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ABSTRACT The primary all-trans 3 13-cis photoisomerization of retinal in bacteriorhodopsin has been investigated by
means of quantum chemical and combined classical/quantum mechanical simulations employing the density matrix evolution
method. Ab initio calculations on an analog of a protonated Schiff base of retinal in vacuo reveal two excited states S1 and
S2, the potential surfaces of which intersect along the reaction coordinate through an avoided crossing, and then exhibit a
second, weakly avoided, crossing or a conical intersection with the ground state surface. The dynamics governed by the three
potential surfaces, scaled to match the in situ level spacings and represented through analytical functions, are described by
a combined classical/quantum mechanical simulation. For a choice of nonadiabatic coupling constants close to the quantum
chemistry calculation results, the simulations reproduce the observed photoisomerization quantum yield and predict the time
needed to pass the avoided crossing region between S1 and S2 states at t1 5 330 fs and the S1 3 ground state crossing
at t2 5 460 fs after light absorption. The first crossing follows after a 30° torsion on a flat S1 surface, and the second crossing
follows after a rapid torsion by a further 60°. t1 matches the observed fluorescence lifetime of S1. Adjusting the three energy
levels to the spectral shift of D85N and D212N mutants of bacteriorhodospin changes the crossing region of S1 and S2 and
leads to an increase in t1 by factors 17 and 10, respectively, in qualitative agreement with the observed increase in fluorescent
lifetimes.

INTRODUCTION

The protein bacteriorhodopsin (bR) resides in the membrane
of the archaebacteriumHalobacterium salinariumand uti-
lizes sunlight to drive a transmembrane proton pump in the
most basic form of photosynthesis known (Lozier et al.,
1975). The 26-kDa protein incorporates a retinal chro-
mophore bound to a lysine residue via a protonated Schiff
base linkage and absorbs light around 568 nm. Photoexci-
tation triggers an isomerization of retinal about its C13AC14

double bond from an initial all-trans to a 13-cis configura-
tion, which is completed within a few picoseconds. The
photoreaction induces a vectorial transfer of a proton, lead-
ing to the release of a proton to the extracellular side and
uptake from the cytoplasmic side. The structure, photo-
cycle, and previous molecular dynamics studies of bR have
been reviewed in Oesterhelt et al. (1992), Ebrey (1993),
Schulten et al. (1995), and Lanyi (1997).

The bR photocycle proceeds through several sequential
intermediates characterized by distinct retinal absorption
maxima. The current view of the photoisomerization pro-
cess, which has emerged from time-resolved spectroscopy
and modeling of the bR photointermediates (Mathies et al.,
1988; Dobler et al., 1988; Du and Fleming, 1993; Hum-
phrey et al., 1995, 1997; Xu et al., 1996), suggests that the

reaction proceeds through the sequential steps

bR568 V
hn

bR*~200 fs!O¡
500 fs

J625O¡
3 ps

K590 · · · (1)

where photoexcitation of bR generates bR*, which succes-
sively decays to the intermediates J625 and K590, the latter
being a ground-state product with retinal in a 13-cis geom-
etry. The observations suggest that substantial torsional
motion takes place during the;200-fs lifetime of the ex-
cited-state bR*.

A schematic structure of bR together with retinal bound
as a protonated Schiff base to Lys216, water molecules, and
key amino acid side groups Asp85, Asp96, Asp204, and
Asp212 is shown in Fig. 1. Asp85 is unprotonated and neg-
atively charged at the beginning of the proton pump cycle;
this group has been shown in mutagenesis (Mogi et al.,
1988; Subramaniam et al., 1990; Otto et al., 1990) and
Fourier transform infrared spectroscopy experiments (Brai-
man et al., 1988) to accept a proton from the Schiff base
after photoisomerization. The D85N mutant forms the K590

intermediate in Eq. 1, but exhibits no proton pumping
activity (Mogi et al., 1988; Subramaniam et al., 1990; Otto
et al., 1990). Similarly, the D212N mutant involving an-
other unprotonated aspartic acid side group near retinal fails
to pump protons (Mogi et al., 1988; Otto et al., 1990). After
photoexcitation, the excited-state dynamics of these mutants
differs markedly from the behavior for native bR. The
fluorescence lifetime for D85N is 20 times longer than the
500-fs lifetime of native bR, and for D212N is 4 times
longer (Song et al., 1993). The quantum yields of these
mutants, nevertheless, are close to the wild-type value of
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0.646 0.04 (Schneider et al., 1989; Govindjee et al., 1990;
Logunov et al., 1996a, b).

Previous simulations of the photoisomerization of bR
have employed a single potential surface for the excited
state, evaluated by means of QCFF/PI methods (Warshel et
al., 1991), or have been described by a simple periodic
function (Zhou et al., 1993; Humphrey et al., 1995). How-
ever, polyenes are known to have two closely lying singlet
excited states:Ssingle, which, for pure polyenes, is optically
allowed and involves mainly single excitations; andSdouble,
which is optically forbidden and involves mainly two-elec-
tron excitations (Schulten and Karplus, 1972; Hudson et al.,
1982; Tavan and Schulten, 1986; Serrano-Andreas et al.,
1993a). In polyenes and unprotonated Schiff bases of reti-
nal, Sdouble is the lowest state in energy, whereas for pro-
tonated Schiff basesSsingle is the lowest state (Schulten et
al., 1980). Photoexcitation of bR populates mainlySsingle,
i.e., the lowest excited singlet state; the higher stateSdouble

is responsible for the two-photon absorption reported by
Birge and Zhang (1990).

The question arises, how much does a torsion around
retinal’s C13AC14 bond during photoisomerization alter the
energy level ordering ofSsingleandSdoublesuch that the state
Sdouble becomes involved in the photodynamics of retinal?
This question must be pursued because omission of the

second, i.e., higher energy, excited-stateSdouble in such a
case could affect the photoreaction. In fact, nonadiabatic
torsion around the C13AC14 double bond promotes the two
p-electrons residing in the ethylenic ground state of this
bond to a double excitation, which argues for an involve-
ment of the stateSdouble in the all-trans3 13-cis reaction.

Accordingly, we employ in the present study model po-
tential surfaces involving three electronic states, as sug-
gested by Schulten et al. (1995). The three-state model
implies that the system is required to pass two crossing
regions to return, after photoexcitation, to the ground state.
Level crossing is a quantum mechanical process and re-
quires a quantum mechanical description. In this study we
will employ for this purpose the so-called density matrix
evolution method, also known as mean field approach, in
which a 33 3 density matrix accounts for the occupancy of
the three participating electronic states and the nuclear
motion is represented in an approximate fashion through a
single classical trajectory (Mavri et al., 1993). More exact
description is provided in Ben-nun et al. (1998).

In the following we introduce first the quantum chemical
and combined quantum/classical mechanical simulation
methods employed in our study. We present then the sim-
ulation results accounting for participation of three elec-
tronic states in the photodynamics of retinal in wild-type
bR, and for the D85N and D212N mutants of bR. From
these simulations we compute quantum yields and excited-
state lifetimes.

METHODS

The potential surfaces governing photoisomerization processes have been
evaluated in vacuo for the retinal analog [CH2O(CH)3O(C2H3)O
(CH)2ONHOCH3]

1. This retinal analog is known to be the shortest
analog that exhibits proton pumping activity upon reconstitution with the
apoprotein (Steinberg et al., 1991). The choice of this analog was dictated
by the fact that retinal itself, which contains six double bonds, proved too
large for a sufficiently extensive calculation.

The electronic excitations and potential surfaces of conjugated polyenes
have been described by means of extended ab inito calculations by a
number of groups. Previous studies have focused on the electronic excita-
tions of octatetraene (Serrano-Andreas et al., 1993b) and retinal (Du and
Davidson, 1990), as well as on the ground- and excited-state potential
surfaces of butadiene, hexatriene (Ollivuci et al., 1993, 1994), and a
polyene Schiff base of two double bonds (Bonacic-Koutecky et al., 1987).
In this investigation we extend the earlier calculations of potential surfaces
to a polyene Schiff base of four double bonds, i.e., eightp-electrons. We
employ the program MOLPRO, which has been specifically designed to
provide fast and accurate ab initio calculations of excited-state potential
surfaces (Werner and Knowles, 1985; Knowles and Werner, 1985).

Calculations were carried out at the CASSCF(8,8)/6-31G level. After an
initial self consistent field (SCF) calculation to determine all orbitals, the
procedure chosen further optimized thep-orbital, allowing all possiblep
electron configurations (in the eightp orbitals). Such calculations are
difficult because of convergence problems and were only feasible because
of the advanced optimization algorithms of MOLPRO (Werner, 1987). The
MOLPRO program employs an efficient second-order Monte Carlo SCF
method for long configuration expansions. The program also provides the
feature of so-called state-averaged calculations in which the average en-
ergy of the states under consideration is optimized; this feature was used
extensively for the present study.

FIGURE 1 The protein bacteriorhodopsin, including retinal, water mol-
ecules, and residues Lys216, Asp85, Asp96, Asp212, and Glu204, which
participate in proton translocation. Helixes A, B, E, F, and G are drawn as
cylinders; helices C and D are drawn as thin tubes to reveal the protein
interior. This figure was created with VMD (Humphrey et al., 1996).
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As argued above, one expects the three lowest electronic states (S0, S1,
andS2) to be implicated in retinal’s photoisomerization. To determine the
overall shape of the potential surfaces (cf. Fig. 2), we averaged over the
three electronic statesS0, S1, S2. In regions of close approach between any
two surfaces, additional state-averaged calculations were performed to
investigate the nature of the “crossing” between the respective states; in
such calculations molecular orbitals were optimized with respect to the
average energy of the two particular states of interest (eitherS0 andS1, or
S1 andS2).

The initial geometry of the retinal analog was minimized at the Hartree-
Fock level, using a 6-31G basis set. The potential surfaces were computed
for a gradual torsion in steps of 15° around the CAC double bond adjacent
to the Schiff base of the retinal analog; all other degrees of freedom were
kept constant. Basis set improvements beyond the 6-31G level were found
not to significantly affect the potential surfaces.

From the adiabatic surfaces in Fig. 2 we change in our simulations to a
presentation in terms of af-dependent 33 3 Hamiltonian matrix

H~f! 5 S Ea~f! Vab Vac

Vab Eb~f! Vbc

Vac Vbc Ec~f!
D, (2)

wheref represents the torsional angle about the C13AC14 double bond
(the isomerization reaction coordinate),Ej(f) (j 5 a, b, c) are nonadiabatic
potential surfaces, andVij are the nonadiabatic coupling constants, which
we choose to be real andf-independent. As discussed further below, the
nonadiabatic surfacesEj and coupling constantsVij were chosen such that
the diagonalized form ofH(f) in Eq. 2 approximates the ab initio surfaces
of the statesS0, S1, andS2 in Fig. 2. In the new representation the regions
of nonadiabatic interaction between the statesS0, S1, andS2 are represented
by explicit crossing points along theEj(f) surfaces.

The use of a truncated retinal analog and the neglect of the stabilizing
effect of the protein environment resulted in an overestimate of theS03 S1

excitation energy. This deficiency was corrected through a linear scaling of
Ea, Eb, andEc such that the energy difference between the statesS0 andS1

at the all-trans position measured 50 kcal/mol, a value close to the

excitation energy of retinal in bR. The resulting nonadiabatic surfaces
Ej(f) are shown in Fig. 3.

The minimum energy separation betweenS0 andS1, as well as between
S1 and S2, allows one to determine the coupling constantsVij , i.e., the
coupling constants should be half of the minimum energy splitting. After
state average calculations (described in the next section) for thef2 region
in Fig. 2, the splitting betweenS1 and the ground state is 0.92 kcal/mol, and
the splitting betweenS1 andS2 is 4.4 kcal/mol. These values correspond to
coupling constants of 0.47 kcal/mol forVab and 2.2 kcal/mol forVac and
Vbc. For simplicity,Vab was chosen to be 0.5 kcal/mol, andVac (as well as
Vbc) was chosen to be 1 kcal/mol and 3 kcal/mol in two sets of simulations.
It is worth mentioning here that the quantum yield depends sensitively on
Vab: a value ofVab 5 0.5 kcal/mol within the density matrix evolution
description adopted here leads to a quantum yield that is close to the
experimentally observed value 0.64 (Schneider et al., 1989; Govindjee et
al., 1990), whereas a choice ofVab5 1 kcal/mol would result in a quantum
yield of 0.34. Simulations showed that the time forEc 3 Ea does not
depend sensitively onVacandVbc: a value ofVac5 Vbc 5 1 kcal/mol yields
a crossing time of 332 fs, and a value ofVac 5 Vbc 5 3 kcal/mol yields a
crossing time of 300 fs. Only simulation results from a coupling constants
set (Vab, Vac, Vbc) 5 (0.5 kcal/mol, 1.0 kcal/mol, 1.0 kcal/mol) are shown
in the next section.

Hamiltonians similar to Eq. 2 were constructed for the bR mutants
D85N and D212N absorbing at 615 nm (Mogi et al., 1988) and at 585 nm
(Needleman et al., 1991), respectively. For this purpose the minima of the
Ec surface at the all-trans and 13-cis positions were lowered to match the
respective excitation energies, whereasEa, Eb, and the couplingsVij were
assumed to be the same as for wild-type bR. The resulting surfacesEc,bR,
Ec,D85N, andEc,D212N are compared in Fig. 3.

The photodynamics simulations used as a starting point the refined
bR568 structure reported by Humphrey et al. (1994), which is based on a
structure of bR obtained by electron microscopy (Henderson et al., 1990).
The refined structure includes the loop regions between the seven trans-
membrane helices of bR, as well as 16 water molecules within the protein
interior. Five of these water molecules are located within the vicinity of
retinal’s binding site, in hydrogen-bond contact with the Schiff base proton
and nearby amino acids, including Asp85 and Asp212. As shown by Stuart
et al. (1995), the Schiff base binding site is either neutral or positively
charged. In the present structure, the counterion of retinal is a hydrogen-
bonded complex involving several water molecules, in which Asp212,
Asp85, Tyr57, Tyr185, Arg82, and Thr89 correspond to a neutral binding site
region (Humphrey et al., 1994). The possibility of calcium binding sites
near the Schiff base suggested by Stuart et al. (1995) seems to be ruled out

FIGURE 2 Computed ground- and excited-state potentials of
[H2CA(CH)O(CH)A(CH)O(CH3OC*)A(C*H)O(CH)ANH1OCH3],
an analog of the protonated Schiff base of retinal. The dependence of the
energies of the ground state (S0) as well as the first (S1) and second (S2)
excited states on the torsional anglef of the bond C*AC* is shown. The
bond C*AC* corresponds to the C13AC14 double bond of retinal. State-
averaged calculations for theS0, S1, and S2 electronic states were per-
formed at the CASSCF(8,8)/6-31G ab initio level (see text).f1 and f2

indicate the two regions of close interaction between the two excited states,
and between the first excited state and the ground state, respectively.

FIGURE 3 Nonadiabatic potential energy surfaces used in molecular
dynamics simulations of bacteriorhodopsin and bR mutants. The minimum
of the surfacesEc,bR, Ec,D85N, andEc,D212N are matched to the measured
excitation energy of bR and its respective mutants.
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by recent x-ray diffraction measurement of crystallized bR (H. Luecke,
personal communications). The structure in the current simulations has a
retinal binding site similar to bR structures recently reported (Grigorieff et
al., 1996; Kimura et al., 1997; Pebay-Peyroula et al., 1997). Structures for
bR D85N and D212N mutants were constructed through modification and
equilibration of the structure of native bR as previously described by
Humphrey et al. (1997). A series of simulations was carried out for native
bR as well as for its D85N and D212N mutants. Each simulation started
with a different set of (random) velocities and a brief 100-fs equilibration
phase, which was followed by simulation of the photoisomerization reac-
tion employing the density matrix evolution (DME) method (Berendsen
and Mavri, 1993) based on the potential energy surfaces in Fig. 3. The
photoisomerization simulations continued until retinal returned to the
ground state, and overall simulation periods varied from 1 to 12 ps. All
simulations that completed an all-trans3 13-cis isomerization were con-
tinued for a further 2 ps to model the J6253 K590 transformation, assumed
here to be a relaxation process (Xu et al., 1996); for this purpose the
ground-state potential introduced by Humphrey et al. (1995),

V~f! 5 1
2
k13–14@1 1 cos~2f 1 p!#, (3)

with k13–14 5 20 kcal/mol, was used to describe the C13AC14 torsion,
replacing the three-level potential in Eq. 2.

The DME description of the torsion around the C13AC14 bond couples
the evolution of the quantum mechanical density matrix of the three
electronic states involved in the photoisomerization to a single classical
trajectory of the entire protein (Berendsen and Mavri, 1993). Using the
three-state HamiltonianH in Eq. 2, we introduce the density matrixr(t), the
diagonal elements of which represent the occupation of the three states as
a function of time. Photoexcitation is accounted for by starting from the
pure state,

rij~t0! 5 dcc. (4)

During the subsequent simulation, the density matrix evolves according to
the Liouville–von Neumann equation,

ṙ 5
i

\
@r, H#. (5)

The density matrix incorporates the effect of coherence between the
quantum states during the dynamics, without the need to calculate explic-
itly the wave function for the three electronic states.

The DME description is only approximate, as discussed further below.
More exact schemes employed in combined quantum/classical molecular
dynamics simulations are the surface-hopping algorithm (Tully and Pres-
ton, 1971; Tully, 1990) and the multiple spawning algorithm (Martinez et
al., 1997; Ben-Nun and Martinez, 1998), which represent the nuclear
motion in a less approximate way. These schemes, in the context of
bacteriorhodopsin, are extremely expensive computationally, because they
require statistical ensembles involving large numbers of trajectories. Sim-
ulations of the bR photodynamics using the multiple spawning algorithm
are reported in Ben-Nun et al. (1998).

The energy stored in the torsion around the C13AC14 bond, in the
framework of the DME description, is given by

E13–145 Tr rH 5 O
j5a

c

rjjEj 1 O
j,k5a
jÞk

c

rjkVkj. (6)

The corresponding forces are obtained after taking the (negative) gradient
with respect to atomic coordinates. Because the couplingsVjk are chosen to
be independent off, the forces acting on atomk with position rWk are

FW 13–14,k~f! 5 O
j5a

c

rjjFW jk, (7)

where FW jk 5 2­Ej(f)/­rWk, i.e., the net force acting on an atom is the
average over the forces due to each state, weighted by the occupancyrjj of
that state. To the resulting force on atomk are added all other forces acting
on the atom from the surrounding protein environment.

Equation 5 was integrated by means of a fourth-order Runge-Kutta
scheme to yieldr(t); rapid oscillations in the occupancy of the states
required a 0.1-fs integration time step. For the classical molecular dynam-
ics simulations, the program NAMD (Nelson et al., 1996) was used (after
incorporation of the DME method) for integration of the classical equations
of motion, and a 1-fs integration time step was employed. The simulations
were carried out at a temperature of 300 K. In carrying out the simulations
the CHARMm force field (Brooks et al., 1983) was used, except for the
torsional motions around the retinal backbone. For the latter we employed
torsional potentials as determined by Logunov and Schulten (1996) and
provided in Table 1, except for the C13AC14 bond torsion, the potentials of
which are characterized in Table 2.

RESULTS

Quantum chemical calculations

The adiabatic, singlet state potential surfaces for torsion
around the double bond adjacent to the CAN bond of the
retinal analog [CH2O(CH)3O(C2H3)O(CH)2ONHOCH3]

1

are presented in Fig. 2. For the all-trans [13-cis] geometry
the calculations predict, besides the ground stateS0(trans)
[S0(13-cis)], two closely spaced excited states, a state
S1(trans) [S1(13-cis)], with predominantly single-excited
electron configurations, below a stateS2(trans) [S2(13-cis)],
with predominantly double-excited electron configurations.
This level ordering is in qualitative agreement with the
configuration interaction calculations on a related poly-
enylic ion reported by Schulten et al. (1980). Both the
S1(trans) andS2(trans) states are optically allowed from the
ground stateS0(trans); the respective transition dipole mo-
ments areDS03S1

5 3.4 a.u.,DS03S2
5 1.3 a.u., a relevant

transition dipole moment from stateS1 is DS13S2
5 0.9 a.u.

The doubly excited character of theS2 state suggests that
this state is related to the two-photon allowed1Ag state in
regular polyenes (Schulten and Karplus, 1972; Tavan and
Schulten, 1986). The very close values ofS03 S1 andS03
S2 excitation energies and comparable magnitudes of
DS03S1

andDS03S2
indicate clearly the importance of both

S1 andS2 excited states for retinal photodynamics.
As can be seen from Fig. 2, the potential surfaces along

the complete [0°, 180°] interval of the torsional anglef
exhibit three avoided crossings, two nearf1 5 30°, f91 5
150°, and one nearf2 5 90°. We examined the surfaces
nearf1 andf2 by means of state-averaged calculations (see

TABLE 1 Barriers ki in the potential function Ei
dihe 5 1

2
ki[1 1

cos(2vi 1 pi)] governing torsions around bonds of retinal’s
backbone, except the 13A14 bond

vi ki (kcal/mol) vi ki (kcal/mol)

C5OC6OC7OC8 5.0 C6OC7OC8OC9 47.0
C7OC8OC9OC10 5.0 C8OC9OC10OC11 33.2
C9OC10OC11OC12 8.4 C10OC11OC12OC13 28.4
C11OC12OC13OC14 10.8 C12OC13OC14OC15 Table 2
C13OC14OC15ONSB 10.0 C14OC15ONSBOCe 5.0
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Methods) involving only the two states involved in the
“crossings,” i.e., statesS1 andS2 nearf1 and statesS0 and
S1 nearf2. These calculations extend results of Schulten et
al. (1995), providing an improved description of the poten-
tial surfaces close to the crossing regions. In case of the
region nearf1, the results revealed that the interaction is of
the “avoided crossing” type; the potential curves obtained in
state-averaged calculations for two states do not differ con-
siderably from those presented in Fig. 2, implying that the
coupling between theS1 and S2 states in thef1 region is
strong.

In contrast, examination of the potential surface in the
region nearf2, employing averaging over only the two
statesS0 and S1, leads to results that differ considerably
from those obtained when all three states are involved in the
average. This is demonstrated in the inset in Fig. 2, which
shows that the separation between the surfaces becomes less
than 1 kcal/mol in this case. Most likely, the crossing
betweenS0 and S1 is of the “conical intersection” type
(Cederbaum et al., 1981). Clarification of this matter re-
quires consideration of further retinal degrees of freedom in
the crossing region, e.g., of the stretch vibration of the
C13AC14 bond (Cederbaum et al., 1981). Calculations per-
formed for a smaller retinal analog indicate, indeed, the
existence of a conical intersection betweenS0 and S1

(Bonacic-Koutecky et al., 1987).
Following the procedure outlined in Methods, the sur-

faces shown in Fig. 2 can be interpreted as arising from
three nonadiabatic surfaces shown in Fig. 3: one surface
(Eb) connecting the all-trans ground stateS0(trans) to the
excited stateS2(13-cis); a second (Ea) connecting, con-
versely, the excited stateS2(trans) to the ground stateS0(13-
cis); and a third one (Ec,bR) connecting the excited state
S1(trans) to the excited stateS1(13-cis).

The identification of the two nonadiabatic surfacesEa and
Eb constitutes a key assumption on which the further inves-
tigation is based. The surfaceEb is consistent with the
simple interpretation that the stateS0(trans) contains two

p-electrons in the bonding orbital of the double bond under
consideration, and that a 180° torsion adiabatically lifts
thesep-electrons into the antibonding orbital, i.e., into a
doubly excited electron configuration; the occurrence of
such configurations is characteristic of theS2(13-cis) state.
The surfaceEa can be interpreted in a similar manner.

The distinctive features of the surfaces in Figs. 2 and 3 is
the existence of regions of nonadiabatic interactions induc-
ing, nearf1 (f91), the crossingEa7 Ec,bR(Eb7 Ec,bR) and,
nearf2, the crossingEa7 Eb.

DME simulations

As outlined in Methods, the nonadiabatic potential surfaces
in Fig. 3 served as a basis for a combined quantum/classical
mechanical simulation, resulting in trajectories that provide
coordinates, e.g., the torsional angle of the C13AC14 bond
f(t), as well as selected observables, e.g., the energyE13–14

defined in Eq. 6. Fig. 4 presents the [E13–14(t), f(t)] diagram
of a typical trajectory resulting from a 1-ps simulation,
which ends with 13-cis retinal. Retinal is excited initially in
the all-transgeometry by a 568-nm photon, i.e., it is placed
on theEc,bRsurface atf 5 0 (cf. Eq. 4). After a timet1 the
system reaches the first crossing region and crosses to the
surfaceEa, where it quickly descends to the second crossing
point f2 at timet2. Here, after a brief period of meandering
(;100 fs) near the crossing point, the system chooses to
continue alongEa to complete the photoisomerization and
reaches the 13-cis geometry. The energyE13–14(t), initially
follows the potential surfaces closely, but at the end of the
photoreaction deviates significantly from the surface
E1[f(t)], reflecting the fact that the system in the DME

TABLE 2 Barriers kf
(j) and periodicity n in the potential

functions Ej 5 1

2
kf

(j)[1 1 cos(nf 1 dj)] 1 DE0 governing torsion
around retinal’s 13A14 bond

State kf
(j) (kcal/mol) n dj DE0

bR568

Ea 54 2 180° 0
Eb 54 2 0° 0
Ec 4 1 180° 50

D212N
Ea 54 2 180° 0
Eb 54 2 0° 0
Ec 5.4 1 180° 48.6

D85N
Ea 54 2 180° 0
Eb 54 2 0 0°
Ec 7.8 1 180° 46.2

These functions are employed in the nonadiabatic description as stated in
Eq. 2. TheDE0 values were chosen to match observedlmax values of bR
and its mutants. The barrierskf

(j) were chosen to render the maxima ofE3

independent of the mutation.

FIGURE 4 EnergyE13–14of the 13–14 torsional degree of freedom as a
function of the torsional bond anglef, i.e., the [E13–14(t), f(t)] trajectory,
for a sample molecular dynamics simulation. The energyE13–14 is com-
pared to the three nonadiabatic energy surfacesEa, Eb, andEc,bR as shown
in Fig. 3. Initially retinal is promoted in the all-transgeometry fromEb to
Ec,bR; subsequently, retinal crosses toEa nearf 5 f1. At f 5 f2 retinal,
in the case shown, chooses to continue its motion alongEa to reach the
13-cis isomeric state. Alternatively, retinal may have crossed toEb to
reform the all-trans state (not shown).
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description used here is trapped in a mixed quantum state.
For trajectories leading to all-trans retinal, a behavior sim-
ilar to that shown in Fig. 4 is seen before the second
crossing region is reached; however, after the meandering
near the crossing point, the system chooses to switch to
surfaceEb, which leads back toward the all-trans isomer of
retinal.

The diagonal elementsrjj , j 5 a, b, c, of the density
matrix describe the occupancies of the three electronic
states corresponding to the surfacesEa, Eb, Ec,bR. These
occupancies are shown in Fig. 5. After excitation, i.e., at
t0 5 0, the occupancies of states corresponding toEa and
Ec,bR oscillate rapidly for;200 fs because of the energetic
proximity of the surfaces. The system is then seen to switch
rapidly to the surfaceEa, whereupon a fast torsion moves
the system in a timeDt (see Table 3) to the second crossing
point with the surfaceEb. Rapid oscillations are again
discernible at this stage, mixing the states corresponding to
Ea andEb; because of the rather weak nonadiabatic coupling
Vab 5 0.5 kcal/mol, 70% of the trajectories choose to stay
on theEa surface and proceed toward the 13-cis isomeric
state. However, beyond the crossing point the states corre-
sponding toEb, Ec,bR remain populated to a significant
degree. Because of environmental relaxation effects and
because of quantum effects on the nuclear motion, not
accounted for in our description, the occupancies of these
states should vanish within a few femtoseconds, as demon-
strated recently for a hydrated electron for which relaxation
effects are expected to be stronger, however, than in the
present case (Schwartz et al., 1996). The neglect of this
decay is a shortcoming of the DME description adopted
here, which, as a result, can lead to unphysical “average”
final states, when in reality the system would choose be-
tween one of the possible “pure” final states with a certain
probability distribution. In this respect one should remark
that the quantum mechanical nature of the nuclear motion is

significant even for molecular systems like retinal and pro-
tein, e.g., for nuclear motion with large effective masses
(Bornemann et al., 1996). The simulations reported by Ben-
Nun et al. (1998) and subsequent fully quantum mechanical
simulations address this problem.

A total of 100 simulations of the photoisomerization of
wild-type bR were carried out, resulting in trajectories like
the one shown in Figs. 4 and 5. Fifty simulations were also
completed for the D85N and D212N mutants of bR, by
replacing the potential surfaceEc,bR with the surfaces
Ec,D85N andEc,D212Nshown in Fig. 3 and given in Table 2.
The simulations for the mutants required simulation periods
of 1–12 ps because of the longer time required for retinal in
D85N and D212N bR to cross to theEa potential surface.
The simulations exhibit asymptotically over 50% occu-
pancy of either of the states corresponding toEa or Eb. In the
example shown in Figs. 4 and 5, this occupancy is almost
90%. The results of the simulations are summarized in
Table 3: for each set of simulations, the fraction of trials that
completed the all-trans3 13-cis isomerization were identi-
fied, and the average crossing timest1 andt2 were determined.

In the 100 simulations of wild-type bR, 71 13-cis prod-
ucts emerged. Trials that failed to form a 13-cis isomer
either did not move beyond the first crossing pointf1 or
switched to the surfaceEb at the second crossing pointf2;
i.e., such trials reformed all-trans retinal. The simulated
photoisomerization quantum yield measured 0.71 for wild-
type bR, matching closely the observed quantum yield of
0.646 0.04 (Schneider et al., 1989; Govindjee et al., 1990).

Time-resolved spectroscopy of bR has revealed two fast
processes, one occurring within 2006 70 fs (Dobler et al.,
1988) and the other occurring within 5006 100 fs (Mathies
et al., 1988; Dobler et al., 1988; Du and Fleming, 1993).
The observations were interpreted to suggest that photoex-
citation is followed by rapid progression along the reaction

FIGURE 5 Occupanciesrjj (t) of the three nonadiabatic potential energy
surfacesEa, Eb, and Ec,bR as a function of time for the [E13–14(t), f(t)]
trajectory shown in Fig. 4. In the inset are shown the occupancies averaged
over all simulations that resulted in 13-cis retinal.

TABLE 3 Summary of simulation results

Bacteriorhodopsin mutant

bR568 D85N D212N

lmax 568 nm 615 nm 585 nm
No. of simulations 100 50 50
13-cis products 71 30 37

Case I products 66% 83% 84%
Case II products 34% 0% 5%

f1 152.2° 144.1° 148.7°
t1 332 fs 5.59 ps 3.24 ps

f2 90° 90° 90°
t2 462 fs 5.73 ps 3.42 ps

Dt 130 fs 140 fs 178 fs
t1 (mutant)/t1 (bR) — 16.8 9.8

f1 andf2 are torsional angles of the C13AC14 bond at the first and second
crossing points.t1 and t2 are the average times required to reach these
points.Dt is the difference betweent2 andt1. lmax values are from Mogi
et al. (1988) and Needleman et al. (1991).
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coordinate from all-trans to 13-cis during the initial 200 fs.
More recently, however, femtosecond spectroscopy cover-
ing an extremely wide spectral range has indicated a lack of
a spectral shift of induced absorption, indicating a flat
excited state surface. The observations also revealed a re-
laxation process with a decay time of 370 fs (Hasson et al.,
1996): theEc,bR3 Ea crossing att1 5 332 fs can explain
the observed fast decay.

Figs. 4 and 5 show the behavior of a single, albeit typical,
quantum/classical mechanical trajectory. Of interest is the
average behavior of bR. The inset in Fig. 5 shows the time
evolution of the density of the states corresponding to the
surfacesEa, Eb, andEc,bR averaged over all 71 simulations
that formed 13-cis photoproducts. The time at which the
occupations ofEc,bR and Ea intersect ist1, whereast2 is
near the time where the occupation ofE1 exceeds 50%. One
can discern that retinal photoisomerizes within;500 fs to
the 13-cis geometry with a final population of theE1 sur-
face, on average, of;80%.

For the D85N and D212N mutants of bR, the dynamics of
retinal after light excitation is significantly slower in the
initial phase. For D85N bR, with 30 of 50 simulations
forming 13-cis isomers, the average time to the first cross-
ing point is 5.59 ps: in the case of D212N bR with 37 of 50
completing the 13-cis isomerization, the first crossing oc-
curred at 3.24 ps. The increase oft1 is due to the feature of
our model potentials (see Table 2 and Fig. 3) that the
surfacesEc,D8N andEc,D212Ncross theEa surfaces at higher
(relative to theEc,x(trans) minima, x 5 bR, D85N, and
D212N) energies than in case of theEc,bR3 Ea crossing.
Interestingly, the time between the first and second cross-
ings,Dt, is approximately the same for native bR and for its
D85N or D212N mutants; the mutants spent the major part
of the overall reaction time “in front of” the first crossing
point.

In previous molecular dynamics simulations of the pho-
toisomerization of retinal in bR (Humphrey et al., 1995;
Schulten et al., 1995; Humphrey et al., 1997), the isomer-
ization products assumed two distinct structures: case I
structures, in which the Schiff base NOH1 bond is oriented
toward the cytoplasmic side of the protein, and case II
structures, in which twists around retinal’s single bonds
oriented the NOH1 bond to point parallel to the plane of
the membrane such that NOH1 remains connected to Asp85

via hydrogen bonds with an intermediate water molecule.
The latter product was identified with the K590 intermediate,
i.e., with the intermediate that actually initiates the proton
pump cycle (Humphrey et al., 1995; Schulten et al., 1995;
Xu et al., 1995). Fig. 6 compares the retinal geometries and
surrounding binding sites for case I (Fig. 6b), case II (Fig.
6 c), and all-transretinal (Fig. 6a). The combined quantum/
classical simulations of the present study led to 66% case I
products and 34% case II products. This distribution is
similar to that in the earlier simulations (58% and 36%,
respectively).

DISCUSSION

The three-state model for the photodynamics of retinal in
bR has been described in the framework of the DME ap-
proach. Our simulations suggest that after light absorption
into the first excited state, retinal carries out a rapid torsion
around its C13AC14 bond, and in doing so crosses twice
between electronic energy surfaces: the first crossing in-
volves a relatively strong nonadiabatic coupling between
the first and second excited states at a torsion of;30°, 332
fs after light absorption; the second crossing occurs between
the first excited state and the ground state, in which retinal
moves essentially along a steep nonadiabatic surface, com-
pleting a 60° motion in another 130 fs. A choice of non-
adiabatic couplings on the order of 1 kcal/mol can explain
the overall quantum yield. Because of interaction with the
protein, two isomerized reaction products arise, one (Case
II) with the Schiff base proton in hydrogen bond contact
with Asp85, the other (Case I) with the Schiff base proton
pointing to Asp96 on the cytoplasmic side. This approach
supports, therefore, the conclusions reached previously re-
garding a possible mechanism of bR’s pump cycle (Schul-
ten et al., 1995; Humphrey et al., 1995, 1997), namely that
case II products may actually trigger vectorial proton trans-
fer in bR’s pump cycle. In one run, before a case II product
finally formed, the system stayed in case I configuration for
several hundred femtoseconds. This implies the possibility
that case I and case II products interconvert. The fact that
this conversion has not been observed in other runs suggests
that the interconversion may happen only on a time scale
longer than that covered by the present molecular dynamics
simulations.

After photoexcitation from the ground-state surfaceEb to
the excited-state surfaceEc,bR, retinal rotates around its
C13AC14 bond until it reaches the first crossing pointf1. In
this region, interaction with the nearly degenerateEa surface
allows the system to overcome a slight energy barrier before
crossing toEa. For the wild type, this crossing point was
reached after 332 fs, which compares well with time-re-
solved spectroscopy measurements of this process by An-
finrud and co-workers, if one associates the observed 370-fs
fast relaxation process (Hasson et al., 1996; Gai et al., 1998)
with the crossing event. The near-degeneracy of the surfaces
Ea(f) andEc,bR(f) for small anglesf implies a continuous
interaction that prepares retinal for the crossing and induces
a crossing to the second excited-state surface, even for a
relatively weak, nonadiabatic coupling; thus the interaction
of the system in the region of the first crossing region does
not affect the quantum yield. In almost all simulations,
retinal eventually surmounted the slight all-trans 3 f1

energy barrier of 1–3 kcal/mol. The important characteristic
of the initial phase of the excited-state dynamics is that
retinal remains very close to its all-trans geometry; rapid
torsion sets in only after the first crossing is completed.

Upon reaching the second crossing pointf2, near 90°
torsion, retinal makes a nonadiabatic transition to the
ground state, characterized by very weak coupling between
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the respective nonadiabatic surfaces. Essentially, retinal
moves along the nonadiabatic surfaceEa(f) (see Fig. 3),
halting briefly at the crossing point, as shown in Fig. 4. The
brief halt at the crossing point makes it unlikely that this
stage of the photodynamics can be identified with the J625

intermediate. The crossing determines, however, the quan-
tum yield of formation of 13-cis-products; the observed
value of 0.71 (Schneider et al., 1989; Govindjee et al., 1990)
is reproduced only for a weak couplingVab 5 0.5 kcal/mol.
The second crossing point is reached within 462 fs for
wild-type bR.

The D85N and D212N mutants of bR exhibit strongly
increased fluorescence lifetimes without changes in the
quantum yield (Song et al., 1993), a behavior that is ex-
plained well by the three-state model through an increase in

the barrier for the first crossing event. The schematic po-
tential surfaces employed in the simulations cannot be ex-
pected to reproduce exact crossing times. Nevertheless, our
results provide an explanation of the behavior of bR mu-
tants. Assuming that the crossing times are governed by a
Boltzmann distribution at the crossing pointf1 and that the
crossing points are at the same absolute height, the ratio of
the mutants’ excited-state lifetimes to that of bR is

t2,mutant

t2,bR
< expFDE3,mutant2 DE3,bR

kT G, (8)

whereDE3,mutant5 E3,mutant(f1) 2 E3,mutant(trans). Accord-
ingly, mutations that shift the retinal absorption to the red
increase the barrier to photoisomerization and lead to longer

FIGURE 6 (a) Stereo view of retinal and its bind-
ing site in bR, including residues Asp85, Asp212, and
internal water molecules. Waters A, C, and D are
labeled for better comparison of reactant and prod-
uct states. (b) Case I 13-cisphotoproduct. (c) Case II
13-cis photoproduct. This figure was created with
VMD (Humphrey et al., 1996).
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excited-state lifetimes. Inserting forDE3,mutantin Eq. 8 the
values corresponding to the spectral shifts experienced by
the D85N and D212N mutants predicts lifetime increases by
factors of 20 and 1.8, respectively. The quantum yield for
mutants such as D85N and D212N has been found experi-
mentally to be similar to the wild-type value (Logunov et
al., 1996a, b), and the yield obtained for these mutants in
our simulations was likewise similar (0.60 and 0.74 for
D85N and D212N, respectively, compared to 0.71 for the
wild type). The three-state model has been essential for
explaining both the quantum yield and the formation time of
J/K intermediates.

A similar scheme taking into account state average con-
tributions from different potentials and nonadiabatic cou-
plings has been adopted by Tallent et al. (1992) to simulate
the retinal photoisomerization in rhodopsin. The present
work differs in the following aspects. Results of the current
quantum chemical calculations show that there is a barrier
near the 30° and 150° points onS1, whereas in the study by
Tallent et al. (1992) there was no barrier in the first excited
state. Present simulations also involved an all-atomic model
of the whole structure of bR, accounting thereby for envi-
ronmental effects.

A deficit of the present study is the limited knowledge of
the nonadiabatic couplingsVjk. Unfortunately, one cannot
calculate these couplings (in particular, their dihedral angle
dependence) in the framework of available ab initio pro-
grams. This study estimated the nonadiabatic couplings
from the energy splitting of the adiabatic surfaces in the
regions of crossings. A second deficit is the neglect of bond
length changes in the excited-state nuclear dynamics; such
changes are likely to occur on a 10-fs timescale and can
affect theS1-S2 energy splitting.

The DME description adopted in this paper for the dy-
namics of classical systems moving on multiple electronic
energy surfaces is only approximate. This is apparent from
Eq. 5, which relates the forceFW13–14,k(f) to a coherent
average over all surfaces. The single crossing behavior, as
governed by the Landau-Zener formula (Zener, 1932;
Landau and Lifshitz, 1977) and its generalization (Crothers,
1981; McDowell and Brandsen, 1992; Kayanuma, 1993), is
reproduced well by the DME description (unpublished re-
sults), but this approach does not account properly for the
“collapse” of the wave function onto wave packets eventu-
ally moving incoherently on the individual surfaces. This
deficiency is most glaring in Fig. 4, which shows thatE13–14

is significantly above the ground-state energy surfaceE1(f)
because of an admixture of state 1 and state 2 character in
the asymptotic wave function. As a result, the effective
potential surface behind the crossing atf2 is too shallow.
The error introduced by the DME description is tolerable as
long as occupancy of a single state is dominant. This is not
guaranteed, however, and an extension of the present treat-
ment to an essentially exact description of multiple curve
crossing dynamics as provided in Ben-Nun et al. (1998) is
desirable.

CONCLUSIONS

Quantum chemical calculations on a retinal analog suggest
the involvement of the two lowest excited states and the
ground state of the protonated Schiff base of retinal in the
primary all-trans3 13-cis photoisomerization in bacterio-
rhodopsin. The calculations suggested a strong nonadiabatic
coupling between the two excited states near the all-trans
and 13-cisgeometries; a weak coupling suggesting a conical
intersection was identified between the first excited state
and the ground state at a 90° torsion. Combined quantum/
classical simulations utilizing three-state potential surfaces
in the nonadiabatic representation, which correspond
closely to the calculated adiabatic surfaces, reproduce suc-
cessfully observed crossing times and quantum yield.

The three-state model described here differs from previ-
ous models based on ultrafast spectroscopy (Mathies et al.,
1988; Dobler et al., 1988; Du and Fleming, 1993). In the
new model, photoexcitation of retinal is followed not by
rapid movement along the reaction coordinate due to exci-
tation into a repulsive Frank-Condon region, but by motion
along a relatively flat excited-state surface and crossing to a
region with a second excited state, which exhibits a steep
potential gradient inducing rapid isomerization. A proper
description of this behavior requires the inclusion of at least
the first two excited states. The observed spectral and flu-
orescent changes occurring within 1 ps after photoexcitation
of bR arise because of nonadiabatic transitions between the
excited states and an excited state and the ground state. We
suggest that a significant fraction of the excited-state life-
time is spent surmounting a small energy barrier before
reaching the first nonadiabatic crossing region, and that the
fluorescence lifetime of bR is controlled by this barrier and
can be altered strongly through mutations that affect the
relative stability of retinal’s two lowest excited states.
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