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ABSTRACT We studied the photochemical reaction cycle of sensory rhodopsin II (SRII) by flash photolysis of Halobacterium
salinarum membranes genetically engineered to contain or to lack its transducer protein HtrII. Flash photolysis data from
membranes containing HtrII were fit well in the 10 ms–10 s range by three rate constants and a linear unbranched pathway
from the unphotolyzed state with 487 nm absorption maximum to a species with absorption maximum near 350 nm (M)
followed by a species with maximum near 520 nm (O), as has been found in previous studies of wild-type membranes. Data
from membranes devoid of HtrII exhibited similar M and O intermediates but with altered kinetics, and a third intermediate
absorbing maximally near 470 nm (N) was present in an equilibrium mixture with O. The modulation of SRII photoreactions
by HtrII indicates that SRII and HtrII are physically associated in a molecular complex. Arrhenius analysis shows that the
largest effect of HtrII, the acceleration of O decay, is attributable to a large decrease in activation enthalpy. Based on
comparison of SRII photoreactions to those of sensory rhodopsin I and bacteriorhodopsin, we interpret this kinetic effect to
indicate that HtrII interacts with SRII so that it alters the reaction process involving deprotonation of Asp73, the proton
acceptor from the Schiff base.

INTRODUCTION

Sensory rhodopsin II (SRII; Spudich et al., 1986) (also
called phoborhodopsin; Tomioka et al., 1986) is one of four
retinylidene proteins present in the membranes of the ar-
chaeonHalobacterium salinarum. Bacteriorhodopsin (BR)
and halorhodopsin (HR) function as light-driven ion pumps
for protons and chloride, respectively (Rothschild, 1992;
Oesterhelt et al., 1992; Lanyi, 1997). Sensory rhodopsin I
(SRI) and SRII are phototaxis receptors that transmit at-
tractant and repellent signals, respectively, to their trans-
ducer proteins HtrI and HtrII, which in turn modulate a
phosphotransfer cascade producing flagellar motor re-
sponses (Hoff et al., 1997). Despite their differing functions,
the archaeal rhodopsins share a similar architecture, con-
sisting of seven transmembranea-helices surrounding a
retinal chromophore that is covalently bound through a
protonated Schiff base linkage to a lysine residue in the
middle of the seventh helix. They also all exhibit similar
cyclic photochemical reaction pathways (photocycles), in
that photoisomerization of the all-trans retinal to the 13-cis
configuration triggers conversion to spectroscopically dis-
tinct intermediates and final recovery of the initial state.

The photocycle reactions have been most extensively
studied in BR (lmax 568 nm), which exhibits sequential
intermediates named K, L, M, N, and O. In M formation, the
protonated Schiff base on helix G donates its proton to its
primary counterion Asp85 on helix C. M has a strongly

blue-shifted absorption maximum at 412 nm due to the
deprotonation of the Schiff base. The protonation of Asp85

then induces proton release from Glu204and possibly Glu194

to the periplasmic side of the membrane (Brown et al.,
1995; Balashov et al., 1997; Dioumaev et al., 1998). The
breakage of the interhelical salt bridge between Asp85 and
the Schiff base by the proton transfer drives the opening of
the cytoplasmic channel, causing the hydration of Asp96 to
release its proton and reprotonate the Schiff base in N
formation (Subramaniam et al., 1993; Kamikubo et al.,
1996). In O, the retinal configuration is returned to the
all-trans form, but Asp85 is still protonated, giving rise to a
spectrum red-shifted relative to the original state (Bousche
et al., 1992; Kandori et al., 1997). SRII contains the inter-
helical salt bridge between the protonated Schiff base and
the counterion Asp73 (Spudich et al., 1997; Zhu et al.,
1997), corresponding to Asp85 in BR, but lacks the acidic
residues corresponding to Glu194, Glu204, and Asp96 of BR
(Zhang et al., 1996).

A major difference between the light-driven ion pumps
(BR and HR) and photoreceptors (SRI and SRII) is that the
latter associate with transducer proteins (HtrI and HtrII).
HtrI (Yao and Spudich, 1992) and HtrII (Zhang et al., 1996)
are homologous to eubacterial methyl-accepting chemotaxis
transducers (Falke et al., 1997). They are each made up of
two transmembrane helices, connected to cytoplasmic
methylation and signaling domains and a short (HtrI) and
long (HtrII) periplasmic domain. Their signaling domains
control the activity of a histidine kinase that phosphorylates
a flagellar motor-regulator protein (Rudolph et al., 1995).
HtrI has been shown to be a dimer by cross-linking of
engineered disulfides (Zhang and Spudich, 1998), and pre-
sumably HtrII is also dimeric.

The binding of HtrI to SRI has large kinetic effects on the
SRI photocycle, which provided the initial evidence that the
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two proteins were bound in a molecular complex (Spudich
and Spudich, 1993; Krah et al., 1994). In the presence of
HtrI the M intermediate of SRI, S373, forms with a half-time
of 300 ms and returns thermally to the unphotolyzed state,
SR587, with a half-time of 800 ms (23°C) (Bogomolni and
Spudich, 1987). In the absence of HtrI the rise of M after
photoexcitation of SR587 is ;30 times slower (10 ms), and
the decay of M at neutral pH is also very slow (6 s) (see
discussion in Hoff et al., 1997). The rate of M decay, which
requires reprotonation of the Schiff base, is insensitive to
pH over a broad range (pH 4–8) in the SRI-HtrI complex,
whereas HtrI-free SRI M decay is strongly pH sensitive,
varying from 80 ms to.10 s in the same range (Spudich
and Spudich, 1993). These kinetic effects have been inter-
preted in terms of HtrI binding preventing the opening of a
proton-conducting channel from the cytoplasm to the pho-
toactive center of SRI (Spudich, 1994), which is supported
by the light-induced exchange of protons with the aqueous
phase by SRI that is blocked by HtrI (Olson and Spudich,
1993) and the light-driven proton transport by SRI, also
blocked by HtrI (Bogomolni et al., 1994).

Given the analogous functions of SRII and SRI, similar
modulation of the SRII photocycle by HtrII binding might
be expected. However, there are significant differences be-
tween the two receptors in the proton transfer reactions
sensitive to HtrI binding in SRI. In SRI the Asp76 residue
that corresponds to the Schiff base counterion Asp73 in SRII
is protonated in the initial SR587 state, and therefore Asp76

is not the proton acceptor from the Schiff base during the
process of M formation (Rath et al., 1996). SRII, in contrast,
has an unprotonated Asp73 serving as the primary counter-
ion to the protonated Schiff base and as the proton acceptor
during SRII M formation (Spudich et al., 1997; Zhu et al.,
1997). Furthermore, in SRI reprotonation of the Schiff base
occurs in the final spectral transition in the photocycle,
whereas in SRII reprotonation is an intermediate event
(Tomioka et al., 1986). In the work reported here we have
tested for modulation of each step of the SRII photocycle by
HtrII to better understand these differences and the relation-
ship of SRII photocycle transformations to its signaling via
interaction with HtrII.

MATERIALS AND METHODS

Membrane preparation

TransformedH. salinarummembranes containing SRII in the absence and
presence of HtrII were produced by plasmid expression in the SRII2HtrII2

mutant Pho81Wr2, which also lacks the other three archaeal rhodopsins
(BR, HR, and SRI), as described (Spudich et al., 1997; Zhu et al., 1997).
Expression of HtrII-free SRII used the highly efficientbop promoter,
whereas expression of the SRII-HtrII complex used thehtrI promoter
placed in front of thehtrII-sopII gene pair. This construction produces the
complex at higher levels than thehtrII promoter. Membranes were pre-
pared by sonication as described (Spudich and Spudich, 1993). In the final
step before use in this study, the membranes were pelleted by centrifuga-
tion at 48,000 rpm (Beckman, rotor type 70 Ti) for 60 min at 4°C and
resuspended in 25 mM Tris buffer (pH 6.8) containing 4 M NaCl.

Flash photolysis

Flash-induced absorption transients in the microsecond and millisecond
time domains were acquired on an Olis RSM-1000 and a Nicolet Integra20
digital oscilloscope, respectively, after a Nd-YAG laser flash (532 nm, 6
ns, 40 mJ) in a laboratory-constructed flash photolysis system. For calcu-
lation of the amplitude spectra of the exponentially decaying components
with different rate constants, 26 absorption transients were collected from
600 to 350 nm at 10-nm intervals. Each trace was obtained by averaging
32–128 acquisition sweeps. The measurements were made at 490, 360, and
540 nm for optimal detection of the initial state, the species with unpro-
tonated Schiff base (M), and the species with red-shifted absorption spec-
trum (O), respectively.

Calculation of the amplitude spectra

The 26 time-dependent traces were subjected to singular value decompo-
sition, which gave 26 spectra (U spectra), each with the corresponding
weight factor (singular valueS) to be multiplied by it, and with a time-
dependent trace (V vector) representing the time-dependent transient of the
amplitude of each spectrum (Hug et al., 1990; Sasaki et al., 1994, 1995).
The number of the kinetic components (n) present in the photoreaction
process was deduced from the number ofU spectra orV vectors that
exceeded the noise level. All of theV vectors above noise level (V1 to Vn)
were fitted withn exponentials. For example, theith vector (Vi) was fitted
with Sj51

n Aijexp(kjt). The amplitude spectra of each of thejth exponential
components was calculated asSi51

n Ui 3 Si 3 Ai j as described (Hug et al.,
1990; Sasaki et al., 1994, 1995).

RESULTS AND DISCUSSION

HtrII modulates the kinetics of the
photocycle of SRII

To examine the effect of HtrII on SRII, we compared the
absorption transients in the photocycle of SRII at times
more than 10ms after photoexcitation in the absence and
presence of HtrII. The absorbance transients most sensitive
to the formation of the M intermediate with putatively
deprotonated Schiff base were monitored at 360 nm, at pH
6.8, 4 M NaCl, and 35°C (Fig. 1a). In HtrII-free SRII, M
rises with a half-time of 10ms. The rate is retarded when
HtrII is present with SRII to 36ms (Fig. 1 b). The later
points used for the fits as shown in the figure are the most
reliable in the data, because a flash artifact may have
influenced earlier values in the traces. Because the counter-
ion of the protonated Schiff base in SRII is Asp73 (Zhu et
al., 1997), and Schiff base deprotonation is blocked in the
D73N mutant (Spudich et al., 1997), we concluded that M
formation involves proton transfer from the Schiff base to
Asp73. A carboxylate protonation band evident in light-dark
Fourier transform infrared spectra of SRII fromNa-
tronobacterium pharaonisfurther supports this conclusion
(Engelhard et al., 1995). Therefore our interpretation is that
HtrII is associated with SRII, and this association modulates
the proton transfer reaction from the Schiff base to Asp73 in
the interior of SRII.

Fig. 2 shows absorbance transients of SRII in the absence
(Fig. 2 a) and presence (Fig. 2b) of HtrII recorded at 360,
490, and 540 nm in the ms to 8-s time window measured at
35°C. M behavior is monitored at 360 nm, and that of the
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red-shifted intermediate (O) at 540 nm. The data for SRII in
the presence of HtrII showing a half-time for M decay and
O rise of 30 ms and decay of O in 170 ms (Fig. 2b) is in
keeping with the analysis of wild type in the first study of
the SRII photocycle (Tomioka et al., 1986), taking into
account the lower temperature (20°C) used in that study.
We measured slower rates of M decay and O rise and decay
in the absence of HtrII (Fig. 2a). In the HtrII-free SRII
photocycle, M decays with a 66-ms half-time simulta-
neously with the rise of absorption at 540 nm, showing that
M is converted to O. O then returns to SRII487 with a 1.0-s

half-time evident both in the decay of the absorbance at 540
nm and the recovery at 490 nm (Fig. 2a).

The long lifetime of O may be attributable to the absence
of carboxylate groups at positions 194 and 204 of BR,
which are replaced by Ala and Tyr in SRII, respectively.
The side chains of these residues in BR apparently form part
of the proton release path, because in the mutants E204Q
and E194Q, proton release is delayed until the end of the
photocycle. O decay, which requires Asp85 deprotonation, is
retarded in E204Q and E194Q (Brown et al., 1995; Di-
oumaev et al., 1998). The similar red-shifted absorption
maximum of the O intermediate in SRII argues that the
Schiff base is reprotonated during M decay, with Asp73

remaining protonated until the end of the photocycle, re-
leasing its proton with O decay. This picture is in agreement
with our preliminary observation for HtrII-free SRII by
pyranine measurements as described for SRI (Olson and
Spudich, 1993), which demonstrate proton uptake from the
medium with M decay (O formation) and release with O
decay (data not shown).

In the presence of HtrII there is an increased amplitude of
the 540-nm trace relative to the 360-nm and 490-nm traces
(Fig. 2 b) as compared to those in the free SRII photocycle
(Fig. 2 a). The rate of the M-to-O conversion is slightly
higher in the presence than in the absence of HtrII, and the
rate of O decay to SRII487 (170 ms) is greatly accelerated
over the 1.0-s value for transducer-free SRII.

The above results show that the presence of HtrII mod-
ulates the rate of formation and decay of the intermediates
in the SRII photocycle. Similarly, HtrI presence in the
membrane modulates M formation (Jung et al., manuscript
in preparation) and decay (Spudich and Spudich, 1993) in
SRI. In that case, there is compelling evidence that SRI and
HtrI are physically interacting in a molecular complex. Most
directly, HtrI copurifies with His-tagged SRI during nickel-
affinity chromatography (Spudich and Spudich, unpub-
lished result). Our interpretation from the results here is that
SRII and HtrII also form a molecular complex.

HtrII affects the equilibrium between late
photocycle intermediates of SRII

For investigating spectral features of the intermediates, the
same measurements as in Fig. 2 were performed across the
spectrum between 350 and 600 nm at 10-nm intervals for
SRII in the absence and presence of HtrII. The number of
kinetic components involved in the reaction process was
deduced by subjecting the sets of 26 traces to singular value
decomposition (SVD). The result of SVD provided 26 spec-
tra, corresponding weight factors, and time-dependent
traces, with only the first two of them above noise level,
indicating that the photocycle at$ms times involves two
kinetic components as noted above as M-to-O conversion
and O decay. The traces can be separated into two expo-
nential components with rate constants corresponding to the
decay rates of M and O, and the amplitude spectra of the

FIGURE 1 Flash-induced absorption transients at 360 nm of SRII in the
absence (a) and in the presence (b) of HtrII. 532-nm laser flash was att 5
0. Measurements were made with membranes in 25 mM Tris-HCl buffer
(pH 6.8), 4 M NaCl, and at 35°C. Negative values from a flash artifact of
0–10 ms and 0–20ms have been deleted from the data fora and b,
respectively.

FIGURE 2 Flash-induced absorption transients of SRII in the absence
(a) and in the presence (b) of HtrII in times greater than milliseconds.
Conditions are as in Fig. 1. Note the 43 expanded time axis inb compared
to a.
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two exponential components were calculated from the re-
sultant spectra of SVD. The amplitude spectra for the first
and second exponential components in the photocycle of
free SRII that have time constants of 66 ms and 1 s,
respectively, are shown in Fig. 3,b andc, with the appear-
ing and the decaying components represented as positive
and negative values, respectively. The spectrum in Fig. 3b
represents the spectral change that occurs with a half-life of
66 ms. The spectrum shows that the species absorbing near
350 nm (M) is converted to another species absorbing near
500 nm. The width of this band indicates formation of more
than one species, evidently in rapid equilibrium, because a
single rate constant characterizes this spectral change. We
tentatively attribute this to the equilibrium of N and O, and
therefore we interpret Fig. 3b as corresponding to the
difference spectrum of M3 (N 1 O). The equilibrium is
then converted back to the unphotolyzed SRII487 in 1 s; Fig.
3 c corresponds to the difference spectrum for (N1 O)3
SRII487. The inversion of the sum of the spectra in Fig. 3,b
andc, produces the difference spectrum for SRII4873 M
(Fig. 3 a).

The absorption maximum of M of SRII is more greatly
blue-shifted compared to the corresponding unprotonated
Schiff base species of BR (M412) and SRI (S373). This may
reflect the molecular mechanism of SRII for tuning the
absorption maximum to establish the considerable blue shift

of the absorption maximum of the unphotolyzed form of
SRII relative to BR and SRI (Takahashi et al, 1990).

In a similar manner, the amplitude spectrum of each
exponential component was obtained for SRII in the pres-
ence of HtrII. In this case also, SVD produced only two
spectra and two time traces above noise level. The spectral
change with a half-life of 30 ms corresponds to the disap-
pearance of a species absorbing near 350 nm (M) and an
increase in the absorbance near 520 nm (Fig. 3e). Because
the absorption band generated is not as broad as the one in
the free SRII photocycle and its width is consistent with a
single species, our interpretation is that the equilibrium of N
and O is strongly biased toward O, so that the population in
N is very small. The difference spectrum of the conversion
that occurs with a 170-ms half-life time (Fig. 3f) shows that
O returns to the original state. The inversion of the sum of
the spectra in Fig. 3,e and f, produces the difference
spectrum for SRII4873 M (Fig. 3 d) and is nearly identical
to that of free SRII (Fig. 3a).

Effect of HtrII on thermodynamic parameters of
SRII photocycle reactions

The most noticeable effects of HtrII on the reaction cycle of
SRII other than the elimination of N is the retardation of the
M rise and the acceleration of the kinetics of M and O
decay. To interpret the effects in terms of thermodynamic
parameters, the rate constants of M rise, M decay (O rise),
and O decay were measured at 20, 25, 30, 35, and 40°C in
the free and complexed SRII photocycle, and the natural

FIGURE 4 Temperature dependence of the rate constants of M forma-
tion (E, 2HtrII; F, 1HtrII), M-to-O conversion (M, 2HtrII; f, 1HtrII),
and O decay (L, 2HtrII; l, 1HtrII). The rate constants were obtained by
exponential fitting of the traces at 360 nm (for the rise and decay of M) and
at 540 nm (for the decay of O) measured at 20, 25, 30, 35, and 40°C, and
the natural logarithm of the rates were plotted against 1/T.

FIGURE 3 Amplitude spectra of the exponentially decaying components
after the excitation of free SRII (a–c) and HtrII-complexed SRII (d–f) in 25
mM Tris-Cl buffer (pH 6.8), 4 M NaCl, and at 35°C. Plotted values are
maximum amplitudes of absorbance changes calculated from exponential
fits to the V vectors produced by SVD. (a andd) Inversion of the sumb 1
c and e 1 f, respectively. (b and e) Absorption difference spectra of the
66-ms and 30-ms decaying components, respectively. (c andf) Absorption
difference spectra of the 1.0-s and 170-ms decaying components, respec-
tively.
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logarithms of the rates were plotted against the reciprocal of
the temperatures (Fig. 4). Each plot fit well to a single line,
confirming the validity of separating the kinetics into three
components in the photocycle in.ms times. Activation
enthalpy (DH#) and activation entropy (DS#) of each kinetic
component were given by the fit of each plot with the
equation

ln k 5 ln~kBT/h! 2 DH#/RT1 DS#/R,

where h is Planck’s constant (6.62623 10234 Js), kB is
Boltzmann’s constant (1.380663 10223 J/K), andR is the
gas constant (8.3144 J/kmol). The derivedDH# andDS# for
M formation, M-to-O conversion, and O decay in the SRII
photocycles in the absence and presence of HtrII are listed
in Table 1.

The DH# for M formation in the free SRII is reduced by
about half when complexed with HtrII. However, the acti-
vation free energy (DG# 5 DH# 2 TDS#) for this reaction
shows a net increase in the complex because of the consid-
erable decrease inDS# which is the main contributor to the
retardation of M formation in the complex. For the M-to-O
conversion kinetics,DH# values in the free and complexed
SRII photocycles are almost unchanged, as can be judged
from the parallel feature of the plots of their M-decay
kinetics. The effects of HtrII complexation onDH# andDS#

are relatively small. Although the values listed in Table 1
contain some ambiguity, acceleration by HtrII binding
seems to be attributable more to the increase inDS# than to
the decrease inDH#. If the acceleration comes from an
entropic effect, HtrII binding possibly constrains the SRII
molecule, so that the extent of helix movements occurring in
M and N (in helices B, G, and F in BR; Kamikubo et al.,
1996) is less. Such an effect may accelerate both M and N
decays, explaining as well the absence of N from the pho-
tocycle of the complex.

Acceleration of O-decay by HtrII is brought about by a
decrease inDH# to about half. Significant reductions inDH#

by HtrII interaction is observed in the formation of M and
the decay of O, both of which are related to proton transfers
involving Asp73: from the Schiff base to Asp73 (M forma-
tion) and from Asp73 to an unidentified acceptor, possibly
bulk water in the medium (O decay). Therefore, evidently
the bound HtrII influences the hydrogen-bonding network
on the extracellular side of SRII, where Asp73 is located.
The reduction in theDH# in these processes when SRII is
complexed with HtrII may involve a change in hydrogen-
bonding interactions around Asp73 so as to make the proton
transfers more rapid. Similar modulation of the kinetics was

observed in the SRI and HtrI complex for the decay of the
M-like intermediate, S373 (Yan et al., 1997), indicating that
HtrI binding changes the hydrogen-bonding network around
the Schiff base to facilitate its protonation. Because S373 is
a signaling state in the SRI photocycle, the similar modu-
lation of O decay (and to a lesser extent M decay) in SRII
by HtrII suggests that O, as well as M, is a signaling state.
A retinal analog study also supports SRII O as maintaining
a signaling conformation formed in M (Yan et al., 1991).

In summary: HtrII binding to SRII has substantial effects
on the photocycle of SRII by influencing the molecule on
both its extracellular and cytoplasmic sides. On the extra-
cellular side HtrII facilitates proton transfers around the
Schiff base and Asp73, and on the cytoplasmic side, it
apparently constrains the molecule to destabilize the struc-
ture of M and N, in which a global conformational change
is expected to have occurred.
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