far. A
stalling force, at which the bead start to reverse its direction
of movement, is calculated. When the force acting on the
bead is greater than the stalling force, on the average the
bead moves (very slowly) toward the plus end of the mi-
crotubule, but the exact stalling force might be difficult to
determine in experiments because the slope of the force-
velocity curve is close to zero near the stalling force.

Determining the force-velocity curve can give valuable
information about the system. For example, the force-ve-
locity curve and the corresponding maximum velocity are
different for different motor proteins. It is therefore possible
to determinepoff from the force-velocity curve.

In comparison with the maximum velocity toward the
minus end, the velocity toward the plus end is extremely
small, even if the force acting of the bead is relatively large.
This suggests that for this mechanism of transport, the role
of the microtubule is more disposed to fast minus end-
directed transport.

The coupling between the bead and the microtubule,
which is dependent on the affinity of the motor protein for
the tubulin molecule, is reflected in the present model by the
probability that the bead can pull off a terminal molecule at the
plus end of the protofilament, i.e.,poff. In essence,poff deter-
mines the extent to which the bead can affect the dynamics of
the system.

When poff is close to unity, which indicates a strong
affinity between the motor protein and the tubulin molecule,
and the concentration of tubulin-GTP is relatively small, the
trajectory of the bead has the run and pause characteristics
at zero load. However, if the load is not zero, the depoly-
merization rate of the protofilament along which the bead is
moving is extremely large, as a result of the bead catalyzing
the depolymerization of the protofilament. Whenpoff is
close to zero, however, the role of the bead in influencing
the dynamics of the system is very limited. This might
explain the difference of various motor proteins in affecting
intracellular transport driven by the depolymerization of
microtubules.

The time scale of run and pause of the simulated trajec-
tory for a bead coated with NK350 is consistent with experi-
mental evidence. For kinesin, the simulated trajectory given by
the model indicates that run and pause is no longer evident.
Oncepoff has been determined from the force-velocity curve, it
can be used to predict the statistics of the time scale of run and
pause, thus providing a strong check on the model.
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