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ABSTRACT Despite the fact that Ca21 transport into the sarcoplasmic reticulum (SR) of muscle cells is electrogenic, a
potential difference is not maintained across the SR membrane. To achieve electroneutrality, compensatory charge move-
ment must occur during Ca21 uptake. To examine the role of Cl2 in this charge movement in smooth muscle cells, Ca21

transport into the SR of saponin-permeabilized smooth muscle cells was measured in the presence of various Cl2 channel
blockers or when I2, Br2, or SO4

22 was substituted for Cl2. Calcium uptake was inhibited in a dose-dependent manner by
5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and by indanyloxyacetic acid 94 (R(1)-IAA-94), but not by niflumic acid
or 4,49-dinitrostilbene-2,29-disulfonic acid (DNDS). Smooth muscle SR Ca21 uptake was also partially inhibited by the
substitution of SO4

22 for Cl2, but not when Cl2 was replaced by I2 or Br2. Neither NPPB nor R(1)-IAA-94 inhibited Ca21

uptake into cardiac muscle SR vesicles at concentrations that maximally inhibited uptake in smooth muscle cells. These
results indicate that Cl2 movement is important for charge compensation in smooth muscle cells and that the Cl2 channel
or channels involved are different in smooth and cardiac muscle cells.

INTRODUCTION

In muscle cells, regulation of Ca21 by the sarcoplasmic
reticulum (SR) is essential for normal contractile function.
The finding that the SR membrane in striated muscle is
permeable to a number of ions has led to the conclusion that,
even though a free-Ca21 gradient of 103 or greater exists
between the SR lumen and the cytoplasm in resting muscle
(see Schatzmann, 1989; Somlyo and Himpens, 1989; Kar-
gacin and Kargacin, 1995; Shannon and Bers, 1997), a
membrane potential is unlikely to develop across the SR
membrane (see, for example, Meissner and McKinley,
1982; Garcia and Miller, 1984). This conclusion is sup-
ported by the work of Russell et al. (1979a,b), who used
voltage-sensitive probes but were unable to obtain clear
evidence of a sustained potential across the SR membrane
during Ca21 uptake or release processes (Russell et al.,
1979b). Other, more indirect findings also support this
conclusion. It has been shown, for example, that reconsti-
tuted SR vesicles lacking ion channels are unable to take up
Ca21 unless ionophores allowing compensatory charge
movement are also present in the membrane (Morimoto and
Kasai, 1986; also see Beeler, 1980; Somlyo et al., 1981;
Feher and Fabiato 1990; Tada and Kadoma, 1995; Kourie et
al., 1996a,b). Work from a number of laboratories indicates
that H1 efflux from the SR is coupled to Ca21 uptake
(Chiesi and Inesi, 1980; Inesi and Hill, 1983; Yu et al.,
1993; Zimniak and Racker, 1978; Beeler, 1980; Yamaguchi
and Kanazawa, 1984, 1985; Levy et al., 1990; da Costa and

Madeira, 1994; see also Hartung et al., 1997). Estimates of
the stoichiometry of this process range from 1H1:1Ca21

(Chiesi and Inesi, 1980; Yu et al., 1993; da Costa and
Madeira, 1994) to 3H1:2Ca21 (Levy et al., 1990) and
indicate that the SR Ca21 pump, acting in isolation, would
transport net positive charge into the SR. The membrane
potential (;50 mV, inside positive; Yu et al., 1993; also see
Zimniak and Racker, 1978; Beeler, 1980; Morimoto and
Kasai, 1986) that develops across the membrane of proteo-
liposomes that contain skeletal muscle SR Ca21 pumps but
are impermeant to other ions is consistent with this conclu-
sion and with a stoichiometry of 1H1:1Ca21 for the pump
(Yu et al., 1993). For the overall Ca21 uptake process to be
electrically neutral it would be necessary for additional
charge movement to take place. This charge is likely to be
provided by the movement of K1 out of, and/or the move-
ment of Cl2 into, the SR. The SR membranes in striated
muscle have been shown to be permeable to Cl2 as well as
H1, Na1 and K1 (Meissner and McKinley, 1982; Fink and
Stephenson, 1987; Yu et al., 1993; see also Kourie et al.,
1996a,b), and a number of ion channels associated with
striated muscle SR (reviewed in Kourie et al., 1996b) and
the endoplasmic reticulum of nonmuscle cells (Clark et al.,
1997) have been characterized electrophysiologically. Al-
though the specific channels or channel types active during
Ca21 uptake have not been elucidated, measurements of the
permeability of skeletal muscle SR vesicles to various ions
indicated that Cl2 is ;50 times more permeable than K1

(Kasai and Kometani, 1979). This suggests that Cl2 influx
is more important than K1 efflux in maintaining electro-
neutrality during SR Ca21 uptake. This hypothesis is also
consistent with the results of Fink and Stephenson (1987),
who found that the K1 channel inhibitors tetraethylammo-
nium, 4-aminopyridine, procaine, and decamethonium in-
creased, rather than decreased, the amount of Ca21 that
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could be released from the SR of skinned skeletal muscle
fibers (see discussion by Kourie et al., 1996a,b).

The SR Ca21 pump in smooth muscle is closely related to
the cardiac form of the enzyme (reviewed by Raeymaekers
and Wuytack, 1995), and it is thought that Ca21 regulation
by the SR of smooth muscle is generally similar to that in
striated muscle; however, the involvement of K1 and Cl2 in
charge compensation across the SR membrane of smooth
muscle cells during Ca21 uptake has received relatively
little experimental attention. The work reported here was
done using a saponin-skinned isolated cell preparation and
was undertaken to determine if Cl2 acts as a compensatory
ion during SR Ca21 uptake in smooth muscle and to char-
acterize the Cl2-permeant pathway. Our results show that
SR Ca21 uptake can be inhibited by the Cl2 channel block-
ers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB)
and indanyloxyacetic acid 94 (R(1)-IAA-94) and partially
inhibited by the substitution of SO4

22 for Cl2. This is
consistent with the hypothesis that Cl2 movement plays an
important role in charge compensation in smooth muscle
cells during SR Ca21 uptake.

MATERIALS AND METHODS

Smooth muscle cell isolation

Stomachs were excised from rabbits sacrificed with an overdose of phe-
nobarbital. Stomachs were immediately emptied of their contents and
flushed with Hanks’ balanced salt solution (HBSS). A small, healthy piece
of tissue (identified by a mucosa of uniform pink color that loosely covered
the underlying muscle) was cut to a piece;5 cm in diameter. The mucosa
was removed, and the gastric smooth muscle was secured on an O-ring
with dissecting pins to ensure uniform exposure to the enzymatic solution
during the digestion process. The tissue was incubated in a solution of
0.2% collagenase and 0.2% DNase in HBSS for 1 h at37°C. The tissue was
then triturated in HBSS and transferred to a second solution containing
0.2% protease and 0.2% DNase in HBSS and was incubated for 30 min at
37°C. The tissue was next cut into;1 mm2 pieces and triturated to release
individual cells; the resulting cell suspension was filtered through cheese-
cloth to separate the isolated cells from undigested tissue. EGTA (final
concentration, 2.5 mM) was added to the cell suspension, and the suspen-
sion was centrifuged at 103 g in a benchtop centrifuge for 5 min. The
supernatant was aspirated away, and the cells were resuspended in rigor
buffer and skinned as described previously (Kargacin and Fay, 1987;
Kargacin and Kargacin, 1995) with saponin (50mg/ml) during a 5-min
centrifugation at 103 g. To wash away saponin, the resulting pellet was
resuspended in rigor buffer, incubated for 5 min, then centrifuged (103 g)
for 5 min. After the wash in rigor buffer, the cells were washed three times
in uptake buffer (see below). For each wash, buffer was added to the pellet
from the previous centrifugation, and the resulting cell suspension was
allowed to equilibrate on ice for 10 min before centrifugation (5 min at
103 g), aspiration, and addition of fresh buffer for the next wash. After the
final wash and centrifugation, the cells were resuspended in 500ml to 1 ml
of uptake buffer. This procedure selectively permeabilizes the plasma
membrane and allows measurement of ATP-dependent Ca21 uptake into
the SR of smooth muscle cells (Kargacin and Kargacin, 1995).

Measurement of smooth muscle SR Ca21 uptake

Ca21 uptake into the sarcoplasmic reticulum of the isolated cells was
measured as described previously (Kargacin and Kargacin, 1995). Briefly,
50 ml of saponin-permeabilized, isolated cells in uptake buffer was added

to a small chamber on the stage of an inverted microscope, and background
light scatter and fluorescence at 510 nm were measured. Fura-2 (final
concentration 7.5mM) was then added to the chamber. Uptake was
initiated with the addition of (in final concentrations) 12 mM ATP, 12 mM
creatine phosphate (CP), and 19 U/ml creatine phosphokinase (CPK). The
contents of the chamber were continually stirred throughout an experiment
with a small stirrer mounted above the chamber (see Kargacin and Kar-
gacin, 1995). A fluorimeter (SPEX CMX model; Edison NJ), alternating
between 340-nm and 380-nm excitation wavelengths, was used as a light
source for the experiments. Emission was measured at 510 nm (through a
10-nm bandpass filter) with a photomultiplier. Ca21 uptake by the SR of
the skinned cells resulted in a decrease in the 340/380 fluorescence ratio
over the duration of an experiment (see below).

Fura-2 calibration and determination of [Ca21]free,
[Ca21]total, and uptake rate for smooth muscle
experiments

The free Ca21 concentration ([Ca21]free) in the uptake buffer at each time
point was determined from the 340/380 ratio (R) according to the following
equation (Grynkiewicz et al., 1985):

@Ca21#free 5 KD(Ca21) z b z ~R2 Rmin!/~Rmax 2 R! (1)

whereRmax is the fura-2 340/380 fluorescence ratio measured in saturating
Ca21 buffer (containing 95 mM KCl, 20 mM HEPES-K, 2.5 mM CaCl2,
and 10 mM MgCl2; pH 7.0);Rmin is the 340/380 ratio for fura-2 measured
in a Ca21-free solution (25 mM EGTA in uptake buffer); andb is the ratio
of 380-nm fluorescence intensity measured in Ca21-free solution to the
380-nm fluorescence intensity in saturating Ca21 buffer.Kd(Ca21) was 200
nM (Williams et al., 1987).Rmin andRmaxcalibrations were made each day
of experimentation to correct for any changes in the relative outputs of
340-nm and 380-nm light from the excitation light source;b was deter-
mined for each lot of fura-2. The total Ca21 concentration ([Ca21]total) in
the chamber at each time point was calculated from [Ca21]free, as described
in Kargacin and Kargacin (1995), using a set of simultaneous equations
that included constants for the binding of Ca21, Mg21, and H1 by fura-2,
ATP, and CP. Values for the binding constants were taken from Smith and
Martell (1975), Fabiato (1981), and Martell and Smith (1982). For each
experiment, the maximum Ca21 uptake rate (pmol-Ca21/s) was determined
from the negative slope of the [Ca21]total versus time curve:

Velocity 5 ~volume in chamber! 3 2D@Catotal
21 #/Dt (2)

To eliminate errors due to noise inherent in the fluorescence measurements,
the slope was determined from 10–50 data points on the steepest part of an
uptake curve. Fig. 1 illustrates the calculation of maximum uptake rate for
a typical control experiment. Fig. 1A shows the raw fluorescence data after
correction for background fluorescence and light scatter (recorded as a
decline in 340/380 fluorescence ratio), Fig. 1B shows the decline in
[Ca21]free in the buffer as a function of time determined from the curve in
Fig. 1 A, using Eq. 1, and Fig. 1C shows the decline in [Ca21]total in the
buffer during the experiment. The larger open circles in Fig. 1C show the
data points used to determine the maximum uptake rate for the experiment.
For this experiment, the maximum uptake rate was 7.44 pmol/s. The
maximum rate of SR uptake was dependent upon the amount of SR in a
particular cell preparation (a function of the cell density of the preparation),
but, for control samples, generally fell between 15 and 40 pmole-Ca21/
szmg protein when expressed relative to the amount of protein in a cell
preparation. In the work presented below, the results for each separate cell
preparation were expressed as a percentage of the mean rate of uptake in
the control experiments for that preparation, so that results obtained from
different cell preparations could be combined. Unless noted otherwise,
statistical significance was defined asp # 0.01, using Student’st-test.
Results are given as61 SD. All experiments were conducted at 22°C.
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Solutions for smooth muscle experiments

HBSS contained (in mM) 5 KCl, 0.3 KH2PO4, 138 NaCl, 5.6D-glucose,
12.5 taurine, and 4 NaHCO3 (pH 7.0). Rigor buffer contained (in mM) 150
K-methanesulfonate, 1 Mg-methanesulfonate, 5 EGTA, 20 piperazine-
N,N9-bis(2-ethanesulfonic acid (pH 7.0). Uptake buffer was made using
ultrapure chemicals and double-distilled water and contained (in mM) 100
KX, 10 MgX2, 20 HEPES (pH 7.0) (where X represents Cl2, I2, or Br2).
For experiments in SO4

22 buffer, KCl and MgCl2 were replaced by 30 mM
K2SO4 and 10 mM MgSO4 (to maintain ionic strength). ATP (K2 salt) and
CP (Na salt) were dissolved in H2O, and the solution was brought to a pH
of 7.0 with KOH. Creatine phosphokinase was then added. Fura-2 was
dissolved in double-distilled water. NPPB, R(1)-IAA-94, and niflumic
acid were dissolved in 95% ethanol/5% H2O. The final concentration of
ethanol in the experiments with NPPB or R(1)-IAA-94 did not exceed
1.5%. This concentration of ethanol had no effect on the excitation spectra
of fura-2 or on uptake rates in control experiments. 4,49-Dinitrostilbene-
2,29-disulfonic acid (DNDS) was dissolved in uptake buffer.

D-Glucose, taurine, collagenase IV, protease, EGTA, methanesulfonic
acid, PIPES dipotassium salt, saponin, ATP, CPK, and CP were obtained
from Sigma Chemical Co. (St. Louis, MO). DNase was obtained from
Boehringer-Mannheim (Laval, QC). To minimize Ca21 contamination,
uptake buffers were made from AnalaR grade KCl, and KBr and suprapur
KI obtained from BDH (Toronto, ON) and puriss MgSO4 z 7H2O, micros-
elect MgCl2 z 6H2O, MgBr2 z 6H2O, and HEPES-K1 salt and MgI2 ob-
tained from Fluka (Ronkonkoma, NY). Analytical reagent grade KH2PO4,
NaHCO3, NaCl, and Mg(OH)2, and aristar grade KOH and H2SO4 were
obtained from BDH (Toronto, ON). Fura-2 free acid and DNDS were
obtained from Molecular Probes (Eugene, OR). NPPB was obtained from
ICN (Montreal, QC), and R(1)-IAA-94 was obtained from RBI (Natick,
MA).

Preparation of cardiac SR vesicles and
measurement of cardiac SR uptake

Canine cardiac SR vesicles were prepared using the method of Chamber-
lain et al. (1983) as described previously (Kargacin and Kargacin, 1994).
Vesicles were stored at280°C in a storage buffer containing 300 mM
sucrose, 100 mM KCl, 5 mM histidine, and 0.5 mM dithiothreitol (pH 7.1).
The protein concentrations of the vesicle samples used in the experiments
were determined with the Bradford protein assay. Standard curves were
obtained with known concentrations of bovine serum albumin (BSA).

Ca21 uptake into the cardiac SR vesicles was measured as described
previously (Kargacin and Kargacin, 1994) in 3-ml cuvettes in the sample
compartment of a SPEX fluorimeter. Vesicles (;275 mg total protein)
were added to a cuvette containing 2 ml of vesicle uptake buffer (100 mM
KCl, 4 mM MgCl2, and 20 mM HEPES, pH 7.0). After K2ATP (final
concentration 1.8 mM), CP (final concentration 1.8 mM), CPK (final
concentration 3.1 U/ml), and fura-2 (final concentration 2.9mM) were
added to the cuvette. Uptake was initiated by the addition of Ca21. For the
experiments with NPPB or R(1)-IAA-94, the blockers were added to the
cuvette before the addition of the vesicles. [Ca21]free was determined from
Eq. 1 with values forRmax, Rmin, and b obtained with 0-Ca21 (vesicle
uptake buffer containing 25 mM EGTA) and high-Ca21 (vesicle uptake
buffer containing 2.5 mM Ca21) buffers. Vesicle experiments were carried
out at 22°C.

RESULTS

Excitation spectra measurements with NPPB,
R(1)-IAA-94, and DNDS

The excitation spectra of the uptake buffers containing high
(mM), zero, or intermediate Ca21 concentrations were mea-
sured in the presence and absence of NPPB, R(1)-IAA-94,
niflumic acid, or DNDS to determine if these agents were
fluorescent. Excitation light was scanned from 300 nm to
400 nm, and emission was measured at 510 nm. Fig. 2A
shows that NPPB did not contribute to background fluores-
cence. For comparison, the fluorescence intensity from 2.9
mM fura-2 was typically 500,000–700,000 cps. Neither
R(1)-IAA-94 nor niflumic acid detectably altered the back-
ground fluorescence in the absence of fura-2 (result not
shown). DNDS (50mM) caused a small increase in back-
ground fluorescence that was greater at 380-nm excitation
than at 340 nm. At 380-nm excitation, the background
increased from;700 cps in the absence of DNDS to;2500
cps in the presence of DNDS.

Fura-2 excitation spectra were also measured in the pres-
ence and absence of NPPB, R(1)-IAA-94, niflumic acid, or

FIGURE 1 Determination of Ca21 uptake rates for isolated cell experiments. (A) 340/380 fluorescence ratio versus time, after correction for background
fluorescence and light scatter. (B) Cafree

21 versus time, determined from Eq. 1. (C) Catotal
21 versus time, determined from the curve inB and the binding of

Ca21 to various buffer components (see Materials and Methods). The points shown by the larger open symbols were used to determine the maximum rate
of change in [Ca21]total for the experiment. For the experiment shown, the slope was20.120mM/s, and the volume in the chamber was 62ml, giving a
maximum uptake rate of 7.44 pmol/s.
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DNDS to determine if these compounds altered fura-2 flu-
orescence. As can be seen in Fig. 2B, NPPB (100mM)
changed the fura-2 excitation spectra in uptake buffer. This
effect was further analyzed by examining the absorbance
spectrum of NPPB. Fig. 2C shows that NPPB absorbed
more strongly at 380 nm than at 340 nm. Compared to
buffer alone, percentage transmittance was decreased by
;60% at 380 nm; at 340 nm, percentage transmittance was
decreased by;35% compared to buffer alone (Fig. 2C). To
correct for the difference in absorbance of NPPB at 340 nm
compared to 380 nm,Rmin and Rmax (see Materials and
Methods) were measured in the presence of NPPB for each
NPPB concentration used. The effect of 75mM R(1)-
IAA-94 on the excitation spectrum of 3mM fura-2 in uptake
buffer is shown in Fig. 3. Although there was a significant
change in fluorescence intensity at wavelengths below
;330 nm, R(1)-IAA-94 only slightly altered fura-2 fluo-
rescence at 340 nm. Both niflumic acid and DNDS absorbed

more strongly at 340 nm than at 380 nm (results not shown).
Therefore, as was the case with NPPB (see above),Rmin and
Rmax were measured in the presence of each of the blockers
at each concentration used.

Effect of NPPB on smooth muscle SR
Ca21 uptake

NPPB has been used to block sarcolemmal Cl2 channels in
a variety of tissues (see, for example, Lukacs et al., 1991;
Sorota, 1994). TheKi’s for Cl2 channel inhibition range
from 0.1mM to 100mM (Lukacs et al., 1991). To examine
the effects of NPPB on smooth muscle SR Ca21 uptake,
NPPB concentrations ranging from 6mM to 100 mM were
used. NPPB was added and mixed with the cell suspension
1 min before ATP was added to initiate Ca21 uptake.

Fig. 4A shows typical traces of [Ca21]freeversus time for
a control experiment and an experiment done in the pres-
ence of 20mM NPPB. Uptake rate in the presence of NPPB
was 24% of that measured in the control experiment. In the
control experiment, maximum Ca21 uptake rate was 7.6
pmol/s; in the presence of 20mM NPPB, the maximum
uptake rate was 1.9 pmol/s. Fig. 4B shows the results from
an experiment on one cell preparation in which the maxi-
mum rate of Ca21 uptake was determined in the presence of
various concentrations of NPPB. For this experiment, up-
take rate was half-maximum in the presence of 10mM
NPPB. When results from five similar experiments were
combined, the uptake rate was half-maximum with 15mM
NPPB. The uptake rate was reduced to 126 7% (n 5 4) of
control at NPPB concentrations$ 75 mM (see Table 1).

Effect of R(1)-IAA-94 on smooth muscle SR
Ca21 uptake

Indanyloxyacetic acid (IAA) derivatives (at concentrations
ranging from 1mM to 200 mM) have been found to block

FIGURE 2 (A) Effect of 100 mM NPPB on background fluorescence over excitation wavelengths between 300nm and 400 nm.F, Background
fluorescence in uptake buffer alone.E, Background fluorescence in uptake buffer containing 100mM NPPB. (B) Excitation spectra of 3.0mM fura-2 with
and without 100mM NPPB. F, Fura-2 fluorescence in uptake buffer.E, Fura-2 fluorescence when 100mM NPPB was added to uptake buffer. (C)
Absorbance spectrum of 100mM NPPB in uptake buffer at excitation wavelengths of 300–400 nm and 480–530 nm. InA andB emission was measured
at 510 nm through a 10-nm bandpass filter.

FIGURE 3 Excitation spectra of 2.9mM fura-2 with and without 75mM
R(1)-IAA-94. Œ, Fura-2 fluorescence in uptake buffer.‚, Fura-2 fluores-
cence when 75mM R(1)-IAA-94 was present in the uptake buffer.
Emission was measured at 510 nm through a 10-nm bandpass filter.
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plasmalemmal and intracellular membrane Cl2 channels in
a variety of tissues, including kidney, trachea, and heart
(see, for example, Landry et al., 1989; Redhead et al., 1992;
Weber-Schu¨rholz et al., 1993; Reeves and Gurich, 1994;
Sorota, 1994; Takenaka et al., 1996; Clark et al., 1997).
These compounds appear not to have been tested on smooth
muscle SR Cl2 channels, however. Experiments on sapo-
nin-permeabilized smooth muscle cells demonstrated a
dose-dependent decrease in Ca21 uptake with increasing
concentrations of R(1)-IAA-94. Fig. 5 shows the results of
experiments in which the rate of Ca21 uptake was measured
in the absence and the presence of R(1)-IAA-94. The
maximum uptake rate in the control experiment was 7.0
pmol/s. In the presence of 47mM R(1)-IAA-94 this rate
was reduced to 2.0 pmol/s. The inhibitory effect of R(1)-
IAA-94 was dose dependent. Combined results from six cell
preparations showed that the uptake rate was half-maximum
at [R(1)-IAA-94] equal to 46mM; [R(1)-IAA-94] $ 190
mM reduced the uptake rate to 76 9% (n 5 9) of control
(see Table 1).

SR Ca21 uptake in smooth muscle in the
presence of niflumic acid and DNDS

Niflumic acid and stilbene derivatives have been used to
block Cl2 channels in a variety of tissues. Niflumic acid at

a concentration of 30mM had no detectable effect on SR
Ca21 uptake in smooth muscle cells (Table 1). The stilbene
derivative DNDS was also without effect on SR Ca21

uptake at concentrations as high as 300mM and incubation
times with the cells of up to 30 min. In control experiments,
maximum uptake rates ranged from 4.45 to 4.8 pmol/s; in
the presence of 300mM DNDS, maximum uptake rates
ranged between 4.55 and 4.65 pmol/s.

Smooth muscle SR Ca21 uptake in the presence
of I2, Br2, or SO4

22

Smooth muscle SR Ca21 uptake was also examined when
the Cl2 in the uptake buffer was completely replaced by I2,
Br2, or SO4

22

(results are summarized in Table 1). Uptake
rates in I2 or Br2 buffers were not significantly different
from those measured in Cl2 buffer. In I2 uptake buffer, the
maximum uptake rate was 906 16% (n 5 4) of the mean
maximum uptake rate in control experiments; in Br2 uptake
buffer, the maximum uptake rate was 1026 20% (n 5 4)
of the mean maximum uptake rate in control experiments.
The maximum rate of SR Ca21 uptake was reduced when
Cl2 in the uptake buffer was replaced with SO4

22

. The
maximum uptake rate in SO4

22

buffer was 806 11% (n 5
5) of the mean maximum uptake rate in control experiments.
This was significant atp 5 0.03.

FIGURE 4 Inhibition of smooth muscle SR Ca21 uptake by NPPB. (A) Comparison of uptake rates in control (F) and in the presence of 20mM NPPB
(E). The slopes of the lines are the maximum rates of uptake determined from the curves. The uptake rate in the control experiment was 7.6 pmol/s; the
uptake rate in the presence of NPPB was 1.9 pmol/s. (B) Concentration dependence of the inhibition of SR Ca21 uptake with NPPB for one cell preparation.
The solid line is an exponential curve fit to the data points; half-maximal inhibition was at;10 mM NPPB.

TABLE 1 Inhibition of smooth muscle SR Ca21 uptake by Cl2 channel blockers or anion substitutions

Blocker or anion
NPPB

($75 mM)
R(1)-IAA-94
($190 mM)

Niflumic acid
(30 mM)

DNDS
(300 mM) I2 Br2 SO4

22

Uptake rate: % control 12 7 100 100 100 100 80
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The inhibitory effect of NPPB on SR Ca21 uptake was
also seen in buffers in which Cl2 was replaced with I2 or
SO4

22

. In one experiment, the uptake rate in SO4
22

buffer
containing 96mM NPPB was 1.5% of the maximum uptake
rate measured in SO4

22

buffer without NPPB. This percent-
age inhibition was similar to that measured in Cl2 buffers
(see Table 1). A similar result was obtained when NPPB
was added to I2 uptake buffer.

Ca21 uptake by canine cardiac SR vesicles in the
presence of NPPB or R(1)-IAA-94

In previous electrophysiological studies, Townsend and
Rosenberg (1995) showed that NPPB blocked an SR Cl2

channel from porcine cardiac myocytes. This block, how-
ever, appeared to be from the lumenal side of the SR
membrane. Weber-Schu¨rholz et al. (1993) reported that
R(1)-IAA-94 inhibited a Cl2 channel that appeared to be
present in the sarcolemmal but not the SR membrane of
skeletal muscle. Because both NPPB and R(1)-IAA-94
inhibited Ca21 uptake into smooth muscle SR in the func-
tional studies reported here, the effects of these blockers on
Ca21 uptake into canine cardiac SR vesicles was examined.
Neither of these agents, at concentrations that almost com-
pletely inhibited smooth muscle SR uptake, had a signifi-
cant effect on the rate of Ca21 uptake into cardiac SR
vesicles. Ca21 uptake in the presence of 100mM NPPB was
94 6 35% (n 5 8) of the mean maximum uptake rate in
control experiments. R(1)-IAA-94 also failed to inhibit
cardiac SR Ca21 uptake (in the presence of 226mM R(1)-
IAA-94, the maximum uptake rate was 98.3% of the control
rate).

DISCUSSION

In previous work (Kargacin et al., 1988; Kargacin and
Kargacin, 1994; 1995) it was shown that the methods em-
ployed in the present study could be used to study Ca21

uptake into the SR of isolated, saponin-permeabilized
smooth muscle cells and striated muscle SR vesicles. In the
work on smooth muscle (Kargacin and Kargacin, 1995), it
was shown that uptake was Ca21 and ATP dependent and
could be blocked by thapsigargin. Uptake was not inhibited
by the mitochondrial blockers FCCP or azide.

In the present study, it was found that SR Ca21 uptake in
smooth muscle could be almost completely blocked by the
Cl2 channel blockers NPPB and R-IAA-94. On the other
hand, neither the stilbene derivative DNDS nor niflumic
acid had any measurable effects on SR Ca21 uptake. Max-
imum uptake rate was also partially reduced by the replace-
ment of Cl2 by SO4

22

, but not in I2 or Br2 uptake buffers.
A functional assay such as the one used in the present study
has the advantage that it can provide information about the
properties of the anion-permeant pathway or pathways that
are important for charge compensation in vivo that cannot
be determined solely from the study of single channels in
isolation. However, because the movement of Ca21 rather
than Cl2 is measured, one must consider the possibility that
the ion channel inhibitors acted on the SR Ca21 pump or at
other sites on the SR membrane rather than on Cl2 chan-
nels. To our knowledge, there have been no reports of a
direct action of NPPB or R(1)-IAA-94 on the SERCA
Ca21-ATPases in any tissue. The SERCA2b Ca21 pump
found in smooth muscle is identical for most of its amino
sequence to the SERCA2a Ca21 pump of cardiac muscle.
The two isoforms differ only in the C-terminal region,
where a 4 amino acid segment of SERCA2a is replaced by
a 49 amino acid hydrophobic segment in SERCA2b (re-
viewed in Raeymaekers and Wuytack, 1995). Because
NPPB and R(1)-IAA-94 both inhibited Ca21 uptake in
smooth but not in cardiac muscle, it seems unlikely that the
inhibitory actions of these agents were due to a direct
inhibition of the Ca21 pump, unless both agents act non-
specifically on the unique amino acid segment of the SR
Ca21-ATPase of smooth muscle. It might also be argued
that the different effects of NPPB and R(1)-IAA-94 on
smooth and cardiac muscle SR Ca21 uptake were the result
of comparing experiments using SR vesicles with those
using permeabilized isolated cells. In preliminary experi-
ments (S. V. Phillips, G. J. Kargacin, and M. E. Kargacin)
it was found that SR Ca21 uptake in isolated rat cardiac
myocytes was not inhibited by either of the Cl2 channel
blockers, a result consistent with that obtained with cardiac
SR vesicles. Lukacs et al. (1991) found that NPPB can act
directly on membranes as a proton ionophore at concentra-
tions (25mM or greater) that have been used to block Cl2

channels, and high concentrations of IAA (500mM to 1
mM) have been shown to open K1 channels in smooth
muscle (Toma et al., 1996). If the effect of NPPB on smooth
muscle SR Ca21 uptake were due to its protonphoric prop-

FIGURE 5 Inhibition of smooth muscle SR Ca21 uptake by R(1)-IAA-
94. (A) Comparison of uptake rates in control (F) and in the presence of 47
mM R(1)-IAA-94 (E). The slopes of the lines are the maximum rates of
uptake determined from the curves. The uptake rate in the control exper-
iment was 7.0 pmol/s; the uptake rate in the presence of R(1)-IAA-94 was
2.0 pmol/s.
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erties, we would have expected to see a similar effect on the
cardiac muscle SR vesicles. This, however, was clearly not
the case. The concentration of R(1)-IAA-94 (200 mM) that
had a maximum inhibitory effect on SR Ca21 uptake in
smooth muscle was less than that (.500mM) used by Toma
et al., (1996) to open K1 channels. Furthermore, if R(1)-
IAA-94 had opened a K1-permeant pathway in the SR, we
would have expected to see an increase rather than a de-
crease in the rate of Ca21 uptake in the smooth muscle cells.
When the effects of both Cl2 channel blockers are taken
together, our results appear to be most consistent with the
interpretation that they acted on an anion channel in the
smooth muscle SR.

Because smooth muscle SR Cl2 channels have received
relatively little experimental attention, prior information
was not readily available to assess the likely action of any of
the Cl2 channel blockers on SR Ca21 uptake in smooth
muscle. As noted above, Townsend and Rosenberg (1995)
showed that NPPB (10–50mM; on the luminal side of the
SR membrane) blocked an SR Cl2 channel from porcine
cardiac myocytes. Luminal NPPB (but not NPPB applied to
the cytoplasmic side of the SR membrane) decreased chan-
nel open probability with aKi of 52.6mM (Townsend and
Rosenberg, 1995). This result is consistent with our finding
that SR Ca21 uptake in cardiac muscle was not blocked by
NPPB applied to the outside (cytoplasmic side) of SR
vesicles. If the Cl2 channels in the cardiac SR membrane
are similar to those found in skeletal muscle, our results on
cardiac muscle are in agreement with those of Weber-
Schürholz et al. (1993), who did not find R(1)-IAA-94-
sensitive channels in skeletal muscle SR membranes. Our
results on smooth muscle are consistent with the presence of
an anion channel in the SR membrane that is sensitive to
both NPPB and R(1)-IAA-94. Although we cannot com-
pletely rule out the possibility that the properties of the
Cl2-permeant pathway we have determined represent the
combined properties of more than one anion channel, our
results could be explained by the presence of a Cl2 channel
similar to the channel recently described by Clark et al.
(1997) that is found in the endoplasmic reticulum of rat
brain. This channel was blocked by NPPB at concentrations
ranging from 10mM to 100mM and by R(1)-IAA-94 over
a concentration range between 25mM and 200mM (Ki for
block 5 35 mM). NPPB blocked from either side of the
membrane; R(1)-IAA-94 blocked from the cytoplasmic
side of the membrane. Consistent with our results, the
channel was insensitive to niflumic acid and was permeant
to Br2. Unlike our result with DNDS, the rat brain channel
was blocked by the stilbene derivative 4,49-diisothiocyana-
tostilbene-2,29-disulfonic acid (DIDS), however.

Because we were able to almost completely inhibit SR
Ca21 uptake in smooth muscle with either NPPB or R(1)-
IAA-94, it seems reasonable to conclude that Cl2 move-
ment plays a more important role than K1 movement in
charge compensation during Ca21 uptake. This is consistent
with the suggestion by Kourie et al. (1996a,b) that Cl2

movement is also more important in striated muscle. The

rate at which Ca21 must be removed from the cytoplasm
after the contraction of striated muscle cells is much greater
than that required in smooth muscle (reviewed by Raey-
maekers and Wuytack, 1995), however. It therefore seems
possible that the Cl2 channel or channels involved are
different in the two muscle types. In this light, the fact that
our results point to a Cl2 channel in smooth muscle SR that
resembles one found in the endoplasmic reticulum makes it
of interest to note that the isoforms of a number of proteins
that are found in smooth muscle cells more closely resemble
those found in nonmuscle cells than they do those found in
the more highly specialized cells of cardiac and skeletal
muscle.
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