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ABSTRACT The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice
models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first
properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and
photonic band structure methods are used to solve Maxwell’s equations exactly for these models, a procedure that
automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the
cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ;97% by using
an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In
contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this
region that could play an important role in the transmission of light in the sclera.

INTRODUCTION

The explanation for transparency in the cornea and opacity
in the sclera of the mammalian eye has been sought and
debated for many years (Maurice, 1957, 1969; Farrell and
Hart, 1969; Hart and Farrell, 1969; Benedek, 1971; Vaezy
and Clark, 1991). The qualitative explanation currently in
the literature is that the average distance between the col-
lagen fibrils that compose each of these tissues determines
whether the tissues will be transparent or opaque (Benedek,
1971; Vaezy and Clark, 1991). The calculations behind this
explanation do not account for all orders of multiple scat-
tering of light, and these calculations for transparency ver-
sus opacity, which assume single scattering, can lead to a
prediction of opacity in an ordered system that is actually
transparent. Here we publish the results of a new approach
(Ameen, 1996; Ameen et al., 1996) to the study of light
propagation in the cornea and sclera. The approach employs
photonic band structure (John, 1987; Yablonovitch, 1987), a
method in which a determination is made of the frequencies
of light that are allowed to propagate through a medium that
consists of an ordered array of two components with differ-
ent dielectric constants. In the present study, both the cornea
and sclera are modeled as consisting of an ordered array of
collagen rods embedded in a water-based background. The
photonic band structure calculations solve Maxwell’s equa-
tions exactly and so automatically effectively include all
orders of multiple scattering in the propagation of light
through the system.

Although the cornea is not perfectly ordered, and the
sclera is highly disordered, the use of periodic models for
which Maxwell’s equations can be solved exactly gives a

better idea of the basic physics of the system than consid-
ering scattering from a single fiber and trying to combine
those single-particle scattering fields together to make up a
solid. Our calculations can be considered to be first approx-
imations to the system, and effects of disorder can be
postponed until later as perturbations on the periodic sys-
tems. This is the approach used in solid-state physics in the
study of the electronic structure of disordered systems. It is
considered important to understand first the properties of
the analogous periodic system before tackling the disor-
dered one. Therefore, we have adopted that philosophy here.
The problem of disorder in electronic structure continues to
be an extremely challenging problem, and research is only
beginning in the complicated photonic case of interest here.

One of the interesting effects that have been discovered
by condensed-matter physicists studying photonic band
structure is that some ordered physical systems have inter-
vals of frequency in which electromagnetic waves cannot
propagate. These forbidden frequency intervals are often
called band gaps, in analogy with the band structure of
electrons in periodic crystals. Actually, analogous photon
stop bands have been known for many years in other con-
texts. For instance, photon stop-bands involved in the Re-
strahl region of ionic crystals were discovered in the 1920s.
Here light couples to the optical vibrational modes of a
crystal to produce photon-branch polaritons (see, for exam-
ple, Born and Huang, 1968, especially Figs. 18a and 19
a–d). A similar system involves the coupling of light to
excitons to form exciton-polaritons (Hopfield, 1966). Both
of these systems involve light coupling to an excitation of
the system, whereas in the present case, light couples to a
static periodic structure of the system.

Yablonovitch (1987) presented a discussion of how such
a band gap could originate in photonic band structure, and
at about the same time John developed the framework for
photonic band structure calculations (John, 1987). The first
calculation of a photonic band structure was made by John
and Rangarajan (1988). This interest in photonic band gaps
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began with the desire to control the optical properties of
materials to develop new types of optical devices. For
instance, in fiber optic cables, if a cable turns a corner too
sharply, the angle of incidence is too large for total internal
reflection to occur, causing light to escape at the corners.
This loss can be prevented by using a photonic crystal
whose band gap is in the frequency range of the light being
transported through the cable. This idea has wide applica-
tions not only in fiber optic networks, but also in devices
that use optoelectronic circuits, in which light must be
guided from one end of a microchip to another (Joannopou-
los et al., 1995). Here we examine the photonic band struc-
ture (the band structure for photons) to investigate the
transmission properties of light in ordered models of eye
tissues to better understand the transparency of the cornea.
This work is just the first step in understanding light prop-
agation in eye tissues and was chosen because of its relative
simplicity. We will also present an initial crude attempt at
understanding why the sclera is not transparent, by seeing
what happens in an ordered model with the sclera’s physi-
ological sizes and spacings of collagen.

Physical systems

The physical systems examined in the present study include
both the cornea, a thin transparent layer covering the lens of
the eye, and the sclera, the white of the eye. These can be
seen in Fig. 1, which is based on a figure from Kronfeld
(1969). Together, these two tissues form the tough protec-
tive covering for the eyeball (Maurice, 1969). In addition,
the curvature and transparency of the cornea enable it to
provide 75% of the light refraction necessary for sight. Each
of these eye tissues consists of collagen fibrils embedded in
a water-based mucopolysaccharide background, and the
fibrils and background substance have different dielectric
constants. Even though both tissues have the same basic
two-component composition, the respective fibril sizes and
arrangements are different, as illustrated in Fig. 2, which is

also based on a figure from Kronfeld (1969). In the cornea,
the collagen fibrils are of relatively uniform diameter and
spacing, and they are arranged as long parallel rods. These
fibrils are grouped in sheets called lamellae that are parallel
to the cornea’s surface, so that the fibrils themselves are
parallel to the cornea’s surface. Whereas all of the fibrils in
a given lamella are parallel to each other, the fibrils in
adjacent lamellae need not be. In the sclera, the fibrils have
larger diameters and spacing than in the cornea, and their
diameters, spacing, and orientation vary randomly.

History

It has been asked why the cornea is transparent whereas the
sclera is opaque, even though the volume fractions of col-
lagen and background are essentially the same. If one were
to consider the cornea to have a homogeneous composition
with a uniform real index of refraction, it would be trans-
parent, because all frequencies of light could propagate
through it. Maurice pointed out that the cornea actually
consists of two components, as found by electron micros-
copy, which have different indices of refraction, and
searched for an alternative explanation for the transparency
(Maurice, 1957). He began by using the fraction of light
scattered by an isolated cylinder with the appropriate indi-
ces of refraction for the collagen and background. He
showed that if one adds the intensities of light scattered
from each fibril, then 94% of the light would be scattered,
suggesting that the cornea would be opaque. To resolve this
paradox, he suggested that if the actual arrangement of the
fibrils were completely ordered as in a crystal lattice, inter-
ference effects might allow transparency. Indeed, electron
micrographs showed some degree of order.

FIGURE 1 Horizontal cross section of the right eye viewed from above.
The eyeball is covered by the cornea and the sclera. The rectangle enclos-
ing a region where the cornea joins the sclera is enlarged in Fig. 2.

FIGURE 2 Structures of the cornea and the sclera. This figure is an
enlargement of the portion of Fig. 1 enclosed by the rectangle. The
collagen fibrils of the cornea are illustrated as perfectly ordered, as in the
idealized lattice model to be used here, although electron micrographs
show some disorder. The front of the eyeball, through which light enters,
is at the top of the figure.
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In subsequent studies, Hart and Farrell and Benedek
attempted to determine whether ordering in the cornea could
produce the desired interference effects (Hart and Farrell,
1969; Benedek, 1971). These authors, however, disagreed
with Maurice’s hypothesis that the fibrils must be in a
completely ordered array for transparency to be permitted.
Instead they proposed that even the partial order in fibril
arrangement found in electron micrographs would create
enough cancellation of scattered intensity to allow transpar-
ency. An essential difference in their calculation, when
compared to that of Maurice, was that they summed the
electric fields before squaring them to obtain the intensities.
This procedure of summing the amplitudes before squaring
to find the intensities gives some cancellation, which these
authors called the interference effects. These fields were
summed by using the pair correlation functions of the po-
sitions of the fibrils as obtained from electron micrograph
studies. Hart and Farrell’s calculation gave over 80% of the
light to be transmitted by the cornea. Hart and Farrell also
showed that using the pair correlation function for fibrils in
totally uncorrelated positions is equivalent to Maurice’s
estimate of summed intensities in place of amplitudes and
found, after correcting an error by Maurice, that 92% of the
light was scattered and only 8% transmitted in that approx-
imation. Their calculation agreed with experimental data for
long wavelengths (7000–8000 Å) but had a peculiar wave-
length dependence at shorter wavelengths not present in the
experimental data. The calculation did not include absorp-
tion effects, because of the extreme difficulty of such cal-
culations, although these effects could have been a factor in
the wavelength dependence of the experiments.

Hart and Farrell’s and Benedek’s work, like that of Mau-
rice, used electric fields describing light that is scattered
only by an isolated fibril. Benedek suggested that whenever
the spacing of the fibrils is significantly smaller than the
wavelength of visible light, the amount of scattering must be
small and the tissue transparent (Benedek, 1971). He also
suggested that the medium would be opaque if the spacing
were of the order of the wavelength of visible light or larger,
as in the sclera. Inspired by this proposal, Vaezy and Clark
used scanning transmission electron microscopy to measure
the spectral density of the two-dimensional density fluctu-
ations in the cornea and sclera. They supposed that the
refractive index of the material scaled with the density and,
consequently, that this measurement gave the spatialFou-
rier components of the refractive index fluctuations. They
interpreted their results as confirming the proposal that the
transparency and opacity of structures of the eye are deter-
mined by the size and spacing of the collagen fibrils in the
tissue (Vaezy and Clark, 1991).

Inclusion of multiple scattering

In dense systems like eye tissues, light bounces many times
off many fibrils. This is called multiple scattering. This
must not be confused with classical particle scattering,

because the situation for waves is more complex because of
wave interference. For light waves, the amplitude has to be
summed over all possible paths through the collection of
fibrils before squaring to find the intensity. This is why a
classical diffusion approximation does not work for light,
and why the approximation of attenuating the incident beam
analogous to using Beer’s law also misses the interference
effects that arise from multiple scattering. To study the
transmission of light through the system, which is generally
disordered, one should ideally solve Maxwell’s equations
exactly, but only limited progress has been made toward this
goal. For disordered systems, some progress has been made
on the question of localization of light, where destructive
interference prevents photons from propagating (John,
1993). However, in the limiting case of a perfectly periodic
system, Maxwell’s equations can be solved exactly. The
methods for doing this were developed in solid-state physics
and are called photonic band structure calculations (Ya-
blonovitch, 1987; John and Rangarajan, 1988; Economou
and Zdetsis, 1989; Yablonovitch and Gmitter, 1989; Ho et
al., 1990; Leung and Liu, 1990a,b; Zhang and Satpathy,
1990; Plihal and Maradudin, 1991; Maradudin and McGurn,
1993; Cassagne et al., 1995; Joannopoulos et al., 1995). To
apply this method, we approximate the fibril arrangement in
the cornea by a periodic array, and indeed the fibrils in the
cornea do exhibit a substantial degree of order (Vaezy and
Clark, 1991). Although the sclera has a considerable degree
of disorder in the distribution of its fibrils (Vaezy and Clark,
1991), we also use an ordered model for this system. This
will allow us to determine whether the distance between
fibrils in the cornea and sclera is such that light propagates
through the system as if it were a uniform medium, or
whether the structure of the rods has an effect on the
propagation of light. Our ordered model for the sclera has a
spacing equal to the average spacing in the actual sclera,
which is on the order of the wavelength of visible light. The
single-scattering spacing hypothesis predicts that our or-
dered model of the sclera would be opaque. Although we
will not be able to solve the model that includes the effects
of disorder to comment conclusively on the opacity of the
sclera, our calculations will be the first step in understand-
ing the role of the spacing of the rods in a calculation that
has effectively included multiple scattering effects to all
orders.

PHOTONIC BAND STRUCTURE

Light propagation in homogeneous media

To characterize the propagation of electromagnetic radia-
tion through the cornea and sclera, we will use photonic
band structure theory to solve Maxwell’s equations. We will
assume that there are no free charges, no free currents, and
zero magnetic susceptibility. Before we introduce photonic
band structure theory, it is instructive to begin with a
medium that is uniform and isotropic. The derivation starts
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with Fourier-transforming Maxwell’s equations (Reitz et
al., 1993) in time to obtain (in cgs units)

ƒ z DW 5 0 ƒ 3 EW 5
iv

c
BW

ƒ z BW 5 0 ƒ 3 HW 5 2
iv

c
DW ,

(1)

with the constitutive relations for a nonmagnetic medium,

DW 5 eEW ; BW 5 HW . (2)

When the dielectric constante, which is equivalent to the
square of the refractive index, is independent of the spatial
variables, eliminatingDW and BW leads to the differential
equations

ƒ2EW 1
ev2

c2 EW 5 0 (3)

ƒ2HW 1
ev2

c2 HW 5 0, (4)

whereEW andHW are the electric and magnetic field vectors
and c is the speed of light in a vacuum. These equations
have the form of eigenvalue equations in whichv2 is the
eigenvalue. The eigenfunctions are

EW ~rW, v! 5 EW 0e
ikW z rW (5)

and

HW ~rW, v! 5 HW 0e
ikW z rW, (6)

in which EW0 andHW 0 are constants,kW is the wave vector,rW is
the position in three-dimensional space, and where the an-
gular frequencyv is related tokW by

v~k! 5
c

Îe
k. (7)

Dielectric lattice models

In the cornea and sclera, the differing dielectric constants of
the collagen fibrils and the background substance cause
light to propagate in a more complicated manner than the
simple plane waves of Eqs. 5 and 6. We model the cornea
and sclera by periodic arrays of infinitely long cylindrical
collagen fibrils parallel to thez axis, as shown in Fig. 3.
These fibrils have a dielectric constantef and are embedded
in a mucopolysaccharide background material of dielectric
constanteb. Because the collagen fibrils lie parallel to the
outer surfaces of the cornea and sclera, the light that is at
normal incidence on these surfaces is perpendicular to the
rod axes, with the direction of light propagation in thexy
plane. We consider two polarizations of light. The first,
calledEW ' polarization, has the electric field perpendicular
to the fibrils and consequently in thexy plane. The second,
calledEW \ polarization, has the electric field vector parallel to

the axes of the fibrils and in thez direction. These choices
are convenient because these two polarizations propagate
independently of one another in this geometry.

The particular periodic array that we choose is the close-
packed arrangement in which the fibril centers lie on the
two-dimensional triangular lattice shown in Fig. 4. This
model for the cornea and sclera involves the same lattice
structure as the semiconductor dielectric lattice model de-
scribed by Plihal and Maradudin (1991), and we use an
approach similar to theirs to calculate the photonic bands.
Positions are projected onto thexy plane as

rW\ 5 x̂x 1 ŷy, (8)

so that the vectorrW\ lies in thexyplane. The lattice positions
are integer multiples of the primitive lattice translation
vectors given by

aW1 5 a~1, 0! (9)

aW2 5 aS12,
Î3

2 D, (10)

where a is the distance between the centers of adjacent
fibrils, and the area of the primitive unit cell is

ac 5 uaW1 3 aW2u 5
Î3

2
a2. (11)

FIGURE 3 The cornea modeled as an ordered array of collagen fibrils.
The fibrils are idealized as parallel cylindrical rods. These rods are parallel
to the cornea surface and so are perpendicular to the plane in which the
light propagates, denoted thexy plane here. The lattice constanta is the
distance separating the central axes of adjacent rods. The electric fieldEW of
the light passing through the tissue lies in the plane of the cornea surface
and is conveniently resolved into components that are parallel and perpen-
dicular to the rods.
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Photonic band structure formalism

For the dielectric lattice, Maxwell’s equations must be
solved for a dielectric constante(rW\) that depends on posi-
tion, because the dielectric constant inside the fibril is
different from its value in the background material. In a
periodic lattice of fibrils,e(rW\) is a periodic function, and so
these equations can be solved using photonic band structure
methods, as we will describe below. (Maradudin and
McGurn, 1993). For theE' polarization the electric field is
perpendicular to the long axes of the collagen rods, and a
solution is sought that has the form

EW '~rW\ , v! 5 x̂Ex~rW\ , v! 1 ŷEy~rW\ , v! (12)

HW '~rW\ , v! 5 ẑHz~rW\ , v!. (13)

For theE\ polarization the electric field is parallel to the
long axes of the collagen rods, and a solution is sought that
has the form

EW \~rW\ , v! 5 ẑEz~rW\ , v! (14)

HW \~rW\ , v! 5 x̂Hx~rW\ , v! 1 ŷHy~rW\ , v!. (15)

Substituting these into Maxwell’s equations leads to a
partial differential equation in a single field component for
each polarization of the electric field. ForE' polarization,
it is simplest to use theHW equation (Eq. 4), which is an
equation forHz alone. The only difference from Eq. 4 is that
a derivative ofe(rW\) now appears, because the dielectric

function now has a spatial dependence. This gives



xF 1

e~rW\!

Hz~rW\ , v!

x G 1


yF 1

e~rW\!

Hz~rW\ , v!

y G
1

v2

c2 Hz~rW\ , v! 5 0.

(16)

Similarly, for theE\ polarization, it is simplest to use theEW

equation (Eq. 3), which is an equation forEz alone. This
gives

1

e~rW\!
S 2

x2 1
2

y2DEz~rW\ , v! 1
v2

c2Ez~rW\ , v! 5 0. (17)

Becausee(rW\) is periodic with the periodicity of the lattice,
Bloch’s Theorem allows us to write the solution to these
equations (Eqs. 16 and 17) as the product of a plane wave
with wave vectorkW\ and a function that has the periodicity
of the lattice, as we will see.

To take advantage of the periodicity of the lattice in
solving Eqs. 16 and 17, it is useful to define the two-
dimensional reciprocal lattice corresponding to the triangu-
lar array of Fig. 4. The sites of this reciprocal lattice are
found by translating a single primitive unit cell by various
reciprocal lattice vectors, which are integral multiples of the
primitive translation vectors of the reciprocal latticebW1 and
bW2, defined by

aW i z bW j 5 2pdij i, j 5 1, 2. (18)

For the triangular lattice, using Eqs. 9 and 10, these prim-
itive translation vectors are given explicitly by

bW1 5
2p

a S1,2
Î3

3 D (19)

bW2 5
2p

a S0,
2Î3

3 D. (20)

Then the reciprocal lattice vectors can be written as

GW \ 5 n1bW1 1 n2bW2, (21)

with n1 andn2 integers.
We need these reciprocal lattice vectors because if one

expands a periodic function in a Fourier series, only these
wave vectors appear in that expansion. Bloch’s Theorem
states that the solution to Eq. 16 can be written in the form

Hz~rW\! 5 ukW\
~rW\!e

ikW\ z rW\), (22)

whereukW\
(rW\) is a function with the periodicity of the lattice.

The solution forEz(rW\) is analogous to that in Eq. 22.
When the periodic functionukW\

(rW\) is expanded in plane
waves, the only wave vectors that appear are those corre-
sponding to the reciprocal lattice vectorsGW \, so that

Hz~rW\ , v! 5 FO
GW \

AkW\
~GW \!e

iGW \ z rW\GeikW\ z rW\ (23)

FIGURE 4 A two-dimensional triangular lattice. This lattice is used to
model the array of collagen fibrils, with each fibril represented as a
cylindrical rod perpendicular to thexy plane, which is the plane in which
light propagates through the cornea. The lengths of both primitive lattice
vectorsaW1 and aW2 are the lattice constanta. The primitive unit cells are
parallelograms with sides given by the primitive lattice vectors, and one of
these primitive unit cells is highlighted.
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and

Ez~rW\ , v! 5 FO
GW \

AkW\~GW \!

ukW\1GW \u
eiGW \ z rW\GeikW\ z rW\. (24)

In Eq. 24, the factor ofukW\ 1 GW \u in the denominator appears
to make future equations simpler and merely redefines the
unknown coefficientsAkW\

(GW \). These are actually Fourier
series expansions of the fields in which, because of the
periodicity of the lattice, only the Fourier coefficients that
differ by reciprocal lattice vectors appear. To solve for the
relation between frequency and wave vector that allows
solutions to Eqs. 16 and 17, it is necessary to write the
functional form of the reciprocal dielectric constant 1/e(rW\).
This can be represented in terms of the step functionQ(rW\),
such that

Q~rW\! 5 H 1, rW\ inside fibrils
0, rW\ outside fibrils. (25)

Then the reciprocal dielectric function 1/e(rW\) becomes

1

e~rW\!
5

1

eb
1 S1

ef
2

1

eb
DQ~rW\!. (26)

Because 1/e(rW\) has the periodicity of the lattice, it can also
be expanded in plane waves by using the reciprocal lattice
vectors:

1

e~rW\!
5 O

GW \

k~GW \!exp~iGW \ z rW\!, (27)

where

k~GW \! 5 5
1

ef
f 1

1

eb
~1 2 f !, GW \ 5 0,

f S1

ef
2

1

eb
DS2J1~G\R!

G\R
D, GW \ Þ 0,

(28)

whereJ1(G\R) is a Bessel function of order one andf is the
filling fraction, which is the ratio of the collagen fibril
cross-sectional area to the unit cell areaac given in Eq. 11.

Using this explicit form of the reciprocal dielectric func-
tion, the eigenvalue equations (Eqs. 16 and 17) become

O
GW 9\

@~kW\ 1 GW \! z ~kW\ 1 GW 9\!#k~GW \ 2 GW 9\!AkW\
~GW 9\! 5

v2

c2 AkW\
~GW \!

(29)

for the E' polarization and

O
GW 9\

@ukW\ 1 GW \uukW\ 1 GW 9\u#k~GW \ 2 GW 9\!AkW\
~GW 9\! 5

v2

c2 AkW\
~GW \!

(30)

for the E\ polarization. These are both matrix eigenvalue
equations of the formMmA 5 (v2/c2)A, where

Mij
' 5 @~kW\ 1 GW \, i! z ~kW\ 1 GW \, j!#k~GW \, i 2 GW \, j! (31)

for E' polarization and

Mij
\ 5 @ukW\ 1 GW \, iuukW\ 1 GW \, ju#k~GW \, i 2 GW \, j! (32)

for E\ polarization. For each polarization, the matrixMm

defined in this way is symmetrical. The matrix equations for
the E' and E\ polarizations, respectively, can be written
explicitly in the form

3 M11 M12 M13 . . .
M21 M22 M23 . . .
M31 M32 M33 . . .

···
···

···
43

AkW\
~GW \, 1!

AkW\
~GW \, 2!

AkW\
~GW \, 3!
···

4 5
v2

c23
AkW\

~GW \, 1!

AkW\
~GW \, 2!

AkW\
~GW \, 3!
···

4.
(33)

The unknown eigenvalues arev2/c2, and the components of
the unknown eigenvectors areAkW\

(GW \,j), which are the ex-
pansion coefficients for the space-dependent factors of the
fields, as given in Eqs. 23 and 24. Diagonalization of the
matrix for each polarization generates a set of frequencies
for each wave vectorkW\, leading to a set of photonic bands
whose number equals the rank of the matrix, and each
solution is labeled with a band index. In principle, this is a
matrix of infinite rank, and its solution represents an exact
solution to the problem. For numerical calculations, a ma-
trix of finite rank must be used, and the accuracy of the
solution increases with the rank of the matrix.

To choose a range of values ofkW\ to use in Eqs. 31 and 32,
we need to introduce the first Brillouin zone, which is the
hexagon shown in Fig. 5, whose sides are perpendicular
bisectors of the shortest reciprocal lattice vectors or, in other
words, bisectors of the shortest lines between reciprocal
lattice points, shown as the large dots. As is well known,

FIGURE 5 The two-dimensional reciprocal lattice corresponding to the
triangular lattice of Fig. 4. The large dots show the reciprocal lattice points
that correspond to the end points of the shortest reciprocal lattice vectors
GW \. The first Brillouin zone is the hexagon shown and is formed by the
perpendicular bisectors of the shortest reciprocal lattice vectors. The small
dots outline the triangular path around the irreducible segment of the first
Brillouin zone that we use to illustrate the photonic band structure in
subsequent figures. The symbols are conventional labels for points in the
Brillouin zone.
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this scheme is useful because all solutions can be labeled, in
addition to the band index, by a wave vector equivalent to
kW\ that lies within the first Brillouin zone (see, for example
Brillouin, 1953). If kW\ is chosen outside this zone, it is
possible to find a reciprocal lattice vectorGW \ such thatkW\ 1
GW \ lies inside this first Brillouin zone, and it can be shown
that the form of the solution in Eq. 22 is unchanged. Be-
cause of symmetry, it is sufficient to consider only the
irreducible one-twelfth of the zone outlined by the black
dots in Fig. 5. As is standard in electronic band structure, the
special points in the zone are labeled with the symbolsG# , M# ,
andK# , as shown.

Calculations for the cornea lattice model

In this section, we describe our photonic band structure
calculations for our periodic cornea model using the same
parameters as Maurice (1957), with values for collagen
radius and spacing chosen to be those of rabbit corneas, and
the dielectric constants chosen to be those of oxen corneas.
For the cornea, we use a fibril radius ofR 5 15.5 nm. For
the lattice constanta, we use the average center-to-center
distance of the collagen fibrilsa 5 62 nm. For these
structural constants, the filling fraction, the fraction occu-
pied by the fibrils, is given byf 5 0.23. The values for the
two dielectric constants are found by squaring the respective
indices of refraction, givingef 5 2.40 for collagen andeb 5
1.809 for the mucopolysaccharide background. Fig. 6 shows
a plot of the lowest 10 eigenvaluesv versuskW\ obtained by
diagonalizing the matrices given in Eq. 33, askW\ traces out
the dotted triangle in Fig. 5 fromG# to M# to K# and back to
G# . Each dot in that triangle, or each corresponding point on
the axis in Fig. 6, represents a vectorkW\ drawn from the
origin of the Brillouin zone to that dot. Each continuous
curve in this figure is called a band. In this figure, frequen-
cies are expressed in terms of the photon energy\v, given
in electron volts, and the corresponding vacuum wave-
lengthsl 5 v/2pc are shown on the right axis. Visible
light, which has vacuum wavelengths in the range of 400–
700 nm, corresponds to frequencies that lie near the bottom
of the lowest band, as shown. In this visible region, the
lowest band has a nearly linear dispersion relation. In fact,
because we have chosen the dielectric constants to be the
values appropriate for the visible region, the calculations are
not strictly meaningful outside this region if the dielectric
constant is strongly frequency dependent. These bands do
not include, for instance, the dispersion associated with
electronic excitations that occurs in the ultraviolet, such as
in the range of 190–250 nm (6.5–5.0 eV) (Feng et al.,
1997), or the dispersion of the infrared spectra in the range
of 3800–1200 cm21 (2600–8300 nm or 0.5–0.1 eV)
(Doyle et al., 1975).

These calculations were done at each of 50 evenly spaced
points along the triangular path in the first Brillouin zone
shown in Fig. 5. To establish convergence, 15 different
matrix sizes were used, ranging from 73 7 to 7553 755.

The numbers of reciprocal lattice vectorsGW \ that formed
these matrices were chosen to ensure that all of the recip-
rocal lattice vectors up to a given length were included. This
is analogous to choosing both positive and negative fre-
quencies up to a given cutoff frequency in a Fourier series.
With each successively larger matrix, the frequencies con-
verge closer to limiting values, with convergence being
faster for the lower bands. Results presented in Fig. 6 are for
the 7553 755 matrix, although a 193 19 matrix was
sufficient to give quite good convergence for the first 10
bands.

Calculations for the sclera lattice model

The sclera is also modeled as consisting of parallel collagen
fibrils of uniform diameter and spacing so that a planar slice
perpendicular to the long axes of the fibrils creates a trian-
gular lattice. Although the actual sclera exhibits very little
uniformity in the size and spacing of its collagen fibrils, the
intention is to use a model that to first approximation has the
same structure as the densely packed collagen in the sclera.
In this way we will be able to determine what effect the
average lattice spacing would have on the propagation of
light in a periodic sclera-like material. That is, before em-
barking on a study of disorder in the sclera, for which
calculations must necessarily be approximate, it is interest-

FIGURE 6 The first 10 photonic energy bands for the lattice model of
the cornea. The horizontal axis represents the unfolded triangular path
around the irreducible segment of the Brillouin zone shown in Fig. 5. As
explained in the text, each point on that axis represents a wave vectorkW\

drawn from the origin to the given point in the two-dimensional Brillouin
zone. The photon energy\v is given in electron volts on the left axis and
converted to vacuum wavelengthsl 5 v/2pc on the right axis. Band
structures for the two polarizations, light with the electric vector perpen-
dicular to the fibrils (upper) and parallel to the fibrils (lower) are shown.
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ing to know for the sclera fibril spacing the results of an
exact calculation to understand clearly the effects of multi-
ple scattering in such a material. In the future, the much
more formidable task of approaching the disordered case
could be considered. The fibril and background dielectric
constants are identical to the values used in the cornea
lattice model. To calculate the filling fraction, averages for
the collagen fibril radius ofR 5 60 nm and spacing ofa 5
250 nm are determined from data presented by Vaezy and
Clark (1991) for human sclera. The corresponding filling
fraction, or the fractional volume occupied by collagen
fibrils, is f 5 0.21. The band structure found using these
parameters is shown in Fig. 7. The upper part of the lowest
band and the lower parts of the second and third bands lie in
the visible range. This visible region includes band gaps at
the Brillouin zone boundaries (pointsM# andK# ) between the
lowest and the next two bands. Here, instead of the nearly
linear dispersion relation found in the cornea, the bands
bend over and become flat at the zone boundaries. ThekW\

values at which the frequencies were calculated were cho-
sen as in the previous section for the cornea, and similar
convergence tests were done. Again, a 193 19 matrix gave
quite good convergence for the first 10 bands, although Fig.
7 was constructed using results calculated with 7553 755
matrices.

The empty lattice

The physics underlying the plots of photonic band structures
like those shown in Figs. 6 and 7 is most easily understood

by considering the example of what is called the empty
lattice. Imagine an array of lattice sites located where the
fibril centers would be in the cornea lattice model, but
where these cylinders have exactly the same dielectric con-
stante 5 eb as that of the background medium. This is, of
course, simply a uniform medium with the background
dielectric constant, and the dispersion relation for the pho-
tons is simply the linear relation given by Eq. 7. However,
consider what happens when this is plotted in the same way
as the bands of Figs. 6 and 7. The linear dispersion relation
in two dimensions is actually a cone. Suppose one places
this cone with its apex at the origin of the picture of the
Brillouin zone in Fig. 5. If the cone is now cut along the line
from G# to M# , for example, its edge traces out the lowest
band fromG# to M# shown in Fig. 8. One then draws higher
Brillouin zones by bisecting lines to more distant reciprocal
lattice points. Now one cuts the cones alone the lines in
these higher Brillouin zones that correspond to the line from
G# to M# in the first Brillouin zone. Those cut edges form the
higher bands shown alongG# to M# in Fig. 8. Similar con-
struction along the lines fromM# to K# and fromK# back toG#

gives the remaining portions of the bands in Fig. 8. Thus the
plot of Fig. 8 is simply an unusual way (except in con-
densed-matter physics) of drawing a linear dispersion rela-
tion (Eq. 7) in two dimensions that is really just a cone
(Ameen, 1996).

The photonic band structure shown in Fig. 6 for the
cornea lattice model is similar to that for the empty lattice
model. However, introduction of the physical lattice makes
several changes in the band structure, as can be seen by
comparing Figs. 6 and 8. One change is that the bands are
often flat at the Brillouin zone boundaries and at the zone
centerG# in all bands but the lowest. Others are that the
degeneracies of bands are split and gaps are opened at the
Brillouin zone boundaries. The twofold degeneracy of the
lowest band fromM# to K# in Fig. 8 splits visibly in Fig. 6. An
example of a gap opening at the zone boundary can be seen
at theM# point for the lowest two bands in Fig. 6.

The splittings in Fig. 6 are fairly small because the
dielectric contrast, although typical of biological materials,

FIGURE 7 The first 10 photonic energy bands for the lattice model of
the sclera. The horizontal axis represents the triangular path around the
irreducible segment of the Brillouin zone (Fig. 5), as in Fig. 6. The photon
energy\v is given in electron volts and as the corresponding vacuum
wavelengthl 5 v/2pc.

FIGURE 8 The first 10 photonic energy bands for the empty lattice
model with parameters representing the cornea. The horizontal axis repre-
sents the triangular path around the irreducible segment of the Brillouin
zone (Fig. 5), as in Figs. 6 and 7. The photon energy\v is given in electron
volts and as the corresponding vacuum wavelengthl 5 v/2pc. The
degeneracies of the bands are given in parentheses unless the bands are
nondegenerate.
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is not exceptionally large. The dielectric contrast is the ratio
of the larger dielectric constant to the smaller, which is
ef/eb ' 1.3 for the cornea. In artificial dielectric structures,
the dielectric can be made larger, and this exaggerates the
changes from the empty lattice model. An example of the
photonic band structure resulting from a larger dielectric
contrast is shown in Fig. 9 for the same type of two-
dimensional triangular lattice of rods as is used for the
cornea lattice model. The contrast used in Fig. 9 iseb/ef '
13. Because the frequency is plotted in the dimensionless
units va/2pc, the bands depend only on the dielectric con-
trast and the filling fraction, which in Fig. 9 is given byf 5
0.8358. (Recall thatf is the fractional volume occupied by
the rods, which here have the smaller dielectric constant.)
This is the filling fraction and dielectric contrast that was
found to be optimal for creating band gaps (Plihal and
Maradudin, 1991; Maradudin and McGurn, 1993). Here the
changes from the empty lattice band structure are quite
pronounced, with considerably larger band gaps and band
splittings. In fact, the splittings are so large that there
appears to be a band gap for allkW\ values (Plihal and
Maradudin, 1991; Maradudin and McGurn, 1993). An ex-
ample of such a gap is the shaded frequency interval shown
for each polarization in Fig. 9. Such a gap is of interest in
artificial semiconductor structures because light of this fre-
quency cannot propagate in any direction, so that light can
be guided by a suitably designed structure.

Effective medium approximation

Fig. 10 is a plot of the lowest band from Fig. 6, which shows
the photonic band structure for the cornea model. Over the

visible range, which is the range for which our dielectric
constants are appropriate, the dispersion relation is practi-
cally linear along radial directions inkW\ space. That is, the
dispersion relation over this region looks like a cone, as is
true in a uniform medium. The dispersion relation can thus
be written in the form of Eq. 7. However, the dielectric
constant that must be used in that equation is neither that of
the fibril nor that of the background, but an effective me-
dium valueeeff that lies between these two. We determine
the value of this effective medium dielectric constant by
fitting the cone-shaped linear dispersion of the empty
lattice,

v 5
c

Îeeff

k, (34)

to the low-frequency region of the dispersion relation cal-
culated from photonic band structure. The result of this fit is
shown as the solid curves in Fig. 10, where it is compared
with the calculated band structure as shown by the dots.

We find that this effective medium dielectric constant is
different for the two polarizations and so is dependent on
the orientation of the electric field, which is parallel to the
fibrils in the E\ polarization case and perpendicular to the
fibrils in the E' polarization case. This means that the
dielectric properties of the medium are represented by a
slightly anisotropic diagonal dielectric tensor. For the cor-
nea model, the values for theE' and E\ polarizations are
eeff

' 5 1.930 andeeff
\ 5 1.945, respectively.

FIGURE 9 The first 10 photonic energy bands for the high contrast
dielectric lattice of Maradudin and McGurn (1993). The horizontal axis
represents the triangular path around the irreducible segment of the Bril-
louin zone (Fig. 5), as in Figs. 6–8. The shaded regions are believed to be
two-dimensional band gaps extending throughout the Brillouin zone.

FIGURE 10 Effective medium approximation for the cornea lattice
model. Only the lowest band is shown. The results of the full photonic band
structure (Fig. 6) are shown as points, and the effective medium approxi-
mation is the solid curve. The effective medium approximation gives
excellent agreement with the full photonic band structure computations
over the visible region.
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We can use this effective medium approximation to in-
vestigate transmission through and reflection from the cor-
nea in the visible range, because the effective medium
dielectric constant gives a good description of the dispersion
relation in this frequency range. Consider a slab of uniform
material with parallel faces, so that the incident light from
medium 1 strikes the slab of medium 2 and the transmitted
light emerges into medium 3. The fraction of light reflected
is (Reitz et al., 1993)

R5
r12

2 1 r23
2 1 2r12r23cosb

1 1 r12
2 r23

2 1 2r12r23cosb
, (35)

where r ij is the reflection amplitude on passing from me-
dium i to medium j and b is a phase factor specifying
interference between the two interfaces. For light at normal
incidence the reflection amplitude is

r ij 5
Îei 2 Îej

Îei 1 Îej

, (36)

and the phase factor is

b 5 2vt2Îe2/c, (37)

where v is the angular frequency of the light,t2 is the
thickness of the slab of medium 2, ande2 is its dielectric
constant. If medium 1 is air and medium 3 is water, the
dielectric constants aree1 5 1, e3 5 1.77, ande2 5 eeff.

We choose a dielectric constanteeff that is close to our
two values for the different electric field orientations,eeff 5
1.94> eeff

\ > eeff
' , and a thickness of 0.5 mm to plot in Fig.

11 the fractionT 5 1 2 R of the light that is transmitted
through the slab (solid curve). Also shown are the experi-
mental data in Fig. 4 of Hart and Farrell (1969) for com-
parison. Because the light reflects back and forth between
the two surfaces of the slab, the fraction transmitted oscil-

lates as a function of the frequency of the incident light.
This comes from the factor cosb in Eq. 35. The inset shows
an enlargement of the oscillations, where the maximum
amplitude of oscillations is;1%. If we had made this
calculation for a semi-infinite medium, i.e., with a single
surface, the result would just beT 5 1 2 r12

2 > 0.98, which
is about the same as the maximum transmissivity in Fig. 11.
In an actual sample of cornea, a slice of material would not
have perfectly parallel surfaces, and, because of nonunifor-
mity of the surface, the thickness would vary over the
sample. For these reasons, in an actual measurement, these
oscillations may not be apparent, and one might observe
merely the average value of aboutT > 0.97. There might
also be corrections for light striking at nonnormal incidence
because of rough surfaces.

The simplicity of this estimate illustrates the value of
finding the effective medium parameters as we have done
here. In contrast, Hart and Farrell presented an estimate of
the light transmitted through the cornea using an approach
that neglected the effects of multiple scattering and required
the evaluations of a complicated formula (Hart and Farrell,
1969). Their evaluation of this formula used summations of
large numbers of terms that nearly canceled each other, and
calculations made in this way are subject to large round-off
errors. The variations in these results with frequency may be
due to such errors, because their calculations, like ours, did
not include effects of absorption. This is one of the reasons
we have emphasized that our calculations are only relevant
to the cornea and sclera in the visible region. Nevertheless,
their results give a transmissivity similar to ours and to
some experimental data in the visible range. Experimental
data do indicate that the transmissivity decreases substan-
tially as the frequency approaches the ultraviolet, and this is
likely due to large protein absorption bands in that region.

The effect of the anisotropy of the dielectric tensor is very
minor here. It is of considerably more importance when
both the dielectric contrast and filling fraction are high, as in
the calculations of Maradudin and McGurn (1993). In those
calculations, the dielectric contrast iseb/ef ' 13 and the
filling fraction is f 5 0.8358, in comparison withef/eb ' 1.3
andf 5 0.23 for the cornea. Our calculations of their lowest
band for each of theE' andE\ polarizations are shown as
dots in Fig. 12. The slopes of the linear dispersion relations
at low frequencies are quite different for theE' and E\

polarizations. We determine the value of the effective me-
dium dielectric constant for this system by fitting the cone-
shaped linear dispersion relations of the empty lattice from
Eq. 34 as we did for the cornea. This procedure gives
effective dielectric constantseeff

' /ef 5 1.74 andeeff
\ /ef 5

2.66 for theE' andE\ polarizations, respectively. Therefore
biological systems with higher dielectric contrast would
have a larger anisotropy in the dielectric tensor.

CONCLUSIONS

The work presented here is believed to be the first applica-
tion of the methods of photonic band structure to any

FIGURE 11 Effective medium calculation of the transmissivity of the
cornea (solid curve) compared with experimental data (solid dots) from
Hart and Farrell (1969) (Fig. 4). The fraction of light transmitted through
a thin slab of dielectric material of thickness 0.5 mm is plotted; its
dielectric constant is the effective mediumeeff 5 1.94 found for the cornea.
The transmitted light intensity appears as a thick line at;97 6 1%
transmissivity because it is a rapidly oscillating function of the light
frequencyv that is not resolved on the scale of this plot. These oscillations
can be seen clearly in the expanded view shown in the inset.
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biological system. Such calculations give the exact solution
to Maxwell’s equations for an ordered system. This restric-
tion to an ordered system, however, requires that ordered
models of the tissues be developed. We have done this for
both the cornea and the sclera, and we find an intriguing
difference between the two. In the cornea model, we find
that visible light propagates as if it were in a uniform
medium, although with an effective medium dielectric con-
stanteeff, and we have shown how this effective dielectric
constant can be determined. This implies that the cornea is
transparent to visible light. In the sclera model, the bands in
the visible region are noticeably distorted from what would
occur in a uniform medium, and small band gaps occur in
the visible. The distortions of these bands must certainly
affect the transmission of light in the sclera and may be one
of the factors leading to its opacity. We have calculated the
transmissivity for the cornea model and have found that
;97% of the light would be transmitted. For the sclera, the
calculations of transmitted light are more complex and will
be a subject of future work.

Previous explanations of transparency versus opacity in
the cornea hypothesized that if the wavelength of light is
long compared with the fibril spacing, as it is the cornea, the
material would be transparent, and if the vacuum wave-
length is on the order of the fibril spacing, as in the sclera,
it would be opaque (Benedek, 1971; Vaezy and Clark,
1991). Unfortunately, previous calculations neglected ef-
fects of multiple scattering, and some of the computations
had inherent numerical difficulties (Hart and Farrell, 1969;

Benedek, 1971; Vaezy and Clark, 1991), so that work was
inconclusive. In contrast, computations of photonic band
structure provide an essentially exact solution of Maxwell’s
equations. The price that must be paid for this is that an
ordered model must be assumed. One conclusion that
emerges from these solutions is that both the dielectric
contrast and filling fraction, in addition to the ratio of
vacuum wavelength to fibril spacing, are important in gov-
erning light propagation in a two-component tissue.

Although the cornea and sclera are not perfectly ordered
systems, as was assumed for our models, the results never-
theless should give reasonable approximations of the way
light propagates through these tissues. The cornea is actu-
ally fairly well ordered, while the sclera has a high degree
of disorder. We expect the disorder to smear out the band
structure to some extent, while leaving the main features. It
is possible that the disorder, in conjunction with the band
gaps, will be needed to give a complete picture of opacity in
the sclera. In the general treatment of transparency and
opacity in biological materials, it will be necessary to in-
corporate the effects of absorption. These are subjects that
we hope to address in future work.
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