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ABSTRACT Three variations of a polymer chain model for the human erythrocyte cytoskeleton are used in large deformation
simulations of microscopic membrane patches. Each model satisfies an experimental observation that the contour length of
the spectrin tetramers making up the erythrocyte cytoskeleton is roughly u7 times the end-to-end distance of the tetramer
in vivo. Up to modest stress, each brushy cytoskeletal network behaves, consistently, like a low-temperature, planar network
of Hookean springs, with a model-dependent effective spring constant, keff, in the range of 20–40 kBT/so

2, where T is the
temperature and so is the force-free spring length. However, several features observed at large deformation distinguish these
models from spring networks: 1) Network dimensions do not expand without bound in approaching a critical isotropic tension
(=3 keff) that is a characteristic limit of Hookean spring nets. 2) In surface compression, steric interactions among the chain
elements prevent a network collapse that is otherwise observed in compression of planar triangulated networks of springs.
3) Under uniaxial surface tension, isotropy of the network disappears only as the network is stretched by more than 50% of
its equilibrium dimensions. Also found are definitively non-Hookean regimes in the stress dependence of the elastic moduli.
Lastly, determinations of elastic moduli from both fluctuations and stress/strain relations prove to be consistent, implying that
consistency should be expected among experimental determinations of these quantities.

INTRODUCTION

The mean diameter of a human erythrocyte is;8 mm, yet
the cell routinely passes through capillaries with half that
diameter or less. The surface shear resistance of the eryth-
rocyte must not be too large, or the cell could not deform
easily in a capillary. On the other hand, surface shear
resistance must be large enough to maintain the cell’s shape
and integrity during normal flow in the circulatory system.
As the human erythrocyte has no significant intracellular
structure, the in-plane elasticity of the plasma membrane
likely arises in no small part from the membrane-associated
cytoskeleton, a cross-linked brushy polymer network. The
protein spectrin is the primary component of the cytoskel-
etal network: spectrin cross-links very short actin filaments,
resulting in junctional nodes that are approximately five- or
sixfold coordinated in spectrin.

The in-plane elastic constants of the network—shear and
area compression moduli—have been measured at vanish-
ingly small (Zilker et al., 1992; Peterson et al., 1992; Strey
et al., 1995) and moderate (Waugh and Evans, 1979; Hoch-
muth, 1987; Engelhardt and Sackmann, 1988; Discher et al.,
1994) stress. The various measurements indicate that the
shear and area compression moduli are both less than or on
the order of 1025 J/m2, which is about the order of magni-

tude one would expect from the density of junction vertices
in the cytoskeleton. That is, both a two-dimensional ideal
gas and a triangulated network of loose chains have an area
compression modulusKA of bKAAj ' 1, whereb is the
inverse temperature (1/kBT) andAj is the area per particle or
per network node (i.e., junction). Explicitly, given a node
density of 2 3 1014 m22 of the cytoskeleton junction
vertices, such two-dimensional systems would have an area
compression modulus of;1026 J/m2 (or 1 pN/mm) at room
temperature (for whichb21 5 4.0 3 10221 J).

However, these order of magnitude estimates and the two
most commonly quoted measurements of the elastic moduli
do not agree in detail. In recent flicker experiments (Zilker
et al., 1992; Peterson et al., 1992; Strey et al., 1995), long
wavelength fluctuations of the erythrocyte shape suggest
that the shear modulus is consistent with zero. In contrast,
micropipette aspiration experiments (Waugh and Evans,
1979; Hochmuth, 1987; Discher et al., 1994), which involve
large deformations of an erythrocyte, yield an apparent
shear modulus of 6–93 1026 J/m2. The difference between
these measurements could arise from several effects, includ-
ing the following:

The elastic moduli of two-dimensional triangulated net-
works are known to be stress-dependent (Boal et al., 1993).

The elastic moduli of two-dimensional polymerized net-
works fluctuating in three dimensions are known to be
wavelength-dependent (Nelson and Peliti, 1987; Aronovitz
and Lubensky, 1988; David and Guitter, 1988; Le Doussal
and Radzihovsky, 1992).

In this paper, we investigate the stress dependence of
model networks of the erythrocyte cytoskeleton in deforma-
tion, particularly large deformation.

In an earlier publication (Boal, 1994), a computational
model was developed for the cytoskeleton, using a network
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of polymer chains attached to each other at sixfold junc-
tions, and attached to a flat computational bilayer at the
chain midpoints (see Fig. 1a). The primary motivation for
the microscopic structure of this model is the experimental
observation that in fully spread, negatively stained skele-
tons, the contour length of the spectrin tetramer that makes
up the erythrocyte cytoskeleton is aboutu7 times the end-
to-end distance in vivo (Byers and Branton, 1985; Liu et al.,
1987; see also Steck, 1989). However, it has been suggested
that the imaging technique used in these experiments may
disrupt in vivo associations that may be present both within
and between spectrin tetramers, leading to an artificially
high estimate of the effective contour length in vivo (Ursitti
and Wade, 1993).

Sample configurations of a polymer-chain network under
stress are shown in Fig. 1, where Fig. 1a shows a network
under tension, and Fig. 1b shows the same network under
compression. Note in Fig. 1a that the chain mipoints can be
seen, from the gray scale, as residing closest to thez 5 0
plane. At zero stress, a state between the two illustrated, the
chains are significantly convoluted, reflecting the fact that
the area per junction vertex is fixed at a small fraction of its
stretched or contour value. The elastic properties of the
model network at zero stress agree in part with the obser-
vations obtained by micromechanical manipulation of the
erythrocyte. However, it is important to understand the
properties of the model network away from the small stress
regime, both because some of the experimental measure-
ments were made under such conditions, and because the
erythrocyte is placed under significant stress in the circula-
tory system.

In this paper, we determine the stress dependence of the
geometry and elasticity of the polymer-chain model, partic-
ularly the network area and two-dimensional elastic prop-
erties. The stress dependence of out-of-plane properties,
such as network thickness and bulk modulus, are also re-

ported. At this time, machine limitations prevent us from
examining polymer chain systems whose equivalent physi-
cal dimension exceeds;0.3 mm to the side, which is far
smaller than a typical erythrocyte. Hence, in the second of
this pair of papers (Discher et al., 1998, referred to as paper
II hereafter) we coarse-grain the present models by con-
structing effective representations in which entire chains are
replaced with two- and three-body potentials. With this
representation, a complete erythrocyte with 104 or so junc-
tion complexes can be simulated on inexpensive worksta-
tions. Results from these “whole cell” simulations, and
comparisons with experiment, are elaborated in paper II.

It was assumed in our first investigation of the polymer-
chain model that the cytoskeleton of a normal mature eryth-
rocyte is not under stress (which we refer to in this paper as
the stress-free model). Here we examine two other situa-
tions that may be relevant to the erythrocyte:

1. The cytoskeleton may be under compression in a
normal erythrocyte. For example, a “prestress” of the cy-
toskeleton could arise from the preferential loss of bilayer
(Discher et al., 1994) as membrane area is lost in erythro-
cyte maturation (Mohandas and Groner, 1989). The concept
of a prestress imposed by the bilayer on the cytoskeleton has
been explicitly discussed by Kozlov and Markin (1995) and
implicitly employed by Mohandas and Evans (1994) in the
proposal of constitutive equations for membrane tensions
(see equation 7 in Mohandas and Evans, 1994). Recent and
careful optical measurements of the area of isolated cy-
toskeletons (Svoboda et al., 1992) show the area to be
smaller than the intact red cell’s, but not nearly so small as
expected (see Boal, 1994) in the absence of the constraining
bilayer. Last, recent theoretical arguments (Goulian et al.,
1993) show that bilayer thermal fluctuations can lead to attrac-
tion between integral membrane proteins, including those at-
tached to an underlying cytoskeleton; this would be equivalent
to imposing a compressive force on the cytoskeleton.

FIGURE 1 Periodic box configura-
tions of a model cytoskeleton atbPa2

5 20.2 (a, tension) andbPa2 5 0.2 (b,
compression), whereP is the imposed
two-dimensional stress anda is the bead
diameter appearing in Eqs. 1 and 5. The
chains are drawn such that elements
closer to the viewer have lighter shad-
ing. The two configurations are drawn
to the same scale. Simulation is from
the stress-free model described in the
text.
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2. There may be attractive interactions between nonneigh-
boring elements of the spectrin tetramers of the cytoskeleton
(see, for example, Stokke et al., 1986; Ursitti and Wade, 1993).

We refer to our representations of situations 1 and 2 as
the prestress model and condensed model, respectively.
Results from all three simulations are presented and com-
pared in this paper. Furthermore, the anisotropic response of
the polymer-chain networks at moderate deformation is
reported and seen to be similar to that found for two-
dimensional triangulated networks (Discher et al., 1997).

The content of the paper is organized as follows. The
notation and simulation techniques are reviewed in the next
section. The simulation results from all three cytoskeleton
models are then presented and compared, with an emphasis on
the geometrical and elastic characteristics of the model cy-
toskeleton in the bilayer plane. These characteristics are inter-
preted using mean-field approaches. Some aspects of the ex-
perimental techniques for determining the elastic properties of
networks also are investigated, particularly the usage of fluc-
tuations and numerical derivatives for obtaining the elastic
moduli. The paper concludes with a summary of our findings.

SIMULATION TECHNIQUES AND ANALYSIS

The ingredients of our cytoskeleton simulation model have
been described in previous publications on the properties of
networks at zero stress (Boal, 1994; Boal and Boey, 1995).
In the model, each spectrin tetramer is represented by a
single chain that hasnsegfreely jointed segments defined by
nseg 1 1 vertices. The ends of the chains are joined at
sixfold coordinated junction vertices to form a network. The
chain midpoints are restricted to lie in the computationalxy
plane, which represents a tensed or locally flat lipid bilayer
in the model, but all other chain elements can undergo
motions in the positivez direction. An attractive interaction
between a defined set of nearest-neighbor vertices provides
the chain with its linear topology, and a repulsive interaction
between all vertices prevents chain segments from overlap-
ping.

A Monte Carlo algorithm is used to propagate a compu-
tational membrane with the form of a periodic rectangle having
lengthsLx andLy in the x andy directions, respectively. The
basic intervertex potentialV(r) of our polymer chain networks
has a bead-and-tether form with two components,

V~r! 5 Vrep~r! 1 Vnn~r!, (1a)

where the short-range repulsive term is

Vrep~r! 5 ` for 0 , r , a,
(1b)

5 0 for r . a,

and the nearest-neighbor tethering potential is

Vnn~r! 5 ` for 0 , r , a andr . Î1.9a,
(1c)

5 0 for a , r , Î1.9a.

The repulsive term applies to all vertex pairs, and the
tethering potential applies only to nearest-neighbor vertices
along the chain. The length scale of the system is set by the
bead diametera; the relationship betweena and the physical
length scale depends upon the model, as discussed later in
this section. In the limit of very small Monte Carlo step
sizes, self-avoidance of the chain only requires the maxi-
mum tether length to beu2a, rather thanu1.9a. However,
the nonzero step size of this simulation allows chains to
cross each other atu2a, and hence a slightly smaller tether
length is used in Eq. 1c.

The simulation generates a set of configurations that
samples periodic box shapes according to the usualPA-type
Boltzmann weight and is used to construct ensemble aver-
ages of geometrical observables, such as the box lengths
^Lx& and^Ly& or the box areâA&. The elastic constants of the
network can be determined from these ensemble averages,
either through numerical derivatives such as

KA
21 5 ^A&21~­^A&/­P!, (2)

or via fluctuations

bKA 5 ^A&/~^A2& 2 ^A&2!, (3)

whereKA is the in-plane area compression modulus,b is the
inverse temperature (kBT)21, andP is the in-plane pressure.
The in-plane shear modulusm is obtained subsequently
from

~bKA!21 2 ~bm!21 5 4^A&~^LxLy&/^Lx&^Ly& 2 1!. (4)

We have checked the numerical accuracy of the calculations
by comparing the results from Eqs. 2 and 3 for selected
parameter values. Analogous to Eq. 3, the volume compres-
sion modulusKV can be obtained frombKV 5 ^V&/(^V2& 2
^V&2), whereV 5 A^z& andz is the distance above the bilayer
plane atz 5 0. The transverse Young’s modulusYtr can be
extracted from the fluctuations inz via bYtr 5 [^z&/(^z2& 2
^z&2)]/^A& (Boal and Boey, 1995).

In a previous paper (Boal and Boey, 1995), a mixed
Monte Carlo/molecular dynamics algorithm was used to
propagate a polymer network whose interactions were
smooth functions of interparticle separation (see Bishop et
al., 1979). The ensemble averages of all in-plane and almost
all out-of-plane quantities calculated by this MC/MD tech-
nique are correct, and agree with pure MC simulations of
the same potentials. However, the ensemble average^z2& is
not consistent within this mixed ensemble, and hence we
use only pure MC in this paper. The results of Boal and
Boey (1995) on the barrier-free paths of directed protein
motion are unaffected by this inconsistency in^z2&.

The connectivity of our network junctions is strictly
sixfold. However, it is claimed from electron microscopy
that erythrocytes also contain junctions with five or fewer
spectrin tetramers attached (Byers and Branton, 1985; Ur-
sitti and Wade, 1993). The properties of defective networks
have been investigated in statistical mechanics, and the
elastic properties of one category of defective two-dimen-
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sional networks at zero temperature and zero stress were
determined by Hansen et al. (1996). For networks whose
junction vertices have a mean connectivity near 6, the
variation of the elastic moduli with the amount of defective
connectivity is not a strong effect compared to the stress
dependence of interest in this paper. Of course, bond-de-
pleted networks, which are present in erythrocytes of indi-
viduals with certain hereditary blood diseases, may have
much lower elastic moduli for bond concentrations ap-
proaching the rigidity percolation threshold (Thorpe, 1986;
Tang and Thorpe, 1988; Saxton, 1990; Hansen et al., 1997).

In our previous two papers on polymer chain networks,
we determined the behavior of a particular model network at
zero stress as a general function ofnseg. Here we investigate
the properties of three model networks as a function of in-plane
compression and tension for a value ofnseg specific to each
model. In all three situations, the parameters for the cytoskel-
eton model are chosen such that the contour area per junction
vertex,Ac, is approximately seven times the equilibrium area
per junction,̂ Aj&. For the potential in Eqs. 1a–1c, the contour
area per junction isAc 5 (u3/2) 3 (1.2anseg)

2.

Stress-free model

In this simple model, the interactions among chain elements
are described strictly by Eq. 1, and the in vivo state of the
erythrocyte is assumed to be stress-free. To satisfyAc/^Aj& 5
7, the number of segments per polymer chain must benseg5
26 (see Boal, 1994). For a 200-nm contour length, the bead
diameter in the model,asf, must have a physical value of 6.4
nm.

Prestress model

The ratio Ac/^Aj& increases withnseg (Boal, 1994). It is
possible to haveAc/^Aj& > 7 for nseg , 26, but the model
cytoskeleton must then be in a condensed or prestessed
state. Introducing the prestressbPpsa

2 as a new parameter,
there is a locus of values fornsegandbPpsa

2 that satisfyAc/^Aj&
5 7. The polymer chain model will have difficulty in repro-
ducing the observed elastic moduli ifnsegis much less than 12,
so we choosenseg5 12 as a limiting case. The assignment for
the bead diameteraps of 13.9 nm withnseg5 12 corresponds
to a 200-nm contour length in the prestress model.

Condensed model

An alternative means of forcingAc/^Aj& 5 7 for nseg, 26 is
to preserve the in vivo state as stress-free, but to add
attractive interactions between nonneighboring vertices. We
choose the attractive interaction to have a square-well form,

Vatt~r! 5 ` for 0 , r , a,
5 2g for a , r , Î1.9a,
5 0 for r . Î1.9a,

(5)

where the energy scaleg is chosen to satisfyAc/^Aj& 5 7 for
a given nseg. For ease of comparison with the prestress
model, we choosenseg 5 12. The variation ofAc/^Aj&
with bg is shown in Fig. 2, from which one can see that
Ac/^Aj& 5 7 is reached atbg 5 0.6. As in the prestress
model, a 200-nm contour length corresponds to a bead
diameterac of 13.9 nm if the chain has 12 segments.

The number of junction verticesNj in the cytoskeleton
simulations is 16, so that the total number of particles in the
computational system is 544 fornseg 5 12 and 1216 for
nseg5 26. At each pressure, the sample sets consist of 1050
configurations separated by 104 MC steps (nseg 5 12) or
750 configurations separated by 33 104 MC steps (nseg5
26), to ensure statistical accuracy of the ensemble averages.
The first 50 configurations of the sample are discarded in
constructing the averages. Other calculational details can be
found in Boal (1994).

CYTOSKELETON SIMULATIONS

In human erythrocytes, the contour length of the spectrin
tetramers is;200 nm, compared to the average end-to-end
distance of;75 nm in vivo, meaning that the cytoskeleton
can be stretched to about seven times its equilibrium area.
Within the polymer-chain model, this factor of seven in the
ratio of contour area per junction complex,Ac, to equilib-
rium area per junction,̂Aj&, arises from the entropic prop-
erties of the chains. That is, “slack” in spectrin fluctuates
into the cytoplasm, defining an average height, analogous to
a brush thickness, that should somehow correlate with the
in-plane stress response of the cytoskeleton. The in-plane
stress response of the stress-free model (see previous sec-
tion) is illustrated in Fig. 1, which shows two configurations
drawn from simulations atbPs2 5 0.2 (compression) and
bPs2 5 20.2 (tension). The two parts of the figure are
drawn to the same scale, and the difference in the network
density is obvious: atbPs2 5 0.2 the network is almost
eight times as dense as it is atbPs2 5 20.2.

FIGURE 2 Ratio of contour area per junctionAc to average area per
junction ^Aj& for the condensed model, shown as a function of the energy
scalebg in the attractive potential of Eq. 5.

1576 Biophysical Journal Volume 75 September 1998



The area per junction vertex̂A&/Nj under both compres-
sion and tension is shown in Fig. 3a for all three models.
For comparative purposes, the areas are compared to the
contour area per vertexAc. Recent micropipette aspiration
experiments on intact red cell membranes (Discher et al.,
1994) have shown that the area (which is the inverse of the
surface density reported in the paper) of the red cell network
in reversible deformation can, at the least, range between
0.5 and 4 times the unstressed area, depending on the
magnitude of aspiration. The results in Fig. 3 cover much of
this range, and extend to even lower density (high area),
where sensitivity becomes an issue in experiment.

There are several distinctive features to Fig. 3a. Under
increasing compression,̂Aj& decreases and should ulti-
mately tend toward a constant, determined by the steric
interaction of the cytoskeleton elements. However, the
small value of^Aj& at bPa2 5 1.0 is not near the close-
packed density of the spherical beads, reflecting the fluctu-
ations in position of these chain elements at finite temper-
ature. Under tension at2bPa2 . 0.5, the area per junction
approaches the contour area per junction of the network,
indicated bŷ Aj&/Ac3 1. Both the prestress and condensed
models havenseg5 12, and they approach the contour area
together. The stress-free model hasnseg5 26, a very flex-

ible network that expands more rapidly under tension than
the nseg 5 12 networks do, for a given bead diametera.
Note, however, that the physical value ofa is model-
dependent, an issue to which we return in Fig. 8.

Both the stress-free and condensed networks have param-
eters (nsegandbg) that are selected to reproduce^Aj&/Ac 5
1/7. Thus both of these models have the same area per
junction atbPa2 5 0. In contrast, thenseg 5 12 network
without an attractive interaction (prestress model) has
^Aj&/Ac ' 2/7 atbPa2 5 0, and this network must be placed
under a 50% area compression withbPpsa

2 5 0.7 to match
the experimentally measured^Aj&/Ac 5 1/7.

Last, as a technical issue, note that^Aj&/Ac can exceed 1
with any “soft” interaction potential such as Eq. 1, or
harmonic potentials, or some of the smooth potentials com-
mon in polymer studies (e.g., Bishop et al., 1979). The
contour length of a single chain in our model at any tem-
perature is 1.2nsega, which is less than the fully stretched
length of 1.38nsega. Thus, in the limit of infinite tension,
^Aj&/Ac can be as large as 1.32 for Eq. 1. Unless the chain
segments are forced to be rigid rods with a fixed length, then
the average segment length will slowly increase as the
network becomes highly stretched. Fortunately, the network
deformations in which we are interested do not significantly
enter this deformation regime.

The mean displacement of the network normal to the
bilayer plane is shown as a function of pressure in Fig. 3b.
The mean displacement is the ensemble average of the
displacementz over all vertices in all configurations. Sim-
ulations show that the mean thickness of the network is
;2^z&, suggesting that monomers are restrained by their
interactions so as to be relatively uniform in their distribu-
tion above the reflecting plane atz 5 0. As expected, the
trends in̂ z& are the reverse of those of the area:^z& is largest
under compression, and decreases monotonically with in-
creasing tension. The two networks withnseg 5 12 have
very similar values for̂z&, despite their differences in area.
Although thenseg5 26 network has a significantly larger^z&
under a compressive stress, in terms of thea length scale, its
value in physical units is similar to thenseg5 12 networks,
once one takes into account thataps5 ac ' 2asf. A measure
of the cytoskeleton volume can be obtained from the prod-
uct of the area per junction vertex from Fig. 3a with the
mean displacement from Fig. 3b. It is important that one
finds that the volume per junction is larger when the net-
work is under tension than when it is under compression.
Thus these cytoskeletal networks are far from incompress-
ible—volumetric incompressibilty being a common finding
in large deformation rubber elasticity.

The in-plane compression and shear moduli are extracted
from the simulations via fluctuations. The behavior of the
moduli is shown in Fig. 4 for all three simulation models.
The compression modulusKA has a minimum near zero
stress for all of the models, and is significantly larger at
moderate deformation, whether stretched or compressed.
This is expected, given the steric interactions that become
increasingly important when the network is compressed,

FIGURE 3 Reduced network area per junction complex^Aj&/Ac (a) and
mean displacement^z&/a (b) as a function of in-plane pressurebPa2 for the
three simulation models. Note that the physical value ofa is model-
dependent.
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and given the tether constraints that resist the network being
stretched much beyond̂Aj&/Ac 5 1. Of the three networks
shown in Fig. 4a, the 26-segment network is expected to be
the softest, and one can see that its compression modulus is
the lowest near zero stress and under compression.

The shear modulus, shown in Fig. 4b, shares several
characteristics with the compression modulus. At large ex-
tension, the networks resist shear because of the tethering
constraints, as withKA. However, when the networks are
compressed, the increased steric interaction does not cause
an increase in the shear modulus, unlike the situation with
KA. However, this behavior is not unexpected, because the
tethering constraints that resist shear are most important
when the network is stretched, not when it is compressed, as
can be seen from Fig. 1. Finally, the 26-segment network
tends to have the lowest shear modulus of the three net-
works under compression, again as withKA.

Two elastic moduli that depend upon the out-of-plane
properties of the network are shown in Fig. 5. Generally
speaking, the volume compression modulusKV displayed in
Fig. 5 a decreases slowly with stress. This behavior is
similar, but not identical, to that ofKA: steric interactions
will raise the compression modulus as the network is com-
pressed. Similar behavior is seen in Fig. 5b for the trans-
verse Young’s modulusYtr as a function of stress. As
pointed out previously (Boal, 1994), one expectsKV to be

on the order ofYtr, and this rough numerical equivalency
can be seen by comparing Fig. 5,a andb.

DISCUSSION

Our first task in interpreting the results from Figs. 3–5 is to
develop an intuitive description of the network’s in-plane
behavior. The chain elements shown in Fig. 1 assume a
variety of configurations: they are mildly or even exces-
sively contorted in 3-D. However, the motion of the sixfold
junctions is much more restricted, and the displacement
from their mean position is fairly small relative to the
interjunction separation. Thus the effective temperature of
the junctions is, in a sense, much lower than the effective
temperature of the chain elements, as measured by the
dispersion in their positions. At moderate deformations, the
junctions behave like a low-temperature network in two
dimensions.

To quantify this observation, consider a network of
springs, each governed by Hooke’s Law:

VHL~s! 5 ~1/2!kHL~s2 so!
2, (6)

wherekHL is the spring constant ands is the length of the
spring, whose unstretched length isso. At zero temperature,

FIGURE 4 In-plane compression modulusbKAa2 (a) and shear modulus
bma2 (b) as a function of pressurebPa2 for the three simulation models.

FIGURE 5 Volume compression modulusbKVa3 (a) and transverse
Young’s modulusbYtra

3 (b) as a function of pressurebPa2 for the three
simulation models.
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a triangular network of identical springs under stress is
described by (Boal et al., 1993)

^A&/^A&o 5 ~1 1 P/Î3kHL!
22 (7a)

KA/kHL 5 Î3~1 1 P/Î3kHL!/2 (7b)

m/kHL 5 Î3~1 2 Î3P/kHL!/4, (7c)

whereAo 5 u3so
2/2. As in the previous section, the applied

pressureP is defined to be negative for a network under
tension. According to Eqs. 7a–7c, asP becomes more
negative,

• the area increases,
• KA decreases, and
• m increases.

Equations 7a–7c for fixedP provide an apt description of
the spring network in the small fluctuation limit, which
corresponds tobkHLso

2 .. 1. Furthermore, Eqs. 7b and 7c
show that there is a domain ofP , 0 at whichm exceeds
KA, which implies that the Poisson ratio is negative (in two
dimensions). However, Eqs. 7a–7c, for zero temperature, do
not faithfully describe a spring network under moderate
compression: just aboveP 5 (u3/8)kHL there is a symme-
try-breaking transition as the network area goes to zero
discontinuously from (8/9)2Ao (Discher et al., 1997; Wintz
et al., 1997). Are any of these properties of Hookean spring
networks present in the model cytoskeletons?

Harmonic regime

Inspection of the ratio ofKA/m, shown in Fig. 6, confirms
that several properties of the low-temperature spring net-
work are present in the model cytoskeletons. The figure
shows thatKA/m ' 2 for all models at zero stress, as
predicted by Eqs. 7b and 7c. Also near zero stress,KA/m
increases under compression, again as expected from Eqs.
7b and 7c. Furthermore, there is a range of extension for

whichKA/m , 1, implying that the Poisson ratio is negative.
With the exception of the blow-up in network area predicted
by Eq. 7a atP 5 2u3kHL, but prevented in the model
networks by the tether constraints, several of the generic
features of a low-temperature Hooke’s Law network are
present in our three models at modest stress.

If the model cytoskeletons are approximately described
near zero stress by Eqs. 7a–7c, then an effective spring
constantkeff can be determined for each model. We consider
the harmonic behavior of the stress-free model in some
detail, and then simply quote results for the other models.
The in-plane area compression modulusbKAa2 of the
stress-free model is observed to be 0.16 atP 5 0. Com-
paring this value with Eq. 7b, each chain in the network is
equivalent to a spring with effective spring constantbkeffa

2

5 0.18. A similar treatment of the shear modulus using Eq.
7c yields an effective spring constant ofbkeffa

2 5 0.28, for
an average from both moduli ofbkeffa

2 5 0.23.
The harmonic behavior of the cytoskeleton at small stress

can be confirmed from the behavior of the area as a function
of stress. We plot in Fig. 7 the area per junction vertex
^A&/Nj normalized to the zero stress value, which is^Aj&o 5
119a2. At small deformations, the area follows the low
temperature behavior of Eq. 7a, namely that^A&21/2 is a
linear function of the tension. By fitting Eq. 7a to the area
aroundP 5 0, one finds that the effective spring constant is
thenbkeffa

2 5 0.22, which is in very good agreement with
the value extracted above from the elastic moduli. Now the
area per junction at zero stress of 119a2 corresponds to an
effective interjunction length ofso of 11.7a in the stress-free
model. Expressed in terms of spring variables, the effective
spring constant of the stress-free model in the harmonic
regime is bkeffso

2 5 30. This is a large spring constant
corresponding to a stiff (or, equivalently, cold) network that
has small fluctuations in the intervertex separation.

A similar analysis of the other two model networks yields
values ofbkeffa

2 5 0.72 for the prestress model, andbkeffa
2 5

0.81 for the condensed model, both evaluated at zero stress.

FIGURE 6 Ratio of in-plane compression modulusKA to shear modulus
m as a function of pressurebPa2 for the three simulation models.

FIGURE 7 Normalized areâAj&/^Aj&o as a function of pressurebPa2 for
the stress-free model. A fit to the data using Eq. 7a is shown for compar-
ison, with bkeffa

2 5 0.22.
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Using the average interjunction separation at zero stress as
a length scale, rather thana, yieldsbkeffso

2 5 39 and 23 for
the prestress and condensed models, respectively. Thus we
see that for small deformations, the junctions in all three
models effectively behave like two-dimensional networks
of springs at very low temperature.

Physical values

The areas and elastic constants are reported in dimension-
less form in the simulation section of this paper. What is
needed to convert these quantities to physical units are
choices for the inverse temperatureb and the bead diameter
a. At room temperature,b21 5 4.0 3 10221 J; to mimic a
200-nm spectrin contour length,asf 5 6.4 nm andaps 5
ac 5 13.9 nm. However, the reference configuration (i.e.,
the configuration assumed by the cytoskeleton of an eryth-
rocyte in its discotic shape) is not the same in all models: the
reference state is at zero stress in the stress-free and con-
densed models, but is under a stressbPpsaps

2 in the pre-
stress model. According to Fig. 3,bPpsaps

2 must be equal to
20.7 to give Ac/^Aj& 5 7. Hence we can construct the
behavior of ^Aj& and the elastic moduli as a function of
applied stress as long as we are careful to measure the stress
with respect to the “reference” stress of the equilibrium
configuration. An externally applied stressDP is related to
the stress in the model cytoskeletons by

DP 5 P ~stress-free and condensed models! (8a)

bDPaps
2 5 bPaps

2 2 bPpsaps
2

5 bPaps
2 1 0.7 ~prestress model!. (8b)

The area per junction̂Aj& in physical units is displayed in
Fig. 8. By definition, the three models agree atDP 5 0, and
it is seen that the areas are very similar forDP . 0
(compression) as well. However, the networks under ten-

sion show quantitatively different behavior, although they
share qualitative trends. At moderate tension, the area of the
condensed model rises the fastest under tension, followed
by the stress-free model, and trailed by the prestress model.
The differences between the stress-free and prestress mod-
els are not always large, but they are significant.

The compression modulusKA of the models, shown in
Fig. 9 a, displays similar qualitative features:KA is large at
large values ofuDPu, and has a minimum near, but not at,
DP 5 0. The fact thatKA has a minimum at moderate
tension is expected for a harmonic network, althoughKA is
not observed to vanish within the cytoskeletal models, as it
would in a pure Hooke’s Law network, in which the spring
lengths can increase without bound.

Finally, the in-plane shear modulusm is shown in Fig. 9
b. At zero stress, all models display a similar value of
;1025 J/m2, which is in the range found in the microme-
chanical manipulation measurements. The models also il-
lustrate that the shear modulus has a finite value that does
not change significantly when the network is placed under
compression; in contrast, the shear modulus decreases and
even vanishes under compression for Hooke’s Law net-
works in two dimensions. The largest differences between
the models arise when the networks are placed under ten-
sion: the shear modulus rises slowest in the prestress model.

FIGURE 8 Area per junction vertex̂Aj& as a function of an externally
applied stressDP. Conversion to physical units is described in the text. The
area is quoted in 103 nm2, andDP is quoted in 1025 J/m2. Note that the
definition of DP is model-dependent (see Eq. 8).

FIGURE 9 In-plane compression modulusKA (a) and in-plane shear
modulusm (b) as a function ofDP. Same conversions as in Fig. 8. All of
KA, m, andDP are quoted in 1025 J/m2.
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This behavior ofm is expected, given the properties of the
network area under stress: the area of the prestress model
increases the slowest of the three models, and so the shear-
resisting tether constraints are not as important in prestress
networks at modest tensions as they are in the other net-
works.

Anisotropic stress

The anisotropic response of two-dimensional triangulated
networks at large deformations has been demonstrated for a
class of Hamiltonians including simple square well interac-
tions between nearest-neighbor network nodes (Discher et
al., 1997). By “square well” potential we mean a potential
that vanishes for intervertex separationss less than a fixed
smax, and is infinite beyondsmax (Boal et al., 1993). The
stress/strain relation in one of the three tether directions is
found to be different from the stress/strain relation in an
orthogonal direction. However, the anisotropy only be-
comes marked in these nets when the strains approach
80–90% of their allowed maximum.

We have probed a model cytoskeleton for the same
phenomenon of anisotropic response by applying a uniaxial
stress along one of the periodic boundaries to anseg 5 12
polymer chain network. Fig. 10 shows the strain variable
^Li&/^Li&o 2 1 as a function of uniaxial stress for two axes in
the periodic system:Li 5 Lx or Ly. In the figure, the stress
is applied in the same direction as the strain label, and is
zero in the orthogonal direction. Young’s moduliYx andYy

can be determined from the stress/strain relations presented
in the figure, and compared withYx andYy extracted inde-
pendently fromKA andm (see Boal et al., 1993). NearP 5
0, the two determinations of the Young’s moduli agree to
better than 10%.

One can see that there is little anisotropy in the response
of the model cytoskeleton up to a 50% change in the

periodic box lengths for a given magnitude of anisotropic
stress. However, the anisotropic response becomes notice-
able once the strain variable exceeds;0.6. Furthermore, the
stress associated with a given strain varies strongly with
direction for ^Li&/^Li&o . 1.6. Thus the model network
responds anisotropically at large deformation, in a way
similar to that observed for two-dimensional triangulated
networks.

Modulus measurements at large deformation

Measurements have been made of the shear modulus of the
erythrocyte cytoskeleton in two different deformation re-
gimes. In micromechanical manipulation, the cytoskeleton
is subject to at least moderate deformation, and the modulus
is extracted from stress/strain relations analogous to Eq. 2.
In studies of erythrocyte flicker, the modulus is found from
shape fluctuations at zero stress, similar to Eq. 3. Different
normalization conventions, such as the use of^A&o rather
than ^A& as a normalizing area in Eq. 2, can lead to artifi-
cially different elastic constants. While one must be aware
of normalization conventions when comparing results, the
shear moduli determined by the manipulation and flicker
techniques are different by at least an order of magnitude.
Does the difference lie in the use of fluctuations rather than
stress/strain relations to obtain the moduli?

Based on the fluctuation-dissipation theorem, we do not
expect that Eqs. 2 and 3 should yield different moduli,
although it should be emphasized that large samples are
needed for Eq. 3 to yield accurate results. As a test, moduli
were extracted from both relations in an analysis of the
stress-free model data, covering a fourfold change in area.
Over this range, the compression moduli obtained from the
two approaches agreed to within 20%, entirely consistent
with the uncertainty in the data. We conclude that the
moduli, measured under the same conditions, should be
independent of whether they are determined from fluctua-
tions or the stress/strain relations. The difference in the two
measurement techniques must arise from another source.

SUMMARY

We report simulations of the human erythrocyte cytoskele-
ton, using three structural models for networks tacked to a
flat “bilayer”:

Thestress-free model, in which each spectrin tetramer of
the cytoskeleton is treated as a 26-segment polymer, and the
elastic properties of the network arise from the entropic
properties of the polymer. For this model to apply, the
cytoskeleton is assumed to be stress-free in vivo.

Theprestress model, in which there are only 12 segments
per spectrin, but the network is under an externally gener-
ated prestress. This situation could arise if the membrane
area decreases with cell age, without a corresponding loss of
cytoskeletal material.

FIGURE 10 Strain variablêLi&/^Li&o 2 1 as a function of uniaxial stress
for two axes in the periodic system:Li 5 Lx andLy. The stress is applied
in the same direction as the strain label, and is zero in the orthogonal
direction.
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Thecondensed model, in which there are 12 segments per
spectrin, and an attractive interaction between nonneighbor-
ing spectrin elements within a given chain and between
different chains.

In each of these models, the reference area of the network
is ; one-seventh of the contour area. The properties of the
networks are determined under large deformations of up to
a fourfold change in equilibrium area.

The qualitative behaviors of the three models are similar:
The network area increases under tension and decreases

under compression, but does not show the area collapse
observed for two-dimensional triangulated networks under
compression.

The network height is a quantity that fluctuates about a
mean, but it invariably decreases under tension and in-
creases under tension.

The area compression modulus increases at large defor-
mation under both compression and tension.

The shear modulus increases under tension, but is rela-
tively unchanged under compression.

The above behavior of the elastic moduli is expected
from the nature of the constraints on the network: the
dominant effects under tension arise from the chains reach-
ing their maximum extension, whereas the dominant effects
under compression are steric in origin, and have no strong
influence on the shear modulus.

Although the chains themselves have considerable con-
figurational freedom, the sixfold junctions of the chains
show much more restricted motion. The junctions behave
like a low-temperature triangulated network of springs, with
an effective spring constantbkeffso

2 of 20–40, depending
on the model, whereso is the equilibrium separation be-
tween junctions. The elastic moduli and the pressure depen-
dence of the area per junction yield consistent results for the
effective spring constant. Although a comparison with net-
works of Hookean springs proves useful in the neighbor-
hood of zero stress, such distinguishing model features as a
constant shear modulus under network compression and a
limiting contour area appear to be captured more effectively
by balancing worm-like chain elasticity (Marko and Siggia,
1995) against bead sterics as shown in paper II (Discher et
al., 1998).

The models vary in detail when their results are converted
from simulation units to physical units. Of the three, the
network of the condensed model tends to be the most
extensible, and shows the most rapid increase in area when
the network is placed under tension. The prestress model is
the least extensible, at least for moderate tension. All mod-
els show similar values for the shear modulus near zero
stress. That the computed shear modulus approximates the
modulus determined originally from micromechanical ex-
periments (Waugh and Evans, 1979) is somewhat fortu-
itous, in that the experiments were tacitly analyzed under
the assumption that the network’sKA is infinite, rather than
a quantity of orderm.

One polymer-chain network was tested for anisotropic
response to a uniaxial stress at large deformation. The

model cytoskeleton shows a clear anisotropic response
when the strain variablêLi&/^Li&o 2 1 exceeds;1 (where
Li 5 Lx or Ly), although the anisotropy is very small as this
strain variable approaches zero. It is important that although
the anisotropy of another spectrin-actin based membrane
skeleton, that of the auditory outer hair cell, is experimen-
tally well documented (Tolomeo et al., 1996, and references
therein), the anisotropy presented in the red cell cytoskele-
ton model here is a novel and distinctive structural feature
worth searching for in large deformation experiments with
red cell membranes. Last, two methods have been used
experimentally for extracting the elastic moduli: stress/
strain relations such as those in Eq. 2, and fluctuation
relations such as those in Eq. 3. Our simulations in the
stress-free model demonstrate that the two approaches yield
the same results within statistical error.
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