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ABSTRACT There is a steadily growing body of experimental data describing the diffusion of acetylcholine in the neuro-
muscular junction and the subsequent miniature endplate currents produced at the postsynaptic membrane. To gain further
insights into the structural features governing synaptic transmission, we have performed calculations using a simplified finite
element model of the neuromuscular junction. The diffusing acetylcholine molecules are modeled as a continuum, whose
spatial and temporal distribution is governed by the force-free diffusion equation. The finite element method was adopted
because of its flexibility in modeling irregular geometries and complex boundary conditions. The resulting simulations are
shown to be in accord with experiment and other simulations.

INTRODUCTION

We are interested in the diffusional aspects of synaptic
transmission. There have been many simulations studying
the kinetic aspects of neurotransmitter/receptor binding and
subsequent endplate currents (Wathey et al., 1979; Friboulet
and Thomas, 1993; Khanin et al., 1994; Kleinle et al., 1996;
Agmon and Edelstein, 1997; Edelstein and Agmon, 1997),
but less work dealing with neurotransmitter diffusion in
detailed models of the synapse (Bartol et al., 1991; Stiles et
al., 1996; Bennett et al., 1997). Our simulations will address
the issues of synaptic transmission from a continuum stand-
point, employing finite element methods to solve the diffu-
sion equation in a detailed model of the neuromuscular
junction.

The advantages of continuum finite element methods
include the ability to model complicated geometries, study
long timescales with adaptive timesteps, include back-
ground concentrations of the neurotransmitter acetylcholine
(ACh), include models for the individual clusters of acetyl-
cholinesterase (AChE), and simulate the release of many
synaptic vesicles (containing ACh) simultaneously. How-
ever, before taking full advantage of the method, it is
necessary to establish its accuracy and reliability by com-
paring the results to other simulations, and to experiment.

The purpose of this work, therefore, is to validate the
continuum approach for simulating neurotransmitter diffu-
sion in the neuromuscular junction (NMJ). Additionally,
this article examines how the different components of the
vertebrate NMJ, such as the AChE, secondary folds, and
release pore, affect the amplitude and timecourse of the
transmitted signal.

Proper modeling of AChE and the acetylcholine receptors
(AChR) is vital in reproducing the timescales and extent of
ACh diffusion. Thus, after describing the computational
methods used to simulate the diffusion of neurotransmitter,
the AChE and AChR models will be discussed. Then,
several test cases will be used to establish the reliability of
the finite element model and the partial differential equation
solver. Finally, the results of the simulations will be com-
pared to other simulations and to experiment.

METHODS

For all simulations, ACh diffusion will be governed by the diffusion
equation

D¹2C 5 dC/dt (1)

whereD is the diffusion constant of ACh in the NMJ,C is the concentra-
tion of ACh, andt is time.

From fits of kinetic and diffusional models to experimentally measured
miniature endplate currents, the diffusion constant of ACh in the NMJ was
estimated to be (Land et al., 1981, 1984)D 5 4.03 1026 cm2/s. Note that
the diffusion constant accounts, in an averaged fashion, for the irregular-
ities in the density of the synaptic medium.

Due to the irregular geometry of the NMJ, and the complexity of our
AChE model (to be discussed below), it was useful to adopt the finite
element method for the simulations (Becker et al., 1981; Martin and Carey,
1973; Brenner and Scott, 1994). The finite element method divides a
simulation region into individual elements, and solves the given partial
differential equation (PDE) at the nodes of those elements. Because the
choice of element size and shape is highly flexible, the finite element
method can handle complicated geometries.

In addition, the finite element mesh can be adaptively refined in regions
where accurate solutions of the PDE are needed. Adaptive refinement
increases the number and density of individual elements in areas where
large local errors can occur, and thus reduces the errors associated with
discretizing and solving the PDE. In the NMJ simulations, large gradients
in the ACh concentration can lead to excessive discretization errors.
Numerical techniques lacking adaptive refinement, such as standard finite
difference techniques, therefore cannot be used for the NMJ simulations.
The Test Cases section will further examine the reliability of the adaptive
refinement algorithm.

All simulations discussed below use the finite element package Kaskade
(Beck et al., 1995), with meshes consisting of tetrahedral elements. The
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actual geometries of the NMJ models vary from simulation to simulation,
and will be described in detail later.

Neumann, or reflecting, boundary conditions were used on most bound-
aries of the NMJ model

¹Cu0 5 0 (2)

Surfaces with Neumann boundary conditions do not react with the diffus-
ing neurotransmitter.

Acetylcholinesterase models

Background

The AChE populate vertebrate NMJ’s at densities of 2000–3000mm22,
both in the primary cleft and in the secondary folds (Salpeter et al., 1972,
1978; Salpeter, 1987; Anglister et al., 1995). They are found in clusters of
three tetramers, attached by stalks to the postsynaptic membrane (Vincent
and Wray, 1990; Zimmerman, 1993). In our NMJ model, the AChE
clusters are represented by cubes, 16 nm on a side, spaced 64 nm apart.
Within the continuum model, the proper choice of boundary conditions is
vital in representing the true reactivity of these enzyme clusters with
substrate. Although it is clear from our initial studies that mixed, or
radiating, boundary conditions are the most appropriate, choosing the
correct reactivity constant is essential. The mixed boundary conditions will
be defined below.

The interactions between AChE and ACh will be modeled using the
following kinetic scheme:

E 1 S 3 E 1 P (3)

whereS represents our continuum ACh concentration. The corresponding
rate equation is

d@S#

dt
5 2k@S#@E#. (4)

The concentrations are in molar units, and the rate constant is in units of
M21 s21.

To make contact between these standard kinetic relations and our
continuum model, we must define the current of substrate into a single
reactive “enzyme.” For a single enzyme, modeled for simplicity as a
sphere, the current of substrate flowing into the sphere is given by (Rice,
1985; Collins and Kimball, 1949)

I~R! 5 24pR2 D
dC~r!

dr
U

R
(5)

whereR is the radius of the sphere,D is the diffusion constant, andC(r) is
the substrate concentration at a distancer from the center of the sphere. The
concentration is in molecular units.

The rate of substrate removal is then simply equal to the inward current
(given by Eq. 5), times the enzyme concentration [E]

d@S#

dt
5 I~R!@E# (6)

which leads to the useful relation (compare Eq. 6 to Eq. 4)

I~R! 5 2k@S#0 (7)

Here it is assumed that the substrate concentration is in excess of the
enzyme concentration, and can be replaced by its initial value [S]0. [S]0 also
corresponds to what would be measured at a large distance from the
enzyme.

The simple relation defined by Eq. 7 provides the necessary connection
between the experimental ratek and the ACh current into each enzyme in

our continuum model. Although derived under the assumption of spherical
symmetry, the relation is valid for an enzyme of any shape.

Experimental rates

There have been several experimental measurements ofkcat andKM for the
interaction of ACh with human AChE (Radic et al., 1992; Shafferman et
al., 1995), yielding values ofkcat/KM in the range of 2.5–33 109

M21min21. Values of kcat/KM for other species lie in a similar range.
Assuming these experimental measurements obey our kinetic scheme, Eq.
3, the substrate concentration is governed by

d@S#/dt 5 2
kcat

KM
@E#@S#. (8)

kcat/KM is thus equal to the experimental rate constantk used below in
determining the continuum reactivity constant,kact.

Motivation for the mixed boundary conditions

Mixed boundary conditions make the approximation that the reactivity of
the enzyme is proportional to the probability that a reaction pair exists
(Rice, 1985). If we equate the reactivity to the inward flux of substrate, we
have an expression for our boundary condition:

4pR2D
dC~r!

dr
U

R
5 kactC~R! (9)

where kact is the proportionality constant. The above statement of the
boundary condition again assumes spherical symmetry. However, the 4pR2

area term may be absorbed into the unknownkact to restate the boundary
conditions in a form that is independent of the shape of the enzyme.

The above boundary condition will be used in the simulations to
represent the reactive AChE clusters. It is therefore necessary to relate our
unknown reactivity constantkact to the experimental forward-binding rate
constantk.

Model of a single esterase

The direct approach to findingkact is to perform simulations of a single
AChE molecule in a cluster, and determine what value ofkact gives the
experimental ratek. To do this, one AChE cluster was placed in a large
simulation box, and the current of substrate into a portion of the cluster was
measured. The steady-state current is given by the surface integral of the
flux

I~r! 5 2DEdS z ¹C~r! (10)

I(r) may be equated to the experimental current calculated from Eq. 7

I~r! 5 2k@S#0 (11)

The simulation thus involves varyingk9act in

D
dC~r!

dr
U

R
5 k9actC~R! (12)

until the measured current matches experimental results. Here the mixed
boundary condition is written in its most general form, with the 4pR2 term
absorbed in the new constantk9act.

As in the full NMJ model, the AChE cluster is represented by a cube
measuring 16 nm on a side. Since we are examining the current into a
single AChE molecule, only 1/12 of the cube’s surface will be reactive
(using mixed boundary conditions). The remaining surface will have Neu-

1680 Biophysical Journal Volume 75 October 1998



mann boundary conditions (dC/dr 5 0). The full simulation region is 144
nm on a side, also with Neumann boundary conditions. The simulation
begins with a constant substrate concentration of [S]0 5 1.66 M, though
any initial concentration may be used. The simulation was performed with
version 3.1 of Kaskade (Beck et al., 1995), using a 6000 tetrahedra mesh.
Throughout the simulation, the substrate concentration at the outer edges of
the box never dropped below 99.9% of [S]0, thus assuring us that the
simulation region is sufficiently large.

Given [S]0 above, and the experimental rate constantk, Eq. 11 yields

I~r! 5 2k@S#0 5 20.083 ns21 (13)

By trial-and-error, the best value ofk9act was

k9act 5 1.43 1023 nm ns21 (14)

The predictedk9act will be used in the full NMJ simulations discussed
below.

Acetylcholine receptor models

In the early stages of the NMJ simulations, the sole purpose of the receptor
model is to define the postsynaptic region over which receptors are satu-
rated by substrate. The area of saturation then gives some indication of the
effects of junctional folds, AChE, and the release model, on the timecourse
and extent of ACh diffusion. Since postsynaptic coverage is only mean-
ingful if it is connected in some way with experimental observations, it is
important to base our definition of coverage on the binding of ACh to
receptors. Specifically, coverage will be defined as the area over which
receptors are doubly ligated. In this way, postsynaptic coverage (i.e.,
receptor saturation) gives some indication of the amplitude of the miniature
endplate current.

Model of a single receptor

The nicotinic AChR contains five domains, two of which (a domains) bind
ACh (Taylor et al., 1986). When ACh is bound to botha domains, a central
ion channel opens, yielding a current of;2–5 pA (Dionne and Leibowitz,
1982; Colquhoun, 1990).

In our model, binding of ACh to a given receptor is determined by
measuring the current into the receptor. The receptor is again modeled with
mixed boundary conditions

D
dC~r, t!

dr
U

R
5 k9actC~R, t! (15)

where the constantk9act determines the reactivity (and current). In order to
determinek9act for a receptor, the same computational approach applied to
AChE was used.

For simplicity, our AChR model contains only the two binding sites,
modeled as reactive patches. The steady-state current into each AChR is
given by

I~`! 5 E dx dy k9actC~x, y; `! (16)

integrated over both subunits (over both reactive patches), on the mem-
brane surface.

The experimental current is based on the kinetic scheme (Dionne and
Leibowitz, 1982)

2A 1 RL|;
2k1

k2

A 1 ARL|;
k1

2k2

A2RL|;
l1

l2

A2R* (17)

whereA represents ACh,R represents the nicotinic ACh receptor in the
closed state, andR* represents the receptor in the open state. For lizard
AChR, k1 5 3.3 3 107 M21 s21 (Land et al., 1984).

The experimental current into a singlea domain is

Iexpt~`! 5 2k1@S#0 (18)

where [S]0 is the initial substrate concentration.
To determinek9act for our model, a single receptor was placed at the base

of a large simulation box. Only half of the receptor was active, to represent
a singlea domain. The substrate current into the AChR subunit was then
measured as a function ofk9act. The correct value ofk9act is the one for which
the current is equal to the experimental result (Eq. 18). In our case,k9act 5
9.0 3 1024 nm/ns reproduced the correct experimental ACh current into
the receptor. This constant was then applied to the AChR models imple-
mented in the full simulations.

AChR in the full NMJ model

In the NMJ, the AChR density is highest at the tops of the folds,;7,500–
10,000/mm2 5 1 AChR/100–133 nm2. This gives a spacing of;10–12 nm
between each AChR molecule. The AChR density drops off sharply as one
approaches the bottoms of the folds. For our simulations, the AChR are
evenly spaced 11.3 nm apart at the tops of the junctional folds, and taper
off down the sides of the secondary folds.

The current of substrate flowing into each AChR during the simulation
is measured using

I~t! 5 E dx dy k9actC~x, y; t! (19)

again integrated over both subunits. HereI(t) represents the time-dependent
ACh current into a single receptor.

The precise definition of “postsynaptic coverage” is the area over which
the total integrated current for each receptor is larger than two:

N~t9! 5 E
0

t9

dt I~t! . 2 (20)

In other words, receptors withN(t9) . 2 are considered to be in the
doubly ligated state, and thus contribute to the coverage area.

Note that unbinding events occur on significantly longer timescales than
the diffusion of neurotransmitter [;2 ms (Beeson and Barnard, 1990)], and
are unlikely to affect substrate concentrations over the course of our NMJ
simulations. After unbinding from receptors, it is believed that most ACh
molecules are immediately hydrolyzed by AChE, and therefore make no
further contributions to the observed endplate currents (Land et al., 1984;
Salpeter, 1987). It is safe, then, to ignore unbinding events in our receptor
model. Future simulations exploring longer timescales will include unbind-
ing events.

An inside view of our standard NMJ model is shown in Fig. 1. The scale
of the model is based on measurements of lizard NMJ’s (Salpeter, 1987).
The finite element mesh is comprised of 9248 vertices and 38772 tetrahedra.

Test cases

Several test cases were used to verify that the diffusion equation was
implemented correctly in Kaskade, and that the triangulation of the NMJ
was sufficiently detailed to yield a robust solution.

Diffusion to a sphere

The diffusion equation was first solved for the case of a sphere with
perfectly [C(r 5 R, t) 5 0] or partially {D[dC(r, t)/dr]uR 5 k9actC(R, t)}
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absorbing boundary conditions, initially surrounded by a medium of con-
stant concentration [C(r, 0) 5 C0, r . R]. These models are analogous to
the interaction of ACh with a single AChE cluster. For both boundary
conditions, the diffusion equation can be solved analytically. The numer-
ical results compared well with analytic predictions (data not shown),
demonstrating the method’s accuracy in solving the diffusion equation and
in handling complex boundary conditions.

Diffusion from a point source

In our model of the NMJ, the ACh is released from a small, concentrated
volume near the presynaptic membrane. To establish whether our NMJ
triangulation, and the adaptive mesh refinement capabilities of Kaskade,
can sufficiently handle this type of release, diffusion from a point source
was examined. Point source diffusion leads to large concentration gradients
just after release, and therefore requires a robust finite element mesh and
a finite element solver capable of adaptive mesh refinement. A similar test
case was employed by Bartol et al. to test their Monte Carlo implementa-
tion (Bartol et al., 1991).

The test system was based on our NMJ model, with AChE, secondary
folds, and the release cleft removed. ACh was released from a dense 103

nm3 region at the top-center of the model. This initial condition was chosen
to replicate the true initial conditions of our full NMJ simulations. The
radial profile of the concentration should be in rough accord with the
analytic solution for diffusion from a point source in a hemisphere (Bartol
et al., 1991; Rice, 1985)

C~r, t! 5
N

@4pD~t 1 44!#3/2exp@2r2/4D~t 1 44!# (21)

whereN is the number of particles of ACh released (N 5 C0 z 103 nm3 5
initial concentrationz release volume). The 44-ns constant adjusts the
analytic solution so that at time zero it has expanded roughly 7–8 nm
radially, close to the initial volume of our simulated release.

The simulation and the analytic solution (Eq. 21) produce similar radial
concentration profiles (data not shown), even though the initial conditions
are slightly different. More importantly, the rate of expansion of the simulated
neurotransmitter concentration is in good agreement with the analytic solution.

The reasonable agreement establishes that the timescales for diffusion from a
dense source are correctly reproduced by the finite element model.

RESULTS

Transit time of acetylcholine across the
synaptic cleft

After the release of ACh from vesicles at the presynaptic
membrane, it takes;5 ms for the bulk of ACh to reach the
postsynaptic membrane (Edmonds et al., 1995). As an ini-
tial test of our NMJ model, the free diffusion time across the
cleft was measured for a single quanta of ACh.

The area of the postsynaptic membrane over which the
ACh concentration is.1% of the initial release concentra-
tion was measured as a function of time. The diffusion time
across the cleft can be estimated as the time required for this
postsynaptic coverage to reach a maximum. Note that in this
case we are interested purely in the transit time, and there-
fore will not use the doubly ligated state of receptors as a
measure of postsynaptic coverage. The 1% cutoff should
give a more accurate indication of the transit time for the
bulk of ACh, without including the kinetics of binding in the
time estimates.

The NMJ model used for these simulations is within
estimates for vertebrate NMJ’s (Salpeter, 1987), and is
similar to the model used by Bartol et al. (1991). The
synaptic gap is 48 nm wide. Because we are only interested
in ACh crossing times, secondary folds have been removed.
Secondary folds will be included in the simulations dis-
cussed below. The ACh is released directly above the syn-
aptic gap, localized in a 48 nm3 48 nm 3 32 nm cleft.
Integration of the initial concentration over the volume of
the cleft yields;13,000 ACh molecules, within estimates
of the contents of skeletal muscle vesicles (Miledi et al.,
1982).

The area of the postsynaptic membrane over which the
ACh concentration is above 1% of its release concentration
is plotted in Fig. 2. Simulations were performed with both
active and inactive AChE to assess the effects of the reac-
tive enzyme on the initial diffusion of ACh. From the plot
it is clear that AChE has a strong effect on ACh concentra-
tion at the postsynaptic membrane. Inhibition of the ester-
ases more than doubles the postsynaptic coverage, though
the 1% criterion provides only an approximate measure of
coverage. Additionally, the neurotransmitter concentration
lingers for a significantly longer time at the postsynaptic
membrane.

The time required for the coverage to reach a maximum
gives some indication of the diffusion time across the cleft.
In Fig. 2, maximum coverage is reached in;13 ms for
inhibited AChE, and;6 ms for active AChE. These mea-
surements are in reasonable agreement with the aforemen-
tioned estimate. Note that a delay time of 6ms corresponds
to a mean distance of 120 nm for a diffusing particle in three
dimensions (Chandrasekhar, 1943; Crank, 1975). Given the
48-nm synaptic gap and the 32-nm depth of the release cleft,

FIGURE 1 Inside view of our standard NMJ model, containing a release
cleft near the center of the image, and secondary folds at the bottom. The
cubes represent the acetylcholinesterase clusters. The acetylcholine recep-
tors (not shown) cover the postsynaptic membrane at the bottom of the
image. For illustration, the finite element mesh is displayed on the surfaces
of the model.
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the 6-ms delay time implies that the first neurotransmitter
particles can travel anywhere from 50 nm to 110 nm along
the postsynaptic membrane before the postsynaptic concen-
tration reaches a maximum. It is therefore likely that some
lateral diffusion occurs after quantal release, though most of
the neurotransmitter is isolated in the region directly below
the release cleft.

Although the transit time of ACh in the synaptic cleft is
;6 ms, miniature endplate current rise times are typically an
order of magnitude larger. It is therefore evident that min-
iature endplate current rise times are dominated by receptor
binding and isomerization, not by diffusion in the synapse
(Matthews-Bellinger and Salpeter, 1978; Dwyer, 1981;
Madsen et al., 1984). In our measurements of doubly ligated
postsynaptic coverage discussed below, the coverage rise
time is 85ms, in good agreement with measured MEPC rise
times.

Postsynaptic coverage

Estimates of the number of receptors activated by a single
quanta of ACh range from 1000 to 2000 or more (Salpeter,
1987). Hartzell et al. (1975) have estimated that a quanta of
neurotransmitter acts over 0.2mm2 or less in snake NMJ’s
(Hartzell et al., 1975). Matthews-Bellinger and Salpeter
have estimated that the area of receptor saturation due to a
single quanta of ACh is;0.3 mm2 in frog NMJ’s (Mat-
thews-Bellinger and Salpeter, 1978). In their case, satura-
tion is defined as the area of the postsynaptic membrane
containing a number of binding sites equal to the amount of
ACh in a typical quanta. Land et al. (1981) have estimated
that postsynaptic coverage extends 0.3mm from the point of
release for lizard intercostal muscle. In their case, postsyn-
aptic coverage is defined as the region over which receptors
are doubly bound. Since the measurements of Land et al.
explicitly use the doubly ligated state of receptors, they
provide a useful reference for our simulations.

The NMJ model previously described was used for these
simulations along with a model containing secondary folds
and a model with secondary folds, but inactive AChE. The
release cleft was located in an active zone directly above a
secondary fold (Kandel et al., 1991). Table 1 shows the
number of doubly ligated receptors, total postsynaptic cov-
erage, and coverage rise times for each NMJ model. As a
reminder, postsynaptic coverage is defined as the maximum
area over which receptors are doubly ligated. The coverage
rise times are defined as the 20–80% time to peak for the
postsynaptic coverage, and are indicative of the miniature
endplate current (MEPC) rise times.

The complete NMJ model, containing secondary folds
and active AChE, is in reasonable agreement with experi-
mental measurements and estimates. 0.24mm2 coverage
indicates that receptors are saturated as far as 0.28mm from
the point of release, comparable to the estimates of Land et
al. It is estimated that between 60% and 90% of the doubly
ligated receptors will be in the open state (Salpeter, 1987).
Thus, we can expect that anywhere from 1126 to 1689
receptors in our simulations will open. Again, this is within
the expected range. Finally, the estimated rise time com-
pares reasonably with reported MEPC rise times of 80–100
ms for lizard NMJ’s (Land et al., 1981). Note that our rise
time estimates do not account for open-receptor events, the
last step in Eq. 17. Receptor isomerization will be included
in future simulations, however.

When secondary folds are removed, postsynaptic cover-
age increases by 42%. In the simulations, the folds serve as
buffer regions where excess ACh is hydrolyzed. The lower
concentration of receptors in the secondary folds reduces
coverage in these regions, while the constant presence of
AChE leads to rapid hydrolysis. Therefore, the presence of
secondary folds reduces the efficiency of binding to recep-
tors, and thus the amplitude of the subsequent miniature
endplate currents. Bartol et al. (1991) observed a similar
phenomenon in their simulations, with a 34% increase in
MEPC amplitude when folds were removed from their
lizard NMJ model.

When AChE activity is blocked, postsynaptic coverage
increases by 83%, with 3400 doubly ligated receptors. The
20–80% rise time extends to 290ms. With the ACh now
diffusing an average distance of 0.38mm from the point of
release, diffusion time in the cleft plays a larger role in
determining rise times. Additionally, because it takes;1
ms for postsynaptic coverage to reach a maximum, disso-

FIGURE 2 Postsynaptic area with an acetylcholine concentration.1%
of the initial release concentration. Area is shown for both active esterases
(solid line) and inactive esterases (dashed line).

TABLE 1 Comparison of the postsynaptic coverage,
coverage rise times, and the number of doubly ligated AChR
molecules, due to the release of a single quanta of
acetylcholine

Simulation
Coverage

(mm2)
Doubly Ligated

Receptors
Coverage Rise Time

(ms)

Full NMJ 0.24 1877 85
No Folds 0.34 2692 120
No AChE 0.44 3400 290

Smart and McCammon Synaptic Transmission: A Continuum Model 1683



ciation of ACh from receptors will likely play a larger role
in determining MEPC rise times and amplitudes. Thus,
although coverage increases by 83% when AChE is dis-
abled, MEPC amplitudes should increase by significantly
less, due to steady ACh dissociation from the receptor array.
Indeed, Wathey et al. (1979) observed a 27% increase in
MEPC amplitude in their one-dimensional continuum cal-
culations when AChE was inhibited. Bartol et al. observed
a 35% increase in MEPC amplitude in their Monte Carlo
simulations (Bartol et al., 1991). Katz and Miledi (1972)
observed a 55% increase in their observed miniature end-
plate potentials upon prostigmine inhibition of AChE.

Acetylcholine lifetime in the NMJ

Although miniature endplate currents decay over several
milliseconds, the bulk of ACh is thought to be hydrolyzed,
or to exit the NMJ via free diffusion, in as short as 200–500
ms (Colquhoun, 1990; Wray, 1990; Katz and Miledi, 1979).
During our simulations, the total quantity of ACh in the
junction was recorded as a function of time, and its mean
lifetime in the junction was estimated. Fig. 3 plots the
quantity of ACh in the junction relative to the initial quan-
tity for active and inactive AChE. The lifetime of ACh is
defined as the time required for the initial maximum con-
centration to fall to 10% of its original value.

In the active AChE case, the lifetime is on the order of
215ms, within the expected range. The effects of AChE are
most pronounced in the early stages of diffusion, when the
initial wave of ACh reaches the esterases. The curve repre-
senting active AChE shows a sharp decline at early times,
while the curve representing inactive AChE is relatively
constant over the first 5ms. A comparison of the two curves
suggests, then, that AChE has a strong impact on the initial
burst of released ACh. Certainly this phenomenon would

explain why substrate inhibition of AChE may be important
biologically.

When AChE is deactivated, the ACh concentration is
depleted by association with receptors, or by diffusion out
of the junction. In order to simulate this phenomenon, the
sides of the junction were extended to allow for ample room
outside the proper “boundaries” of the original junction.
The concentration of ACh within the original junction vol-
ume was still recorded over the course of the simulation.
From Fig. 3 it is clear that the average ACh lifetime strongly
depends on the presence of AChE, and increases to 900ms
when the esterases are inactive. Unlike the active AChE
case, where the bulk of free ACh is hydrolyzed well before
bound ACh begins to dissociate, the neurotransmitter in the
inactive case remains in the synaptic cleft for over a milli-
second. Prolongation of the synaptic event is therefore ex-
pected, due to repeated binding of the neurotransmitter to
receptors.

The results of this section and the previous one suggest
that AChE plays a role in both isolating neurotransmitter
quanta in the immediate vicinity of release and in removing
excess ACh before significant rebinding can occur.

ACh release models

In the initial stages of ACh release synaptic vesicles fuse to
the presynaptic membrane, forming pores through which
the neurotransmitter can diffuse. The fusion pores expand
rapidly, reaching;50 nm in size (Kandel et al., 1991).
Earlier continuum models have suggested that diffusion
through a vesicular pore is insufficient to account for the
rapid rise time of miniature endplate currents (Khanin et al.,
1994). More recent Monte Carlo simulations, however,
have shown that diffusion through a rapidly opening pore
can account for observed rise times (Stiles et al., 1996).

To further explore this issue, we have performed simu-
lations using different release models. The different models
are depicted in Fig. 4. The first model corresponds to rapid
vesicular fusion on the timescale of diffusion of ACh. Here,
the ACh is released in a shallow cleft at the top of the
synaptic gap, and may diffuse directly into the synapse. The
volume of the cleft is roughly equal to the volume of the
synaptic vesicle used by Khanin et al. in their studies of
neurotransmitter release (Khanin et al., 1994). The second
model corresponds to diffusion through a rapidly expanding
fusion pore. The pore size is fixed at 6 nm on a side, with
a length of 9 nm, throughout the simulation; the pore length
is identical to that of Stiles et al. (1996). The cross-sectional
area of the pore (36 nm2) is equal to the average area over
the first 100ms of the pore used by Stiles et al. In their
fast-opening pore model, the vesicle’s contents emptied in
;100 ms, so that our 36 nm2 pore area provides a good
estimate of their average pore area over the time that the
bulk of ACh exited their vesicle model. The final release
model corresponds to a slowly opening fusion pore. The
pore size is fixed at 2 nm on a side, with a length of 9 nm.
The cross-sectional area of the small pore is in good agree-

FIGURE 3 Quantity of acetylcholine in the neuromuscular junction plot-
ted as a function of time, relative to the initial quantity. The solid line
represents active AChE, while the dashed line represents inactive AChE. In
the inactive case, loss of ACh is due to diffusion out of the junction.
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ment with the average area of the slowly opening pore
model of Stiles et al. In all three cases, the initial ACh
concentration inside the vesicle is equal to 300 mM (Vin-
cent and Wray, 1990).

Fig. 5 shows the average ACh concentration in the vesicle
as a function of time for the cleft and pore models. From the
figure, it is clear that the release model, and hence the rate
of pore expansion, has a strong impact on vesicle emptying
times. In the cleft model, the average concentration falls by
90% in 9ms, while in the large and small pore models, the
concentration falls by 90% in 140ms and 1 ms, respectively.
In comparison, published estimates range from 100ms to
500 ms for the release of;90% of a vesicle’s contents
(Khanin et al., 1994; Stiles et al., 1996; Almers and Tse,
1990). Experimental measurements of the neurotransmitter
serotonin in synaptic vesicles of cultured leech neurons
found release times on the order of 100ms (Bruns and Jahn,
1995). The large pore model, which corresponds to a radial
expansion rate of 25 nm/ms (Stiles et al., 1996), agrees well
with these estimates. The emptying times of the other two
models lie outside the expected range.

Estimates of the average concentration of ACh at the
postsynaptic membrane during a single quantal event ranges
from 1 to 10 mM (Kleinle et al., 1996; Matthews-Bellinger
and Salpeter, 1978; Land et al., 1980; Fertuck and Salpeter,
1976), much higher than the estimatedKd for AChR binding
(Salpeter, 1987). For our three release models, ACh con-
centration on the postsynaptic membrane was measured as a
function of time (Fig. 6). Here, the concentration has been
averaged over a disk of radius 0.2mm centered below the
point of release. From the plot, it is clear that diffusion
through a cleft or large pore leads to higher average ACh
concentrations at early times. Both models lie within the 1
mM to 10 mM estimated range. Diffusion through the
slowly opening pore model, however, leads to diffuse cov-
erage. The ACh concentration lingers for several hundred
microseconds on the postsynaptic membrane, but never
rises above 0.25 mM. As will be discussed below, diffusion
through the small pore significantly delays transmission of
the synaptic signal.

The most important criterion for comparing the different
release models is coverage of the postsynaptic membrane.

FIGURE 5 Average vesicular concentration of acetylcholine for differ-
ent release models.

FIGURE 4 Depiction of the three neurotransmitter release models. (A)
Instantaneous release from a presynaptic cleft. (B) Release through a large
pore, representing rapid pore expansion. (C) Release through a small pore,
representing slow pore expansion. Figures not drawn to scale.

FIGURE 6 Average acetylcholine concentration on the postsynaptic
membrane for different release models.
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Table 2 lists postsynaptic coverage, coverage rise time, the
maximum number of open AChR channels, and the delay
time for the three models. For the slowly opening pore
model, postsynaptic coverage never rises above 0.12mm2 in
the first 500 ms after release. The rapidly opening pore
model, however, allows for rapid diffusion of neurotrans-
mitter out of the synaptic vesicle, and coverage close to that
of the cleft model. Additionally, the coverage rise times for
both the large pore and cleft models are in rough accord
with MEPC rise time estimates for vertebrate NMJ’s. Stiles
et al. (1996) found that both instantaneous neurotransmitter
release and passive diffusion through a rapidly opening pore
gave similar MEPC rise times and amplitudes. Our results,
along with theirs, lend support to the argument that diffu-
sion out of a rapidly opening pore is sufficient to account for
the observed amplitudes and rapid rise times typically mea-
sured in vertebrate NMJ’s.

The delay time in Table 2 is defined as the time required for
the initial burst of ACh to reach the postsynaptic membrane.
For the slowly opening pore model, the delay time alone is
already longer than MEPC rise time estimates. Therefore, the
slowly opening pore model, which corresponds to an expan-
sion rate of 0.275 nm/ms (Stiles et al., 1996), can safely be
ruled out as a possible mechanism for neurotransmitter release.

CONCLUSIONS

In this work we have examined the effects of AChE, sec-
ondary folds, and different release models on the extent and
timecourse of ACh diffusion. Our simulations have shown
that coverage rise times (and hence MEPC rise times) are
dominated by binding and isomerization events, rather than
diffusion across the synaptic cleft. In our simulations, transit
times were on the order of 6ms, while coverage rise times
were shown to be;85 ms or greater.

From the simulations it is also clear that although AChE
does have an impact on the initial burst of released ACh, its
primary role appears to be during the later stages of synaptic
transmission. We observed that the mean lifetime of ACh
increases considerably when the esterases are inactive, and that
postsynaptic coverage and coverage rise times increase mod-
estly. Our simulations support previous observations that
AChE clears ACh from the synaptic cleft before dissociation
and subsequent rebinding of the neurotransmitter can occur
(Land et al., 1984; Magleby and Terrar, 1975; Katz and Miledi,

1973). Additionally, the esterases keep the neurotransmitter
from diffusing beyond the immediate vicinity of release.

However, our results predict that secondary folds play a
smaller role in synaptic transmission. Due to the reduced
surface density of receptors in the secondary folds, their
presence has only a small effect on coverage, and therefore
MEPC amplitude. Again the results are in accord with other
simulations (Bartol et al., 1991), which suggest that second-
ary folds do not play a primary role in ACh binding or
uptake, but serve some other purpose instead.

We have found that both release of ACh through a large
pore, and instantaneous release from a presynaptic cleft,
lead to similar degrees of postsynaptic coverage and similar
rise times. In both cases, the rise times, coverage, and average
concentration on the postsynaptic membrane are in accord with
experimental measurements. Thus, our simulations suggest
that passive diffusion of ACh through a sufficiently rapidly
opening fusion pore can account for the measured timecourse
and amplitude of endplate currents. However, release through
a small (i.e., slowly opening) fusion pore leads to ACh con-
centrations on the postsynaptic membrane below published
estimates. Additionally, the delay time of the transmitted signal
is itself longer than experimental MEPC rise times. Therefore,
a rapidly expanding fusion pore is vital for timely and efficient
synaptic transmission.

By comparing our results to experiments, and to other
simulations, we have demonstrated that continuum finite
element methods are a viable alternative to Monte Carlo and
analytic techniques for studying synaptic transmission.
With the reliability of the method established, it is possible
to move to more ambitious NMJ models, where experimen-
tal data, or data from other simulations, are sparse.

The primary advantages of the continuum method are its
speed and expandability. Due to the discrete nature of ACh
in Monte Carlo implementations, the size of individual
timesteps in these simulations is often limited. In addition,
the total time required for Monte Carlo simulations scales
linearly with the number of particles in the system, and can
be prohibitively large when many release sites are included.
The continuum approach, however, utilizes adaptive timesteps
to reduce computation time, and scales by the number of finite
elements in the system, not by the number of ACh “particles.”
Therefore, with a sufficiently coarse finite element mesh, the
continuum NMJ model may easily be expanded to study syn-
aptic transmission on a much larger scale.

Future simulations will therefore examine much larger
systems, including dozens, or hundreds, of interacting re-
lease sites. The role of AChE in isolating separate quanta will
be further explored in these cases. In addition, potentiating
effects between quanta will be examined. The eventual goal is
the accurate reproduction of full endplate currents (EPC’s), and
possibly the study of desensitization effects due to rapid, re-
peated release. This will require the release of;300 quanta,
the quantal content of a typical EPC (Katz and Miledi, 1979).
The continuum approach, with a sufficiently simplified NMJ
model, can be used to study such large systems.

TABLE 2 Comparison of the postsynaptic coverage,
coverage rise time, number of doubly ligated AChR
molecules, and initial delay time for different release models

Release
Model

Coverage
(mm2)

Doubly Ligated
Receptors

Coverage Rise
Time (ms)

Initial
Delay (ms)

Cleft 0.24 1877 85 5
6-nm Pore 0.22 1685 110 20
2-nm Pore 0.12 920 400 90

The delay time is the dead time between the initial release of neurotrans-
mitter and its arrival at the postsynaptic membrane.
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Finally, the full kinetic model for nicotinic receptors,
shown in Eq. 17, will be implemented in future simulations.
The addition of receptor kinetics is straightforward, and
should involve little modification of the current code. Mod-
eling of channel isomerization and unbinding events will
allow for generation of full miniature endplate currents, and
allow for direct comparisons to experimentally measured
MEPC’s.
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