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ABSTRACT Bacteriorhodopsin (BR) is a transmembrane protein in the purple membrane (PM) of Halobacterium salinarum.
Its function as a light-driven proton pump is associated with a cycle of photointermediates which is strongly hydration-
dependent. Using energy-resolved neutron scattering, we analyzed the thermal motions (in the nanosecond-to-picosecond
time range) in PM at different hydration levels. Two main populations of motions were found that responded differently to
water binding. Striking correlations appeared between these “fast” motions and the “slower” kinetic constants (in the
millisecond time range) of relaxations and conformational changes occurring during the photocycle.

INTRODUCTION

Bacteriorhodopsin (BR) is the only protein in the purple
membrane (PM) patches of the plasma membrane of the
archaeonHalobacterium salinarum. It functions as a light-
activated proton pump. After absorption of a photon by its
bound chromophore, retinal, BR goes through several se-
quential photointermediates and finally returns to its initial
state. These are defined by the wavelength of maximal
absorbance in nm: BR568, J610, K590, L550, M412, N550, and
O640; the M intermediate is the most stable, and corresponds
to an irreversible transition between two steps, M1 and M2.
During this photocycle, a proton is released to the extracel-
lular medium during the L-to-M transition, and another one
bound from the intracellular medium between N and O. The
influence of hydration on the kinetics of appearance and
decay of the photointermediates has been analyzed by vis-
ible and FTIR spectroscopy (Korenstein and Hess, 1977;
Váró and Keszthelyi, 1983; Va´ró and Lanyi, 1991a; Thiede-
mann et al., 1992). In fully hydrated samples at room
temperature, photoexcited BR goes through all the interme-
diates of its photocycle. The steps M1f M2 (irreversible)
and M2 N N (reversible) are progressively slowed down
when decreasing hydration, and the intermediates N and O
are no longer detectable at low humidity (Va´ró and Lanyi,
1991a; Cao et al., 1991). In addition, structural changes in
M1f M2 and in M2N N have been observed in the D96N
mutant of BR to occur only at high hydration levels (Sass et
al., 1997; Kamikubo et al., 1997; Weik et al., 1998). A
direct study of proton pumping (or rather of charge move-
ment) as a function of relative humidity has been published

(Thiedemann et al., 1992), which also shows reduced kinet-
ics at reduced relative humidity.

Incoherent elastic neutron scattering provides a means to
quantify the amplitudes of H-atom motions in a molecule. In
the corresponding picosecond-to-nanosecond time domain,
the H-atoms reflect the motions of the chemical groups to
which they are bound. As H-atoms are uniformly distributed
in a biological sample, neutron experiments are a good
experimental approach to study macromolecular dynamics
(Smith, 1991). In the few proteins already studied by neu-
tron scattering, dynamical transitions have been discovered,
at 150–250 K, from a rigid harmonic to a softer nonhar-
monic regime (Doster et al., 1989; Ferrand et al., 1993;
Andreani et al., 1995; Re´at et al., 1997, 1998). Such tran-
sitions have also been characterized by various other exper-
imental and theoretical methods (Loncharich and Brooks,
1990; Parak et al., 1990; Smith, 1991; Rasmussen et al.,
1992; Cupane et al., 1993).

In fully hydrated BR, two populations of motions have
been described by neutron scattering, associated with dif-
ferent dynamical transitions, at;250 and 150 K, respec-
tively (Ferrand et al., 1993; Re´at et al., 1997); in completely
dry BR, the dynamical transition at 250 K is absent (Ferrand
et al., 1993; Re´at et al., 1997); different characteristic times
have been observed in quasielastic spectra, depending on
hydration (Fitter et al., 1996, 1997b). A first qualitative
correlation between BR function and thermal motions has
been discussed by Ferrand et al. (1993) on the basis of a
comparison between totally dry and fully hydrated samples,
following a hypothesis that BR function required a soft and
warm environment (Zaccaı¨, 1987). By using specific deu-
teration, Re´at et al. (1998) have shown that the retinal
pocket and extracellular half of BR of wet membranes are
more “rigid” than the wet membranes globally, and dis-
cussed the implication of this dynamic heterogeneity for
function.

Our goal in the present study was to investigate in detail
how the different motions in BR depend on hydration to
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explore their relation to other hydration-dependent observa-
tions related to the photocycle and proton pumping. The
results showed that different populations of motions re-
spond differently to hydration, and a strong correlation
between the parameters defining the “fast” motions and
much “slower” kinetics of the intermediates of the photo-
cycle and proton pumping events.

MATERIALS AND METHODS

Purple membrane preparation

Cultures of Halobacterium salinarumand purification of purple mem-
branes were carried out as described by Oesterhelt and Krippahl (1983) and
Oesterhelt and Stoeckenius (1974). Briefly, after culture and disruption of
the plasma membrane by hypoosmotic shock was performed, the PM were
fractionated on a sucrose density gradient, and the purple band was
harvested, diluted in H2O, and pelleted. Three washing steps in2H2O by
resuspension-centrifugation fully exchanged the water and labile hydrogen
in the sample.

Equilibration in defined relative humidity values

The 2H2O-washed pellet (;150–180 mg BR, i.e., 200–250 mg PM) was
layered in an aluminum sample holder (dimensions 43 3 cm2, thickness
0.5 mm). Rapid, partial drying was achieved by placing the sample in a
desiccator with silica gel at room temperature until the final2H2O content
reached;0.5 mg/mg PM (measured by weighing). Final equilibration to
the required hydration level was obtained by replacing the silica gel with
a saturated solution of an appropriate salt in2H2O; this precisely defined
the relative humidity (r.h.). The salts were NaBr for 57% r.h., NaCl for
75% r.h., KCl for 86% r.h., and KNO3 for 93% r.h. (O’Brien, 1948). The
dry sample was obtained by complete desiccation over silica gel. Each
equilibration proceeded for 5–7 days until the weight of the sample and
sample holder did not vary by.0.5 mg. The sample holder was then sealed
with an indium ring. The amount of water in the sample was estimated by
weighing before and after complete drying over silica gel (results are in
Fig. 5 A).

Elastic incoherent neutron scattering (EINS) and
data acquisition

Neutrons are scattered by atomic nuclei. In an incoherent neutron scattering
experiment, waves scattered by different nuclei do not interfere (Be´e,
1988). The observed scattering intensity is the sum of intensities scattered
by individual nuclei. It is analyzed by a neutron spectrometer, in terms of
energy (frequency,v) and momentum transfer (scattering vector,Q), to
provideS(Q, v). The scattering is elastic forv 5 0, i.e., when, within the
energy resolution of the spectrometer, there is no energy transfer between
the incident and scattered neutrons. Elastic incoherent neutron scattering
(EINS) reflects the displacements of individual atoms in the picosecond-
to-nanosecond time range, depending on the energy resolution of the
spectrometer. An energy broadening of the elastic peak corresponds to
quasielastic scattering. It results from relaxation processes such as nonvi-
brational, diffusive motions or jumps between conformational substates.
Vibrational motions give rise to inelastic scattering with peaks at distinct
energy transfer values (Cusack, 1988) .

In biological macromolecules,;50% of the atoms are hydrogens. The
cross-section for incoherent scattering by these nuclei is much larger than
the incoherent or coherent scattering of any of the other nuclei usually
found in these molecules, or of2H. In the PM samples in2H2O studied
here, 90% of the total signal was due to incoherent scattering, of which
;63% was due to BR, 36% to lipids (10 lipids/BR, Grigorieff et al., 1996)
and,1% to 2H2O.

In the present work, only the elastic incoherent neutron scattering was
analyzed as a function of wavevector transferQ and temperature. Its
diminution as a function of increasing temperature reflects the onset of
inelastic followed by quasielastic neutron scattering (Cusack, 1988). At a
given temperatureT, and in the Gaussian approximation, theQ-depen-
dence ofSinc(Q, v 5 0, T) is written

Sinc~Q, 0,T! 5 A exp@2~1/6!^u2&Q2# (1)

where the mean-square amplitude^u2& is dominated by the values of the
1H-atoms in the sample, andA is a constant. The equation is appropriate for
the full amplitude of atomic displacements during the time resolution of the
experiment^u2& 5 [R(t) 2 R(0)]2 and not to displacements from mean
positions [R(t) 2 Rmean]

2, which is the value usually used in the Debye-
Waller factor in crystallography (^u2&/2 5 [R(t) 2 Rmean]

2 in the harmonic
approximation). For the Gaussian approximation to be valid, either all
1H-atoms must be dynamically equivalent and vibrate harmonically
(Smith, 1991) orQ must be such thatQ=^u2&/2 , ' 1; this is similar to
the relation betweenQ and the radius of gyration in the Guinier approxi-
mation for small angle scattering (Re´at et al., 1997). In a small angle
scattering experiment one measures the shape of a distribution of atoms. In
an EINS experiment, one measures the shape of the distribution of an
individual atom as it moves in the characteristic time interval of the
spectrometer.

The experiments were performed on the IN13 backscattering spectrom-
eter at the Institut Laue-Langevin (ILL; Grenoble, France). The detectors
on the spectrometer cover a largeQ-range (from 0.3 Å21 to 5.5 Å21;
however, data were analyzed only up to 3.6 Å21, because of the statisti-
cally weak signal-to-noise ratio for higher angles).

The sample containers were placed in a cryostat, first taken to 20 K at
a rate of 2 K/min; then the data were collected in 30-min accumulations per
point, every 5 K from 20 to 320 K. At the end of the experiment, the sample
container was weighed to ensure that no loss of water had occurred.

The raw data were corrected, at eachQ-value, for scattering by the
empty sample container, detector response (by using a standard vanadium
sample), and for transmission of the sample. Data forQ-values correspond-
ing to Bragg reflections of the sample-holder were discarded in the anal-
ysis. The energy resolution of the instrument is' 10 meV, corresponding
to observable motions faster than 400 ps. Data were normalized, at each
Q-value, by the lowest temperature (20 K) data point. The results are
therefore written asSinc(Q, 0, T)/Sinc(Q, 0, T0). A linear fit of ln{Sinc(Q, 0,
T)/Sinc(Q, 0, T0)} as a function ofQ2 was performed at each temperature,
according to Eq. 1. The evaluation of errors on the slopes of the linear fit
(and therefore on̂u2&) assumed weighted statistical errors around each data
point, and were calculated by the Marquardt-Levenberg algorithm in the
Gnufit routine under Gnuplot (program version 3.5, copyright 1986–1993,
Dartmouth University). Thêu2& values were then plotted as a function of
absolute temperatureT. In the harmonic case,^u2& is linear withT, with a
slope inversely proportional to the force constant governing the motion.

RESULTS AND DISCUSSION

Fig. 1 displays a typical result obtained in the complete
Q-range studied. It is especially clear at 300 K that the data
cannot be fitted by a single straight line. Following Re´at et
al. (1997), we divided theQ-range into two regions, the
limit between the two ranges being taken at the value where
a kink occurs in the plot of ln{Sinc(Q, 0, T)/Sinc(Q, 0, T0)}
as a function ofQ2. We considered the two ranges sepa-
rately. A mean-square amplitude^u2& was calculated from
the slope of each line (see Materials and Methods): a) The
low Q-range (0.3 Å21 , Q , 1.8 Å21); hereQ=^u2&/2
ranges from 0.25 to 1.5. b) The highQ-range (2.04 Å21 ,
Q , 3.6 Å21); hereQ=^u2&/2 ranges from 1.0 to 1.8. The
Gaussian approximation (see Materials and Methods) is
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fully justified in the low Q-range, and reasonable for the
high Q-range.

Fig. 2, A andB gives the variations of the mean-square
amplitudeŝ u2& as a function ofT for the low-Q region for
75% and 86% r.h., respectively, compared with the dry
sample (0% r.h.). The data in Fig. 2C (93% r.h. compared
with 0%) were taken from the work of Re´at et al. (1997),
carried out in the sameQ-range but on a different spectrom-
eter at the ILL (IN10). Comparing data on IN10 and IN13
in the sameQ-range has been justified by Re´at et al. (1998),
despite the difference in the energy resolution of the two
instruments. This is also clear through the identity (within
errors) of the dry PM data in Fig. 2,A and B on the one
hand, and 2C on the other. In thisQ-range, “high-amplitude
movements” (HA) dominate with mean-square amplitudes
up to 2 Å2. At temperatures below'150 K, in each case, the
variation of^u2& with T can be fitted well by a straight line,
reflecting the existence of harmonic motions. These move-
ments are independent of the hydration level of the sample.
A deviation from this line appears at;150 K, reflecting the
onset of nonharmonic movements. In theT range 150–270
K and under all the hydration conditions tested (including
the dry sample), thêu2& values are very close, barely
outside experimental errors; the corresponding motions
were called “HA1.” Above 270 K, hydration affectŝu2&
amplitudes in a very minor way up to 86% r.h.; but, at 93%
r.h., there is an abrupt rise in^u2& values; the corresponding
motions were called “HA2.”

Fig. 3, A–C gives the variations of the mean-square
amplitudeŝ u2& as a function ofT in the high-Q range. The
data for 57% r.h. were identical within errors with those of
0% r.h., and are not shown. In thisQ-range, “small ampli-
tude movements” (SA) of,1 Å2 are dominant. At temper-

atures below 250 K in each case, the movements show
harmonic behavior, and are not affected by hydration.
Above 250 K, nonharmonic movements are triggered, with

FIGURE 1 Intensities of elastically scattered neutrons by PM. The scat-
tered intensities for each detector (each value ofQ), corrected and nor-
malized, are plotted as ln{S(Q, 0, T)/S(Q, 0, T0)} as a function ofQ2. The
given data correspond to PM at 86% r.h. at five different temperatures.
Closed symbols:data corresponding to the “lowQ-range” in the analysis.
Open symbols:data corresponding to the “highQ-range.” Statistical errors
are displayed for data obtained at 300 K. Solid lines are linear regressions
on the data points; their slope gives the corresponding mean-square am-
plitudes^u2& (Eq. 1).

FIGURE 2 Mean-square amplitudes (^u2&) of PM in the “low Q-range”
as a function of temperature for four hydration conditions (0% r.h., 75%
r.h., 86% r.h.: this work; 93% r.h.: data taken from experiments on IN10 at
the ILL by Réat et al., 1997). 0% r.h.: closed symbols (data are reproduced
in each figure); 75% r.h., 86% r.h., and 93% r.h.: open symbols for each
hydration value (specified in theinset). Solid line: linear regression on the
data points between 20 and 150 K (below the first dynamical transition),
corresponding to harmonic vibrations. In (A) and (B), errors are drawn for
the data on the hydrated samples; in (C), errors are of the size of the data
points.
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deviations from the linear fit corresponding to harmonic
movements increasing with hydration levels.

The quantitative influence of hydration on the mean-
square amplitudes of the two populations of motions in the
two differentQ-ranges was calculated as follows: for HA2

a linear fit was taken on thêu2& (T) data between 270 and
300 K after the second dynamical transition; for HA1 a
single linear fit was taken between 150 and 300 K (absence
of dynamical transition at 270 K); for SA the linear fit was

between 250 and 300 K (after the only dynamical transi-
tion). In Fig. 4 the relative difference of these slopes is
shown, i.e.,Dslope/slopedry 5 [sloper.h. 2 slopedry]/slopedry.
The differences in the hydration-dependence of the SA and
HA motions were clearly outside experimental error. For
motions HA1, the mean-square amplitudes were almost
independent of hydration level; motions HA2 appeared at a
hydration level of 93% r.h.; the mean-square amplitudes of
the SA motions increase regularly with increasing hydration
level. These differences in behavior provided a self-consis-
tent support for the hypothesis, discussed earlier by Re´at et
al. (1997), on the existence of two main populations of
motions in the membrane.

The populations HA1, HA2, and SA were defined accord-
ing to their mean-square amplitudes and dependence upon
hydration. In a recent work, Fitter et al. (1997b) have
defined two families of motions in PM (“faster” and “slower”)
according to different correlation times; these also were
found to depend on temperature and hydration. The corre-
spondence between the families defined by amplitude (this
work) and by time or energy (in Fitter et al., 1997b) cannot
be explored further without molecular dynamic simulations.

The influence of hydration on PM dynamics raises a
number of questions.

1. As a function of relative humidity, how much water is
bound to PM? The amount of water associated to PM at
different r.h. values has been estimated by weight in this
work. Values are concordant with data derived from
Váró and Keszthelyi (1983) (Fig. 5A), which agree with
preliminary NMR data (B. Bechinger, personal commu-
nication). The amount of associated water grows pro-
gressively up to 86% r.h., and then increases steeply.

2. As a function of hydration, what is the repartition of
water molecules in the sample? Three hydration regions

FIGURE 3 Mean-square amplitudes (^u2&) of PM in the “highQ-range”
as a function of temperature for four hydration conditions (0% r.h., 75%
r.h., 86% r.h., 93% r.h.: this work). Same symbols as in Fig. 2.

FIGURE 4 Influence of hydration on the mean-square amplitudes of
motions in PM at 300 K. This was symbolized asDslope/slopedry, calcu-
lated as (sloper.h. 2 slopedry)/slopedry, in which sloper.h. and slopedry are the
slopes corresponding to a linear fit on the^u2& (T) data between 270 and
300 K for HA and between 250 and 300 K for SA for the hydrated and dry
samples, respectively.Open symbols and solid line:influence of hydration
on motions SA.Closed symbols and dotted line:influence of hydration on
motions HA1 and HA2. Errors were of the size of the data symbols.
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have been identified in PM stacks: in the proton channel
of BR, around the lipid headgroups, and between the
membranes (Zaccaı¨ and Gilmore, 1979; Rogan and Zac-
caı̈, 1981; Papadopoulos et al., 1990). In hydrated PM,
the number of bound water molecules estimated to be
near the retinal and in the proton channel varies between
4 and 20 (Papadopoulos et al., 1990; Cao et al., 1991;
Schulenberg et al., 1995; Rousso et al., 1997 and refer-
ences therein; Pebay-Peyroula et al., 1997); it seems
accepted that;4 water molecules remain bound even
under very low hydration conditions. The variation with
relative humidity of the in-plane hexagonal unit cell
dimension “a” is a measure of water associated with the
lipid headgroups, leading to an increase of unit cell

surface area; Fig. 5B shows that this increase is roughly
proportional to r.h. The variation with relative humidity
of the lamellar period (parameter “c” in Fig. 5B) reflects
water association in the interbilayer space; it shows a
steep increase above 66% r.h. (unpublished results of
Rogan and Zaccaı¨). By rapidly cooling PM stacks at 93%
r.h. down to 77 K, a decrease of the in-plane and lamellar
lattice constants has been detected (Zaccaı¨, 1987), inter-
preted as a thermal contraction without loss of water on
the lipid headgroups. With PM stacks at 100% r.h. and
slower cooling rate, Lechner et al. (1998) found a more
important dependence of the lamellar spacing below
;260–275 K, interpreted as a dehydration of the mem-
brane and ice formation (Fitter et al., 1997b). In our
conditions of hydration and cooling rate, Bragg peaks
due to ice formation have not been detected. Lechner et
al. (1994) found a significant dependence on r.h. in the
translational diffusion of water in PM. It is low up to
;40% r.h. and increases strongly at;93% r.h., while
remaining much less than for bulk water. Rupley and
Careri (1991) have suggested that the first part of the
water adsorption curve to a protein would correspond to
binding to ionizable or polar groups, and that the steep
increase in the curve would be reached with binding on
loose sites at the surface. In this view, the relative
strength of the water association sites would decrease in
this order: proton channel, lipid headgroups, BR loops in
the interbilayer space.

3. What is the relationship between dynamical transitions
and “melting” of associated water? Our data revealed
three different dynamical transitions: one at;150 K,
which exists even in the dry sample; one at;250 K
(above which motions SA become hydration-depen-
dent); and one at;270 K, where motions HA2 appear at
93% r.h. We considered the hypothesis that these tran-
sitions were related to the melting of bound water: the
tighter the binding, the lower the melting point. Loosely
bound water would present a melting temperature of
;270 K. For strongly bound water, existing even in
“dry” PM, melting would occur at much lower temper-
atures, close to 170 K (Mayer, 1994). This could well
correspond to the dynamical transition observed at;150
K. The intermediate transition temperature (250 K) could
correspond to water bound with intermediate strength on
the surface sites of PM.

In summary, the observed motions in PM can be de-
scribed as follows. Below 150 K, movements are exclu-
sively harmonic, of low mean-square amplitude and inde-
pendent of hydration; at 150 K, strongly bound water (in the
proton channel?) melts, and some nonharmonic movements
appear (HA1). At ;250 K, water loosely bound to surface
sites (around lipid headgroups?) melts, triggering anharmo-
nicity in motions SA; this fits well with the observation by
Fitter et al. (1997a) that BR in a delipidated PM appears as
much more “rigid” than in the natural membrane, and that
this difference is accentuated with increasing hydration. At

FIGURE 5 Structural characteristics of hydration of PM. (A) Water
content of PM.Triangles: this work (derived from weight);circles: data
derived from Váró and Keszthelyi, 1983, considering a relative contribu-
tion of lipids in PM of 25% w/w (Glaeser et al., 1985). (B) Lattice
characteristics of PM (unpublished data obtained by Rogan and Zaccaı¨,
1981).Squares:relative increase in lipid area with increasing hydration,
represented by twice the relative variation of the in-plane lattice parameter
“a.” Circles: swelling of the membrane stacks, represented by the relative
variation of the stack lattice parameter “c.”Lines: hand-drawn fits on the
data to guide the eye.
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270 K, melting of water in the interlamellar space liberates
the final fluidity of the system, and much higher mean-
square amplitude motions are observed (HA2). Réat et al.
(1998) have reported that the dynamical transition at 270 K
did not appear when selectively observing the retinal pocket
1 extracellular half of BR, suggesting that motions HA2 are
essentially due to the cytoplasmic half of the protein and/or
external loops.

Fig. 6 A compares the different responses of the motions
SA and HA (viaDslope/slopedry) and the water content of
the sample with r.h. The values for motions SA increase
proportionally with the water content. In contrast, the values
for motions HA are close to zero except for very high water
content. This shows that a small increase in water content
triggers a proportional increase in the mean-square ampli-
tude of motions SA. Population HA, which is nonharmonic
even in the dry state, requires almost maximum hydration
for the second dynamical transition to occur and large
mean-square amplitudes of motions to be reached. These
observations strengthen the view of the PM as a dynamical
heterogeneous ensemble of populations with specifically
defined characteristics.

Fig. 6B shows data of the dependence on r.h. of motions
SA and HA, reproduced from Fig. 4 (Dslope/slopedry), to-
gether with data relative to rate constants of the photocycle
(Váró and Lanyi, 1991a; Thiedemann et al., 1992). The rate
constants calculated by Va´ró and Lanyi (1991a) were de-
rived from the measured time-dependent concentrations of
the photointermediates, assuming a single photocycle
model. Two rate constants appeared to be clearly hydration-
dependent, and both involve the intermediates M: the irre-
versible step between M1 f M2 (rate constantkM1/M2 in
Váró and Lanyi, 1991a) and the reversible step M2 N N
(rate constantkM2/N). The rate constant of M formation
derived from Thiedemann et al. (1992) was calculated here
as the reciprocal of the time to reach maximal absorbance at
407 nm. Fig. 6B shows a strong similarity between the
hydration-dependent increase of theDslope/slopedry values
for nonharmonic motions on the one hand, and of the kinetic
constants of the M-related intermediates of the photocycle
on the other. It is noteworthy that structural changes in BR
occur at the level of the M1 to M2 transition, and that they
have only been observed at relative humidities of 75% r.h.
and above (Weik et al., 1998; Sass et al., 1997). The
transition between these two intermediates is largely slowed
down by decreasing hydration from 100% to 65% r.h. (Va´ró
and Lanyi, 1991a). For a hydration state lower than 60%
r.h., an intramolecular return of the proton from Asp-85 to
the Schiff base has been detected (Va´ró and Lanyi, 1991a).

FIGURE 6 Correlation among dynamics in PM, water content, and
kinetic rate constants of photocycle and pH changes (see text). Hydration-
induced BR motions are represented as in Fig. 4 by the values ofDslope/
slopedry (solid line:motions SA;dotted line:motions HA). All data (except
inset inA) are represented as a percentage of their maximal value (obtained
at either 93% or 100% r.h.); only the series of data for which the tested
hydration levels reached at least 93% r.h., a hydration level at which there
is almost no difference in structure and function between hydrated PM
films and PM in solution (Va´ró and Lanyi, 1991b), is considered here. (A)
Comparison with the water content of the sample (same symbols as in Fig.
5). Inset: Dslope/slopedry plotted against water content of the sample,
showing the good correlation between motions SA (open symbols) and
water content. (B) Comparison with the kinetic rate constants of the M

intermediates in the photocycle.Triangles:rate constant for the M1f M2

transition (constantkM1/M2, Váró and Lanyi, 1991a);circles: rate constant
for the M2 N N transition (constantkM2/N, Váró and Lanyi, 1991a);
diamonds:kinetic constant of M formation (taken as the reciprocal of the
time to reach maximal absorbance at 407 nm in Thiedemann et al., 1992).
(C) Comparison with the kinetics of pH changes (taken as the reciprocal of
the time to reach maximal pH changes in Thiedemann et al., 1992).
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Furthermore, it has been reported that reprotonation of the
Schiff base in fully hydrated PM samples occurs only at
temperatures higher than 260 K, as in the normal sequence
assumed for proton pumping, and that, as a consequence,
proton pumping is inhibited (Ormos, 1991; Ormos et al.,
1992). This observation might, in the present context, be
correlated with the second transition to high nonharmonic
amplitudes appearing for 93% r.h. at 270 K (Fig. 2).

In Fig. 6C we compare our data with BR “pump activity”
kinetics as a function of hydration state (Thiedemann et al.,
1992). The authors measured the absorbance change of a pH
indicator in the bulk phase around PM. Although these pH
changes are not a direct measure of the “proton pumping”
rate (defined as the proton transfer from the cytoplasmic to
the extracellular side of the membrane, and which can be
measured by surface-bound pH indicators, see Heberle and
Dencher, 1992), their hydration dependence is likely to
reflect that of the “proton pumping.” As a measure of the
rate of pH change, we took the reciprocal of the time to
reach maximal pH change. Fig. 6C shows that this rate
decreases by lowering hydration of the PM samples in a
way similar to the decrease of the thermal motion parame-
ters under the same conditions.

From the present results strong correlations are observed
1) between the water content of the sample and nonhar-
monic movement parameters for population SA; and 2)
between the nonharmonic movements (especially those of
high amplitude, HA), and the kinetic constants of the M-
related intermediates of the photocycle and of the proton
pumping. In all cases, a change of a factor of 2 in the
mean-square amplitude corresponds to a change in the rate
parameters of a factor of at least 100 and often above 1000
(Korenstein and Hess, 1977; Va´ró and Lanyi, 1991a). The
“fast” (nanosecond-to-picosecond) thermal motions there-
fore appear essential for the “slower” (millisecond) relax-
ations underlying spectral changes, proton pumping events,
and conformational changes. Incoherent neutron scattering
is clearly an appropriate approach to characterize the ther-
mal motions that “serve as the lubricant that makes possible
larger-scale displacements [. . . ] on a physicological time
scale” (Brooks et al., 1988).
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