Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Oct;75(4):1964–1972. doi: 10.1016/S0006-3495(98)77637-4

Primary sequence and solution conformation of ferrocytochrome c-552 from Nitrosomonas europaea.

R Timkovich 1, D Bergmann 1, D M Arciero 1, A B Hooper 1
PMCID: PMC1299867  PMID: 9746537

Abstract

Cytochrome c-552 from Nitrosomonas europaea is a 9.1-kDa monoheme protein that is a member of the bacterial cytochrome c-551 family. The gene encoding for c-552 has been cloned and sequenced and the primary sequence of the product deduced. Proton resonance assignments were made for all main-chain and most side-chain protons in the diamagnetic, reduced form by two-dimensional NMR techniques. Distance constraints (1056) were determined from nuclear Overhauser enhancements, and torsion angle constraints (88) were determined from scalar coupling estimates. Solution conformations for the protein were computed by the hybrid distance geometry-simulated annealing approach. For 20 computed structures, the root mean squared deviation from the average position of equivalent atoms was 0.84 A (sigma = 0.12) for backbone atoms over all residues. Analysis by residue revealed there were three regions clearly less well defined than the rest of the protein: the first two residues at the N-terminus, the last two at the C-terminus, and a loop region from residues 34 to 40. Omitting these regions from the comparison, the root mean squared deviation was 0.61 A (sigma = 0.13) for backbone atoms, 0.86 A (sigma = 0.12) for all associated heavy atoms, and 0. 43 A (sigma = 0.17) for the heme group. The global folding of the protein is consistent with others in the c-551 family. A deletion at the N-terminus relative to other family members had no impact on the global folding, whereas an insertion at residue 65 did affect the way the polypeptide packs against the methionine-ligated side of the heme. The effects of specific substitutions will be discussed. The structure of c-552 serves to delineate essential features of the c-551 family.

Full Text

The Full Text of this article is available as a PDF (114.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciero D. M., Hooper A. B. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem. 1994 Apr 22;269(16):11878–11886. [PubMed] [Google Scholar]
  2. Arciero D. M., Peng Q., Peterson J., Hooper A. B. Identification of axial ligands of cytochrome c552 from Nitrosomonas europaea. FEBS Lett. 1994 Apr 4;342(2):217–220. doi: 10.1016/0014-5793(94)80504-0. [DOI] [PubMed] [Google Scholar]
  3. Blackledge M. J., Medvedeva S., Poncin M., Guerlesquin F., Bruschi M., Marion D. Structure and dynamics of ferrocytochrome c553 from Desulfovibrio vulgaris studied by NMR spectroscopy and restrained molecular dynamics. J Mol Biol. 1995 Feb 3;245(5):661–681. doi: 10.1006/jmbi.1994.0054. [DOI] [PubMed] [Google Scholar]
  4. Cai M., Bradford E. G., Timkovich R. Investigation of the solution conformation of cytochrome c-551 from Pseudomonas stutzeri. Biochemistry. 1992 Sep 15;31(36):8603–8612. doi: 10.1021/bi00151a030. [DOI] [PubMed] [Google Scholar]
  5. Cai M., Timkovich R. Solution conformation of cytochrome c-551 from Pseudomonas stutzeri ZoBell determined by NMR. Biophys J. 1994 Sep;67(3):1207–1215. doi: 10.1016/S0006-3495(94)80590-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell W. H., Orme-Johnson W. H., Burris R. H. A comparison of the physical and chemical properties of four cytochromes c from Azotobacter vinelandii. Biochem J. 1973 Dec;135(4):617–630. doi: 10.1042/bj1350617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Detlefsen D. J., Thanabal V., Pecoraro V. L., Wagner G. Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR. Biochemistry. 1991 Sep 17;30(37):9040–9046. doi: 10.1021/bi00101a019. [DOI] [PubMed] [Google Scholar]
  8. Dickerson R. E., Timkovich R., Almassy R. J. The cytochrome fold and the evolution of bacterial energy metabolism. J Mol Biol. 1976 Feb 5;100(4):473–491. doi: 10.1016/s0022-2836(76)80041-1. [DOI] [PubMed] [Google Scholar]
  9. Fujiwara T., Yamanaka T., Fukumori Y. The amino acid sequence of Nitrosomonas europaea cytochrome c-552. Curr Microbiol. 1995 Jul;31(1):1–4. doi: 10.1007/BF00294624. [DOI] [PubMed] [Google Scholar]
  10. Leitch F. A., Moore G. R., Pettigrew G. W. Structural basis for the variation of pH-dependent redox potentials of Pseudomonas cytochromes c-551. Biochemistry. 1984 Apr 10;23(8):1831–1838. doi: 10.1021/bi00303a039. [DOI] [PubMed] [Google Scholar]
  11. Matsuura Y., Takano T., Dickerson R. E. Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6 A resolution and comparison of the two redox forms. J Mol Biol. 1982 Apr 5;156(2):389–409. doi: 10.1016/0022-2836(82)90335-7. [DOI] [PubMed] [Google Scholar]
  12. McTavish H., Fuchs J. A., Hooper A. B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol. 1993 Apr;175(8):2436–2444. doi: 10.1128/jb.175.8.2436-2444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McTavish H., LaQuier F., Arciero D., Logan M., Mundfrom G., Fuchs J. A., Hooper A. B. Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea. J Bacteriol. 1993 Apr;175(8):2445–2447. doi: 10.1128/jb.175.8.2445-2447.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller D. J., Nicholas D. J. N-terminal amino acid sequence of cytochrome c-552 from Nitrosomonas europaea. Biochem Int. 1986 Jan;12(1):167–172. [PubMed] [Google Scholar]
  15. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  16. Timkovich R., Cai M. L., Dixon D. W. Electron self-exchange in Pseudomonas cytochromes. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1044–1050. doi: 10.1016/0006-291x(88)90735-8. [DOI] [PubMed] [Google Scholar]
  17. Timkovich R., Cai M. Investigation of the structure of oxidized Pseudomonas aeruginosa cytochrome c-551 by NMR: comparison of observed paramagnetic shifts and calculated pseudocontact shifts. Biochemistry. 1993 Nov 2;32(43):11516–11523. doi: 10.1021/bi00094a007. [DOI] [PubMed] [Google Scholar]
  18. Timkovich R., Cai M., Zhang B., Arciero D. M., Hooper A. B. Characteristics of the paramagnetic 1H-NMR spectra of the ferricytochrome c-551 family. Eur J Biochem. 1994 Nov 15;226(1):159–168. doi: 10.1111/j.1432-1033.1994.tb20037.x. [DOI] [PubMed] [Google Scholar]
  19. Timkovich R., Cork M. S. Proton NMR spectroscopy of cytochrome c-554 from Alcaligenes faecalis. Biochemistry. 1984 Feb 28;23(5):851–860. doi: 10.1021/bi00300a010. [DOI] [PubMed] [Google Scholar]
  20. Timkovich R., Walker L. A., 2nd, Cai M. Hydrogen exchange in Pseudomonas cytochrome c-551. Biochim Biophys Acta. 1992 May 22;1121(1-2):8–15. doi: 10.1016/0167-4838(92)90330-g. [DOI] [PubMed] [Google Scholar]
  21. Yamanaka T., Shinra M. Cytochrome c-552 and cytochrome c-554 derived from Nitrosomonas europaea. Purification, properties, and their function in hydroxylamine oxidation. J Biochem. 1974 Jun;75(6):1265–1273. doi: 10.1093/oxfordjournals.jbchem.a130510. [DOI] [PubMed] [Google Scholar]
  22. Yamazaki T., Fukumori Y., Yamanaka T. Catalytic properties of cytochrome c oxidase purified from Nitrosomonas europaea. J Biochem. 1988 Mar;103(3):499–503. doi: 10.1093/oxfordjournals.jbchem.a122299. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES