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ABSTRACT Mitochondrial involvement in the regulation of cytosolic calcium concentration ([Ca21]i) in cardiac myocytes has
been largely discounted by many authors. However, recent evidence, including the results of this study, has forced a
reappraisal of this role. [Ca21]i and Ca21 in the mitochondria ([Ca21]m) were measured in this study with specific fluorescent
probes, fluo-3 and di-hydro-rhod-2, respectively; mitochondrial membrane potential (DCm) was monitored with JC-1.
Addition of uncouplers or inhibitors of the mitochondrial respiratory chain was found to cause a twofold decrease in the rate
of removal of Ca21 from the cytosol after a spontaneously generated Ca21 wave. These agents also caused a progressive
elevation of [Ca21]i, an increase in the number of hotspots of Ca21 release (Ca21 sparks), and depression of mitochondrial
potential. The Ca21-indicative fluorophore dihydro-rhod-2 has a net positive charge that contributes to selective accumula-
tion by mitochondria, as supported by its co-localization with other mitochondrial-specific probes (MitoTracker Green).
Treatment of dihydro-rhod-2-loaded cells with NaCN resulted in rapid formation of “black holes” in the otherwise uniformly
banded pattern. These are likely to represent individual or small groups of mitochondria that have depressed mitochondrial
potential, or have lost accumulated rhod-2 and/or Ca21; all of these eventualities are possible upon onset of the mitochondrial
permeability transition. Release of Ca21 from the sarcoplasmic reticulum and the resultant spontaneous contractility of
cardiac muscle are proposed to be triggered by the induction of the mitochondrial permeability transition and the subsequent
loss of [Ca21]m.

INTRODUCTION

The regulation of intracellular free calcium concentration
([Ca21]i) is important in the life and death of cells. Calcium
has a central role in the control of cell function, including
the regulation of contractile activity (reviewed by Fay et al.,
1988). Important components in this regulation occur
through the calcium-sequestering and storage capacity of
the sarcoplasmic reticulum (SR) and sarcolemmal influx
pathways, which represent the predominant sources of cal-
cium for activation of contraction. The buffering capacity of
the cell constituents, notably calcium-binding sites on reg-
ulatory proteins such as troponin-C, as well as extrusion
activity of the cell membrane (Na1/Ca21 exchanger and
Ca21-ATPase pumps), provide limits for the elevations of
calcium that occur during normal cardiac contractile func-
tion (Bers, 1991).

Many laboratories have investigated the properties of
propagated spontaneous calcium release (now commonly
known as calcium waves) and spontaneous contractility in
apparently calcium-overloaded cardiac myocytes (Taka-
matsu and Wier, 1990; Ishide et al., 1990; Williams, 1993;
Lopez et al., 1995). In our own studies (Williams, 1990;

Williams et al., 1992), calcium-overloaded cells were seen
frequently to generate spontaneous contraction seen as lo-
calized bands of contraction and fueled by propagating
calcium waves. A direct link between spontaneous contrac-
tility due to calcium wave propagation, and the subsequent
depolarization, global elevation of intracellular calcium, and
cell contraction was clear. This sequence of events would
form the basis of an arrythmogenic response.

A major contribution from mitochondria in cellular cal-
cium homeostasis has been largely dismissed, except in
conditions of extreme calcium overload experienced by
cardiac muscle cells under pathological circumstances.
However, this has now been challenged in several studies
that have shown a role for mitochondrial involvement in
cellular calcium homeostasis under normal physiological
conditions (Ichas et al., 1994; Mix et al., 1994; Jouaville et
al., 1995; Drummond and Fay, 1996; Ichas et al., 1997;
Trollinger et al., 1997). One such study demonstrated that
mitochondrial calcium uptake is a major factor in the reg-
ulation of inositol-1,4,5-trisphosphate-induced calcium re-
lease inXenopusoocytes (Jouaville et al., 1995). A subse-
quent study in smooth muscle cells found mitochondria to
contribute to removal of cytosolic calcium after electrical
stimulation (Drummond and Fay, 1996).

Mitochondrial Ca21 ([Ca21]m) is regulated through trans-
port mechanisms on the inner membrane (reviewed by
Gunter and Pfeiffer, 1990; McCormack et al., 1990). They
consist of mechanisms for both Ca21 uptake and efflux.
Uptake of Ca21 is through the potential-dependent Ca21

uniporter, a mechanism driven by the mitochondrial mem-
brane potential (DCm) through the extrusion of protons by
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the electron transport chain. Two possible pumping mech-
anisms have been identified for the efflux of Ca21: a 2Na1/
Ca21 exchanger, linked to electron transport chain proton
pumping via Na1/H1 exchange, and a Na1-independent
mechanism, known to be a nonelectrogenic Ca21/2H1 ex-
changer (Puskin et al., 1976).

The demonstration that accumulation of mitochondrial
calcium resulted in the selective permeabilization of the
mitochondrial membrane, particularly to Ca21, provided
evidence for an additional pathway for Ca21 efflux (Hunter
and Haworth, 1979a,b; Haworth and Hunter, 1979). This
process, now known as the mitochondrial permeability tran-
sition (MPT), may be due to a large proteinaceous pore,
which is thought to span the inner and outer mitochondrial
membranes and allows for passage of substrates less than
1.5 kDa (reviewed by Zoratti and Szabo, 1995; Mignotte
and Vayssiere, 1998). In addition to a central role in cell
death pathways (Marchetti et al., 1996), the MPT has been
implicated in the mitochondrial Ca21 overload that ensues
from pathophysiological states such as cardiac ischaemia-
reperfusion injury (Crompton and Costi, 1990; Griffiths and
Halestrap, 1995).

The aim of this study was to investigate whether mito-
chondrial function has a critical influence on the Ca21 wave
characteristics, including initiation frequencies, propagation
rates, peak levels, and time course of Ca21 changes. A
specific goal was to determine whether the MPT might
directly alter Ca21 waves as a consequence of pore opening.
As the MPT is sensitive to changes inDCm, we have used
a variety of mitochondrial respiratory inhibitors or uncou-
plers of oxidative phosphorylation to depressDCm. As a
decline inDCm will result in a reduction in mitochondrial
calcium uptake, it was also essential to investigate the role
the mitochondrial Ca21 uniporter may play in spontaneous
calcium waves.

MATERIALS AND METHODS

Isolation of rat left ventricular myocytes

Single ventricular myocytes were isolated from Sprague-Dawley rats as
described previously (Williams et al., 1992). Once isolated, the cells were
resuspended in N-2-hydroxyethlpiperazine-N9-2-ethanesulfonic acid
(HEPES)-buffered medium containing trypsin inhibitor. Cells were al-
lowed to settle on to a 223 40 mm glass coverslip in a solution containing
(in mM): 118 NaCl, 4.8 KCl, 1.2 MgSO4, 1.2 KH2PO4, 25.0 Na-HEPES,
11.0 glucose, and 1.0 CaCl2. All experiments were conducted at room
temperature (20–23°C) within 5 h of cell isolation. Spontaneously con-
tracting myocytes were used in these experiments except where indicated.

Confocal microscopy

Single myocytes loaded with particular fluorescent probes were imaged
with a BioRad MRC-1000 laser-scanning confocal microscope coupled to
a Nikon Diaphot 300 microscope. The objective lens was a Nikon 603
N.A. 1.4 planapochromat, oil immersion lens. Probes were excited with the
488-nm or 514-nm lines of a 100-mW argon ion laser. Intensity of
excitation light was minimized through use of 1% (fluo-3) or 3% (JC-1,
Rhod-2, and MitoTracker Green) neutral density filters to curb photo-
bleaching.

Investigations of cytosolic calcium fluxes were made with fluo-3/AM
(acetoxymethyl ester). Fluo-3/AM was added to cells at a concentration of
5 mM at 30°C for 30 min. Dilution of the cell suspension (5:1) with fresh
buffer minimized the concentration of unloaded dye, and time was then
allowed for cleavage of internalized fluo-3/AM. Loaded myocytes were
excited at 488 nm, with emission collected above 515 nm through a
long-pass barrier filter.

To investigate mitochondrial calcium ([Ca21]m), we used the fluores-
cent Ca21 probe Rhod-2, a molecule that has a net positive charge allowing
its sequestration into mitochondria. This localization was further accentu-
ated through addition of a small excess of sodium borohydride in a
methanol solution, which reduced the probe to dihydro Rhod-2
(DHRhod2), favoring preferential compartmentalization in the mitochon-
drial matrix (Hajnoczky et al., 1995; Mix et al., 1994). Cells were loaded
at an approximate concentration of 10mM DHRhod2 at 30°C for 30 min.
Rhod-2 was excited at 514 nm, with emission monitored through a 580-nm
(32-nm band pass) barrier filter.

An examination of the intracellular distribution of DHRhod2 was made
through comparison with the staining pattern of the mitochondrial-specific
probe MitoTracker Green, a molecule that covalently binds to the inner
mitochondrial membrane and fluoresces independently ofDCm and
[Ca21]m. For co-localization studies, both fluorophores were excited at 488
nm with emission of MitoTracker Green (5226 22 nm) separated from
that of DHRhod2 (5806 16 nm) through careful selection of emission
beam splitters and barrier filters. Signal bleed-through of either probe was
determined on cells loaded with only one probe and imaged using identical
settings (gain, iris, and black level), concentrations, and incubation times to
those used in co-localization studies.

The fluorescent probe JC-1 (5,59,6,69-tetrachloro-1,19,3,39-tetraethyl-
benzimidazolcarbocyanine iodine) was used to investigateDCm. JC-1 was
excited at 488 nm, the emission split and monitored in dual detectors at 522
nm (35-nm band pass) and 580 nm (32-nm band pass), representing
monomer and J-aggregate fluorescence, respectively. The derivation of the
ratio of the monomer to aggregate fluorescence provides a measure directly
related toDCm (Simpson and Russell, 1996; Reers et al., 1991, 1995;
Smiley et al., 1991; Di Lisa et al., 1995).

Image acquisition and analysis

A suitable image-acquisition mode was determined for each fluorophore
being used in a given experiment. Five consecutive 768-3 512-pixel
images (1-s scan rate) were averaged (Kalman algorithm) to provide
images of DHRhod-2 fluorescence. A similar acquisition mode was used
for JC-1 fluorescence, except that dual channels simultaneously monitored
both monomer and aggregate fluorescence. Background fluorescence lev-
els (average intensities derived from nonloaded cells at the same gain
settings) were subtracted from each component image, and a ratio image
was derived through pixel-by-pixel division using a routine written in the
BioRad macro programming language (available upon request). Fluores-
cence intensity histograms were derived for both DHRhod-2 and ratio JC-1
images to determine the average global pixel intensity across the entire cell
or from subcellular regions of interest.

Selection criteria for “black hole” areas included that they initially have
uptake of DHRhod2 but show significant loss of fluorescence thereafter,
and be recognized as an area no more than 4mm in diameter and 30 gray
levels less than the surrounding area. To determine the proportion of the
myocyte lacking DHRhod2 fluorescence, we measured the total area of the
black holes and expressed it as a fraction of the cell cross-sectional area.

Fluo-3-loaded cells exhibiting spontaneous calcium waves were imaged
using line-scan 768-3 512-pixel images (Williams et al., 1992). Orienta-
tion of a single raster line along the long axis of the myocyte allowed
generation ofX-T plots, which combined cell length and fluo-3 intensity
information at high time resolution. The duration of each total image scan
was set to 12 s, which generally allowed for capture of several propagating
Ca21 waves. These plots were then used to calculate parameters of the
propagating calcium waves, including basal fluorescence intensity, wave
frequencies and propagation rates, and the time taken for 50% of the
[Ca21]i to be removed from the cytosol (T0.5) after a Ca21 elevation.
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Reagents

Fluo-3/AM, Rhod-2/AM, JC-1, and MitoTracker Green were obtained
from Molecular Probes, Eugene, OR. All esterified fluorescent probes were
prepared as stock solutions in dimethylsulfoxide (DMSO).

Mitochondrial uncoupler and respiratory chain inhibitors were added to
the bathing solution with the concentrations and times of addition as
indicated. Carbonyl cyanidem-chlorophenylhydrazone (CCCP) and anti-
mycin A were prepared as stock solutions in DMSO. NaCN was prepared
as a stock solution in pure water. CCCP, antimycin A, DMSO, cyclosporin
A, HEPES, and NaCN were from Sigma-Aldrich (St. Louis, MO)

Statistical analysis

Where appropriate, data are expressed as mean6 SE, wheren refers to the
number of cells studied.

RESULTS

Properties of cytosolic calcium fluxes after
addition of mitochondrial inhibitors

Spontaneously contracting cells were examined by a time
series of 12-s line-scan images (one line-scan image every 2
min, for up to 30 min). This time period allowed for estab-
lishment of control contractile and fluo-3 fluorescence
([Ca21]) profiles for comparison with the responses to sub-
sequent treatment (uncoupling of mitochondria or inhibition
of cytochromec oxidase).

Fig. 1 shows a line-scan recording from a single cardiac
muscle cell after treatment with 10 mM NaCN, an inhibitor
of mitochondrial cytochromec oxidase. Fig. 1A (time 0)

illustrates several spontaneous Ca21-release events (waves)
initiated at sites within the cell. The overlaid intensity
profile indicates that at a given point within the cell the time
course of fluorescence change is remarkably constant,
achieving similar peak intensity and declining at a constant
rate to a fixed fluorescence level after each transient change.

The addition of NaCN caused a marked progressive
change in intracellular fluorescence intensity and in the
properties of the propagating Ca21 waves (Fig. 1). In Fig. 1,
B, C, andD (6, 12, and 22 min after initiation of treatment),
evidence is provided for a progressive reduction of the rate
of fluorescence decline (longer decay half-timeT0.5) in each
transient, superimposed on a progressively increasing base-
line fluorescence level. Evaluation of an effect on the rate of
fluorescence increase in each transient is difficult in the data
presented. Although after NaCN treatment the rate of prop-
agation of the waves did not vary markedly, as evidenced by
the slope of the fluorescence bands (Fig. 1,A–C), the
initiation of spontaneous Ca21 waves did eventually cease
(Fig. 1 D).

A summary of the changes inT0.5 and basal fluorescence
intensity that occurred in individual cells after application of
mitochondrial inhibitors (NaCN and antimycin A) and un-
coupler (CCCP) is shown in Fig. 2. All additions caused
marked increases inT0.5, which were evident within 2 min
of application of the reagent. Increases in basal fluorescence
were generally not evident until later in the time course.
Typically, 8–10 min after addition of inhibitor, waves
ceased, yet cytosolic fluorescence intensity continued to
rise, often culminating in cell hypercontracture.

FIGURE 1 A series of line-scan
(X-T) plots from a spontaneously con-
tracting cardiac muscle cell treated with
10 mM NaCN. (A) Control, pre-NaCN;
(B) 6 min after NaCN; (C) 12 min after
NaCN; (D) 22 min after NaCN. Each
line-scan image is generated through
the repeated scanning over a 12-s pe-
riod of a raster line orientated along the
long axis of the myocyte. Each of the
512 lines of the image requires 23 ms of
acquisition time. The high-intensity di-
agonal bands represent the propagation
of a fluo-3 fluorescence wave through
the cell. Changes in cell length are seen
as the horizontal narrowing of each pro-
file. Overlaid on each profile is a graph-
ical representation illustrating the time
course of Ca21 waves through the cell
cytosol (arrow indicates location of
profile).
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An interesting and fundamentally important observation
was the increasing number of fluorescence hotspots (Fig. 3),
now commonly known as focal areas of Ca21 release (Wil-
liams, 1993), or Ca21 sparks (Cheng et al., 1996). The Ca21

sparks occurred soon after addition of NaCN and continued
until the cessation of Ca21 waves. Increased numbers of
Ca21 sparks occurred predominantly after a single propa-
gating Ca21 wave but were also evident between individual
waves.

Alteration of mitochondrial membrane potential

It was anticipated that the ability of these added reagents to
cause significant changes in the dynamics of intracellular
Ca21 fluxes was due to their ability to disrupt or alter
mitochondrial membrane potential (DCm). This possibility
was investigated in cells loaded with JC-1, a ratiometric
indicator ofDCm. Dual-channel emission images of JC-1-
loaded, quiescent cardiac cells illustrated the heterogeneous

FIGURE 2 Changes in the basal fluorescence intensity andT0.5 of Ca21 transients after addition of uncouplers or inhibitors of mitochondrial respiration.
Effects of addition of 10 mM NaCN (A, B; n 5 9 cells), 0.5 nM antimycin A (C, D; n 5 7), and 40 nM CCCP (E, F; n 5 4) on T0.5 (A, C, andE) and
basal fluorescence intensity (B, D, E) are depicted. All graphs express data as the percentage increase from the pretreatment values. Data are expressed as
mean6 SEM.
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nature ofDCm. Although the monomer fluorescence inten-
sity was relatively homogeneous throughout an individual
cell, J-aggregate fluorescence was heterogeneous with a
higher intensity observed within 5–10-mm of the cell edge
(sarcolemma; Fig. 4). Quiescent cells exhibited a JC-1 flu-
orescence ratio that was constant over a 60-min period.
Addition of either a mitochondrial electron transport chain
inhibitor (NaCN or antimycin A) or a protonophore (CCCP)
caused depression ofDCm. This depression ofDCm was
also apparent in spontaneously contracting cells as illus-
trated in Fig. 5 for a cell treated with antimycin A (n 5 7).
Of particular interest was the time course of the change of
DCm after addition of reagent, with the decrease commenc-
ing almost immediately after addition of antimycin A (Fig.
5) and the potential then remaining constant after 12 min.
Fluorescence changes with similar time course were evident
after CCCP (40 nM) and NaCN (10 mM) addition (data not

shown). Although the overall cellular ratio fluorescence
decreased, discrete alterations in the aggregate fluorescence
were also apparent in the images. These alterations con-
sisted of localized increases or decreases in the aggregate
fluorescence, suggesting localized elevations or depressions
of DCm, respectively.

Mitochondrial calcium changes

To determine whether the altered Ca21 fluxes resulting
from changes inDCm were dependent on mitochondrial
sources of Ca21, the Ca21 indicator DHRhod2 was used to
selectively monitor this Ca21 pool. Quiescent cells loaded
with DHRhod2 exhibited a regular, banded fluorescence
pattern, typical of the cardiac mitochondrial distribution
(Fig. 6). Mitochondrial localization of fluorescence was
confirmed through the co-loading of DHRhod2 with the
mitochondrial-specific probe MitoTracker Green. In addi-
tion, treatment of DHRhod2-loaded cells with 0.2 mM
MnCl2 for 30 min at 37°C, a manipulation known to quench
cytosolic fluorescence, caused no significant change in the
fluorescence pattern (data not shown).

Interestingly, many spontaneously contracting cells dem-
onstrated discrete black holes in the otherwise regular,
banded DHRhod-2 fluorescence pattern. Although these may
have simply represented irregularities in the fluorescence stain-
ing of small groups of mitochondria, addition of 10 mM NaCN
to cells caused the number of these black holes to increase
progressively over a 50-min period, thereby eliminating this
possibility (data not shown). As NaCN indirectly causes de-
pression ofDCm, these black holes are likely to represent
individual or small groups of mitochondria that have lost
accumulated DHRhod-2 and/or Ca21.

This proposition was investigated more closely as fol-
lows. Cells were co-loaded with DHRhod2 and Mito-
Tracker Green and then treated with 10 mM NaCN. Images
were taken at 2-min intervals over a 1-h period, allowing the
construction of a time-lapse image series that is shown in

FIGURE 3 Line-scan (X-T) plot of Ca21 sparks in a cell treated with
NaCN (10 mM). Shown is a 12-s line-scan plot of a fluo-3-loaded cardiac
myocyte. The localized high-intensity regions throughout the profile rep-
resent spontaneous Ca21 sparks (arrow). The sparks appear as small
vertical lines in the line-scan due to the time taken (12 s) to generate the
image.

FIGURE 4 Dual-channel recording of the distribution of JC-1 fluores-
cence in a cardiac myocyte. JC-1 was excited with the 488-nm band of an
Ar ion laser. (A) Monomer fluorescence image (5226 35-nm band pass).
(B) J-aggregate fluorescence image (5806 32-nm band pass). Note that the
distribution of JC-1 potential-insensitive monomer is relatively homoge-
neous throughout the cell (A) compared with the regional differences in
fluorescence of potential-sensitive J-aggregate (B).

FIGURE 5 Ratio of JC-1 fluorescence changes upon treatment of car-
diac cells with 0.5 nM antimycin A. Shown is the change in the average
ratio (scaled by a factor of 100) of JC-1 fluorescence (intensity units) after
addition of antimycin A (0.5 nM). The data shown are the means6 SEM
for seven cardiac cells. The bar indicates treatment duration.
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Fig. 7. The initially low number of these discrete black
holes in the DHRhod2 fluorescence pattern did not appear
to increase markedly until 30 min after exposure to NaCN.
The total cell fluorescence then rapidly declined until 50
min after addition of reagent, at which point cells began to
hypercontract. Each appearance of a black hole in the
DHRhod2 fluorescence occurred simultaneously with a lo-
calized increase in the MitoTracker Green fluorescence
(Fig. 8). This confirms the mitochondrial origin of black
holes. Note in Fig. 7 that there are discontinuities in the
image (thin arrowheads), which are not considered black
holes as they are evident before NaCN addition and the
origin of which is as yet undetermined. These observations
are not consistent with the possibility of fluorescence reso-
nance energy transfer (FRET) between fluorophores as both
were co-excited in these experiments, and the observations
were identical when the fluorophores were used individu-
ally. Although this localized fluorescence increase dissi-
pated in the ensuing 6-min period, the average intracellular
fluorescence of MitoTracker Green gradually increased
throughout the image acquisition period.

To examine the possibility that the black holes result
from opening of the MPT pore, the effect of cyclosporin A
on their formation was studied. Addition of cyclosporin A
(1 mM) 30 min before addition of NaCN (10 mM) almost
completely abolished the emergence of black holes (Fig. 9).
These observations indicated that the loss of fluorescence
leading to the appearance of black holes was due to induc-
tion of opening of the MPT pores.

DISCUSSION

The results presented in this study demonstrate that the
propagation of spontaneous Ca21 waves in cardiac myo-
cytes is influenced by mitochondrial function. Uncoupling of
mitochondria or inhibition of cytochromec oxidase caused
depression ofDCm, rapidly leading to a reduction in the rate of
removal of Ca21 from the cytosol after a Ca21 transient.
Additionally, examinations of mitochondrial Ca21 content,
particularly in spontaneously contracting cardiac myocytes,
revealed small groups of mitochondria devoid of Ca21. To our

FIGURE 7 Loss of mitochondrial
Ca21 in NaCN-inhibited mitochon-
dria. The time series of nine frames
was collected over a 60-min period
where each frame represents a dual-
channel recording of DHRhod2 (left)
and MitoTracker Green (right). Num-
bers in the bottom right-hand corner
indicate time (min) after addition of
10 mM NaCN to the bathing solution.
Thin arrowheads indicate invariant
discontinuities not considered black
holes at 0 and 40 min. Thick arrow-
heads point to different individual
black holes at various times.

FIGURE 6 Typical fluorescence
pattern of a di-hydro-rhod-2-loaded
cardiac cell. The compartmentalized,
banded fluorescence pattern, typical
of mitochondrial distribution in car-
diac myocytes, is evident. The arrow
indicates a discrete region of ex-
tremely low fluorescence intensity, a
black hole, indicating potential loss of
mitochondrial Ca21 or rhod-2. Exci-
tation, 488 nm; emission, 5806 32
nm.

Bowser et al. Ca21 Regulation in Cardiac Muscle 2009



knowledge, images such as these illustrating the loss of mito-
chondrial Ca21 have not been previously reported.

Mitochondrial involvement in Ca21

wave propagation

A role for mitochondria in the regulation of cytosolic Ca21

has been long thought to be important only in pathophysi-
ological conditions. This view has been supported by stud-
ies of permeabilized cardiac myocytes that demonstrated
that significant mitochondrial calcium uptake did not occur
until the cytoplasmic calcium exceeded 1mM (Fry et al.,
1984). These studies provided evidence for a role of mito-
chondrial Ca21 transport systems for regulating mitochon-
drial [Ca21] but not support for a significant involvement in
the regulation of cytosolic [Ca21]. However, evidence for a
role of mitochondrial calcium uptake under normal physi-
ological conditions, particularly after spontaneous calcium
transients, has been gathering in recent years. Jouaville et al.
(1995), investigating inositol-1,4,5-trisphosphate-induced
Ca21 release inXenopusoocytes, energized mitochondria
with pyruvate/malate and observed increased Ca21 wave
amplitude and velocity. These effects were blocked by
rotenone (an inhibitor of mitochondrial complex I) and
antimycin A. Drummond and Fay (1996) investigated cal-
cium release in electrically stimulated smooth muscle cells
and demonstrated that NaCN or FCCP significantly in-
creased the half-time for Ca21 removal (T0.5) without alter-
ing resting cytosolic calcium concentration.

FIGURE 8 Localized fluorescence changes in NaCN-uncoupled mito-
chondria. (A) Dual-channel recording of DHRhod2 (left) and MitoTracker
Green (right). Areas in white boxes indicate the regions magnified inB–E.
Images were taken at the following times subsequent to addition of NaCN:
6 min (B), 8 min (C), 10 min (D), and 12 min (E). Loss of mitochondrial
Ca21 (appearance of a black hole) occurs simultaneously with localized
increase in the MitoTracker Green fluorescence (arrow). This high-inten-
sity fluorescence dissipates over the ensuing 6-min period.

FIGURE 9 The effect of cyclosporin A on black hole formation in
cardiomyocytes after addition of 10 mM NaCN. To determine the propor-
tion of the cell containing black holes, we measured the area of the cell
lacking DHRhod2 fluorescence and expressed this as a proportion of the
total cell area. The figure expresses the percentage change in the black hole
area normalized at each time point with respect to the fluorescence in that
particular area at 0 min. Criteria for black hole selection included that they
be no more than 4mm in diameter and approximately 30 gray levels less
than the surrounding area. Data are expressed as mean6 SEM. Significant
differences between cyclosporin-A-treated (F) and untreated (l) myo-
cytes were determined using a Student Newman-Keuls post hoc analysis
(*p , 0.01;n 5 5 for both treatment groups).

2010 Biophysical Journal Volume 75 October 1998



Our results showed increases inT0.5 after addition of
NaCN, antimycin A, or CCCP and at face value are in agree-
ment with both studies. However, after prolonged exposure,
the spontaneous Ca21 waves eventually ceased and basal cy-
tosolic calcium gradually increased. Although this may be due
in part to the release of mitochondrial calcium, it is unlikely
that such an effect alone could fully explain the observation we
have made. The treatments are also likely to have modified the
function of intracellular compartments that contribute to estab-
lishing basal [Ca21]i, as well as affecting the activity or con-
centration of pumps and Ca21 buffers that may contribute to
Ca21 homeostasis. Additional work will identify the relative
contribution of these possibilities.

Mitochondrial membrane potential alterations in
spontaneously contracting cardiac myocytes

Uptake of Ca21 by mitochondria is dependent on the po-
tential difference across the mitochondrial membranes. By
reducingDCm, the activity of the Ca21 uniporter influx is
reduced. Therefore CCCP, NaCN, and antimycin A would
indirectly inhibit mitochondrial Ca21 uptake through the
depression ofDCm. This depression was demonstrated us-
ing JC-1, a lipophilic cation, which distributes across the
mitochondrial membrane in a fashion accurately described
by the Nernst equation. JC-1 normally exists in its mono-
meric form. However, upon accumulation in the mitochon-
drial matrix, JC-1 forms J-aggregates, with different emis-
sion spectral characteristics, in proportion to mitochondrial
membrane potential. The complete depression ofDCm by
treatment with respiratory inhibitors or uncouplers took
approximately 15 min as judged by the time required to
establish a new steady-state level, a time that is in agree-
ment with values quoted in other studies on rat cardiac
myocytes (Di Lisa et al., 1995). In the study of Di Lisa and
colleagues, a decrease inDCm was demonstrated at the
onset of anoxia, whereas contractile activity was retained.
TheDCm then collapsed at the onset of rigor. In the present
study, the time course of changes in Ca21 wave activity
indicates that whereasDCm was decreasing, Ca21 waves
and contractile activity were still present but in most cells
had ceased once theDCm reached a constant depressed
level. In the meantime, [Ca21]i continued to gradually rise.
Control studies of untreated, spontaneously contractile cells
indicated that many myocytes continue activity for greater
than 30 min, and it is clear that the cessation of spontaneous
calcium transients is due to the decrease inDCm induced by
respiratory inhibitors and uncouplers.

Mitochondrial calcium changes after uncoupling
of the respiratory chain

Through depression ofDCm and inhibition of Ca21 uptake,
resting [Ca21]i increases. Clearly, this could be due to the
involvement of several processes, including an absence of
mitochondrial Ca21 regulatory mechanisms, inhibition of

SR and sarcolemmal Ca21-ATPases, or the release of mi-
tochondrial calcium. There is evidence to suggest that after
depression ofDCm, the ruthenium red-sensitive mitochon-
drial Ca21 uniporter may reverse direction, allowing efflux
of Ca21 into the cytosol (Nicholls and Åckerman, 1982).
Additional efflux of mitochondrial Ca21 can occur through
induction of the mitochondrial permeability transition
(MPT). The molecular structure and mechanisms of inhibi-
tion and activation of this MPT pore have been the subject
of numerous investigations, summarized in many reviews
and symposium proceedings (Zoratti and Szabo, 1995; Ber-
nardi, 1996). From the collective data it is generally agreed
that the MPT pore is a large, proteinaceous, Ca21-activated,
proton- and ADP-inhibited, voltage-dependent pore, span-
ning the inner and outer mitochondrial membranes, allow-
ing the passage of ions and substrates less than 1.5 kDa. The
MPT has been implicated in cell death processes, particu-
larly in cellular ischaemia- and reperfusion-induced injury
(Crompton and Costi, 1990; Griffiths and Halestrap, 1995),
and in the induction of apoptosis (Mignotte and Vayssierre,
1998). Characteristically, opening of the MPT pore is
inhibited by cyclosporin A (Zoratti and Szabo, 1995;
Bernardi, 1996).

When quiescent cardiac cells were loaded with
DHRhod-2, the normal, banded fluorescence pattern was
observed. However, there were irregular black holes in the
regular compartmentalized pattern. Such black holes could
represent single or groups of mitochondria that have ex-
pelled Ca21 from the matrix, have lost accumulated Rhod-2
due to depressedDCm, or may never have accumulated
DHRhod2. After addition of NaCN to these cells, we ob-
served a gradual decrease in the total cell Rhod-2 fluores-
cence. These observations can be explained if the treatments
undertaken caused an induction of the MPT, providing a
pathway for the loss of constituents such as Ca21 and
DHRhod2 from mitochondria. This possibility is strength-
ened by the finding that cyclosporin A, an inhibitor of MPT
induction, largely prevented the loss of these mitochondrial
solutes.

Time course of changes after uncoupling of the
mitochondrial respiratory chain

Numerous observations with a variety of fluorescent probes
examining cellular and mitochondrial function have allowed
us to develop a model describing the time course of these
events (Fig. 10). The illustration describes two phases after
uncoupling of the mitochondrial respiratory chain. These
phases are not distinct, but overlap, allowing a discussion of
the concurrent observations made.

Immediately after addition of, for example, NaCN (first
phase), DHRhod-2 fluorescence intensity fluctuated
throughout the cell, indicating calcium fluctuations within
mitochondria. At this time, averageDCm across the cell was
gradually depressed, thereby reducing the activity of the
Ca21 uniporter. Alternatively, the changes in [Ca21]m and
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DCm may indicate the transient opening of the MPT in a
low-conductance mode. Previous studies by Ichas and col-
leagues (1994, 1997) have demonstrated oscillating open
and closed states of the pore in a low-conductance mode,
supporting a mechanism termed the mitochondrial calcium-
induced calcium release. This experimental evidence illus-
trated a process whereby uptake of calcium into mitochon-
dria reached a threshold concentration, activating the MPT
and releasing calcium into the cytosol. This cyclical process
enabled mitochondria to propagate a calcium transient be-
tween adjacent mitochondria and therefore throughout the
cell.

The end of phase one involved a minor increase in the
number of black holes with no observed change in the
average cell DHRhod-2 fluorescence intensity. This may
indicate that some mitochondria possess MPT pores that
were operating in a high-conductance state. This state is
irreversible, allowing the rapid loss of mitochondrial cal-
cium and other low molecular weight metabolites (Hunter
and Haworth, 1979a,b; Vercesi et al., 1988). A major de-
crease in the overall cellular fluorescence does not occur
until phase two, at which point there is a rapid decline in the
compartmentalized fluorescence of Rhod-2. The fluores-
cence decline begins in mitochondria close to the cell sar-
colemma and progress inward to the center of the cell. This
may indicate rapid loss of calcium though the high-conduc-
tance MPT pore. However, the decline in fluorescence may
either be due to loss of charged DHRhod2 due to reduction
of the mitochondrial membrane potential or through the open
pores. The decline in the DHRhod2 fluorescence begins close
to the cell membrane and correlates well with the loading
patterns of JC-1. Higher J-aggregate fluorescence (and there-
fore higherDCm) was also observed in this region, perhaps

indicating that these mitochondria with higher restingDCm are
the first to lose accumulated calcium. The underlying mecha-
nism is not yet clear but may be related to the kinetics of
diffusion of NaCN into the myocyte preparations.

In the first phase after addition of NaCN, antimycin A, or
CCCP, an increased number of spontaneous nonpropagating
Ca21-release events, or Ca21 sparks, was also evident. The
events underlying Ca21 sparks represent the release of Ca21

from one or a group of SR ryanodine receptors (Cannell et
al., 1994; Cannell et al., 1995). Under normal conditions,
Ca21 sparks underlie excitation-contraction coupling,
whereby opening of L-type Ca21 channels causes a small
influx of Ca21, which subsequently acts on ryanodine re-
ceptors to cause Ca21 release that, when synchronized,
leads to contraction. Although observation of Ca21 sparks
in spontaneously active cardiac myocytes has been made in
several previous studies, the present data suggest that re-
lease of mitochondrial Ca21 through the transient MPT
activity may provide a [Ca21]i change of sufficient local
magnitude and rate of change (D[Ca21]/Dt) to activate or
contribute to Ca21 sparks. Electron microscopic studies
have demonstrated that mitochondria occupy a significant
proportion of the total cell volume (;30%) and that they are
in close proximity to adjacent SR. Although such an ar-
rangement would allow the diffusion of released mitochon-
drial Ca21 to reach SR ryanodine receptors (Bassani et al.,
1993), whether the increased Ca21 would be sufficient to
induce CICR before sequestration by SR Ca21-ATPases is
unknown. Other studies that have alluded to mitochondrial
involvement (Cannell et al., 1994; Cheng et al., 1996) have
focused on passive effects such as mitochondria providing a
physical obstruction to calcium diffusion, thereby affecting
patterns of Ca21 release. This is one of the first studies to have

FIGURE 10 Schematic representa-
tion of time course of changes after
disruption of mitochondrial function
in cardiac cells. This diagram repre-
sents the temporal relationship be-
tween the observed changes in cyto-
solic Ca21 (fluo-3), mitochondrial
membrane potential (JC-1), and mito-
chondrial Ca21 (DHRhod-2) over a
60-min period after inhibitors and un-
couplers of the mitochondrial respira-
tory chain. The inferred changes in
the open probability of the mitochon-
drial permeability transition pore are
also displayed. The magnitude of the
change in each parameter is reflected
in the breadth of the profile at any
time point. See text for a description
of the phases.
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described a direct active contribution of mitochondria to initi-
ation or propagation of Ca21 release in cardiac muscle.

CONCLUSION

We have been able to image various functional properties of
mitochondria in isolated cardiomyocytes. In isolation, these
techniques have enabled the development of a working
model as a foundation for examining the time course of
events surrounding spontaneous contractile activity and the
underlying calcium dynamics (intracellular and mitochon-
drial), believed ultimately to lead to ventricular arrhythmia
and cell death. However, additional experimental evidence
is required to examine fully the hypothesis that the transient
opening of the MPT, and its release of Ca21, are involved in
the development of spontaneous contractions and subse-
quent arrhythmia.
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