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ABSTRACT The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice
models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first
properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and
photonic band structure methods are used to solve Maxwell’s equations exactly for these models, a procedure that
automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the
cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ~97% by using
an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In
contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this
region that could play an important role in the transmission of light in the sclera.

INTRODUCTION

The explanation for transparency in the cornea and opacitpetter idea of the basic physics of the system than consid-
in the sclera of the mammalian eye has been sought anefing scattering from a single fiber and trying to combine
debated for many years (Maurice, 1957, 1969; Farrell andhose single-particle scattering fields together to make up a
Hart, 1969; Hart and Farrell, 1969; Benedek, 1971; Vaezysolid. Our calculations can be considered to be first approx-
and Clark, 1991). The qualitative explanation currently inimations to the system, and effects of disorder can be
the literature is that the average distance between the copostponed until later as perturbations on the periodic sys-
lagen fibrils that compose each of these tissues determingems. This is the approach used in solid-state physics in the
whether the tissues will be transparent or opaque (Benedektudy of the electronic structure of disordered systems. It is
1971; Vaezy and Clark, 1991). The calculations behind thiconsidered important to understand first the properties of
explanation do not account for all orders of multiple scat-the analogous periodic system before tackling the disor-
tering of light, and these calculations for transparency verdered one. Therefore, we have adopted that philosophy here.
sus opacity, which assume single scattering, can lead to Bhe problem of disorder in electronic structure continues to
prediction of opacity in an ordered system that is actuallybe an extremely challenging problem, and research is only
transparent. Here we publish the results of a new approadbeginning in the complicated photonic case of interest here.
(Ameen, 1996; Ameen et al., 1996) to the study of light One of the interesting effects that have been discovered
propagation in the cornea and sclera. The approach employy condensed-matter physicists studying photonic band
photonic band structure (John, 1987; Yablonovitch, 1987), atructure is that some ordered physical systems have inter-
method in which a determination is made of the frequencievals of frequency in which electromagnetic waves cannot
of light that are allowed to propagate through a medium thapropagate. These forbidden frequency intervals are often
consists of an ordered array of two components with differcalled band gaps, in analogy with the band structure of
ent dielectric constants. In the present study, both the cornesglectrons in periodic crystals. Actually, analogous photon
and sclera are modeled as consisting of an ordered array sfop bands have been known for many years in other con-
collagen rods embedded in a water-based background. Thexts. For instance, photon stop-bands involved in the Re-
photonic band structure calculations solve Maxwell's equastrahl region of ionic crystals were discovered in the 1920s.
tions exactly and so automatically effectively include all Here light couples to the optical vibrational modes of a
orders of multiple scattering in the propagation of light crystal to produce photon-branch polaritons (see, for exam-
through the system. ple, Born and Huang, 1968, especially Figs.d&nd 19
Although the cornea is not perfectly ordered, and thea—d). A similar system involves the coupling of light to
sclera is highly disordered, the use of periodic models foexcitons to form exciton-polaritons (Hopfield, 1966). Both
which Maxwell's equations can be solved exactly gives aof these systems involve light coupling to an excitation of
the system, whereas in the present case, light couples to a
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began with the desire to control the optical properties of <«—— Cornea—>«— Sclera——
materials to develop new types of optical devices. For Light Ray
instance, in fiber optic cables, if a cable turns a corner too
sharply, the angle of incidence is too large for total internal
reflection to occur, causing light to escape at the corners.
This loss can be prevented by using a photonic crystal
whose band gap is in the frequency range of the light being
transported through the cable. This idea has wide applica-
tions not only in fiber optic networks, but also in devices
that use optoelectronic circuits, in which light must be
guided from one end of a microchip to another (Joannopou-
los et al., 1995). Here we examine the photonic band struc-
ture (the band structure for photons) to investigate the
transmission properties of light in ordered models of eye
tissues to better understand the transparency of the cornea.
This work is just the first step in understanding light prop-
agation in eye tissues and was chosen because of its relatigBsURE 2  Structures of the cornea and the sclera. This figure is an
simplicity. We will also present an initial crude attempt at enlargement of the portion of Fig. 1 enclosed by the rectangle. The

understanding Why the sclera is not transparent, by seeintpllagen fibrils of the cornea are illustrated as perfectly ordered, as in the

; : ) idealized lattice model to be used here, although electron micrographs
what happens in an ordered model with the sclera’s physIshow some disorder. The front of the eyeball, through which light enters,

ological sizes and spacings of collagen. is at the top of the figure.

Physical systems

The physical systems examined in the present study includ@/so based on a figure from Kronfeld (1969). In the cornea,
both the cornea, a thin transparent layer covering the lens ¢he collagen fibrils are of relatively uniform diameter and
the eye, and the sclera, the white of the eye. These can IPacing, and they are arranged as long parallel rods. These
seen in Fig. 1, which is based on a figure from Kronfeld fibrils are grouped in sheets called lamellae that are parallel
(1969). Together, these two tissues form the tough proted® the cornea’s surface, so that the fibrils themselves are
tive covering for the eyeball (Maurice, 1969). In addition, Parallel to the cornea’s surface. Whereas all of the fibrils in
the curvature and transparency of the cornea enable it t8 9iven lamella are parallel to each other, the fibrils in
provide 75% of the light refraction necessary for sight. Eachdjacent lamellae need not be. In the sclera, the fibrils have
of these eye tissues consists of collagen fibrils embedded it@rger diameters and spacing than in the cornea, and their
a water-based mucopolysaccharide background, and ttfiameters, spacing, and orientation vary randomly.
fibrils and background substance have different dielectric
constants. Even though both tissues have the same basi
two-component composition, the respective fibril sizes an
arrangements are different, as illustrated in Fig. 2, which idt has been asked why the cornea is transparent whereas the
sclera is opaque, even though the volume fractions of col-
lagen and background are essentially the same. If one were
to consider the cornea to have a homogeneous composition
with a uniform real index of refraction, it would be trans-
Anterior Chamber Sclera parent, because all frequencies of light could propagate
through it. Maurice pointed out that the cornea actually
consists of two components, as found by electron micros-
copy, which have different indices of refraction, and
searched for an alternative explanation for the transparency
(Maurice, 1957). He began by using the fraction of light
scattered by an isolated cylinder with the appropriate indi-
ces of refraction for the collagen and background. He
showed that if one adds the intensities of light scattered
Optic Nerve from each fibril, then 94% of the light would be scattered,
suggesting that the cornea would be opaque. To resolve this
Vitreous Chamber paradox, he suggested that if the actual arrangement of the
FIGURE 1 Horizontal cross section of the right eye viewed from above.fIbrIIS were completely ordered as in a crystal lattice, inter-

The eyeball is covered by the cornea and the sclera. The rectangle encidierence effects might allow transparency. Indeed, electron
ing a region where the cornea joins the sclera is enlarged in Fig. 2. micrographs showed some degree of order.

story

See Enlargement (Fig. 2)
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In subsequent studies, Hart and Farrell and Benedekecause the situation for waves is more complex because of
attempted to determine whether ordering in the cornea couldiave interference. For light waves, the amplitude has to be
produce the desired interference effects (Hart and Farrelsummed over all possible paths through the collection of
1969; Benedek, 1971). These authors, however, disagreditrils before squaring to find the intensity. This is why a
with Maurice’s hypothesis that the fibrils must be in a classical diffusion approximation does not work for light,
completely ordered array for transparency to be permittedand why the approximation of attenuating the incident beam
Instead they proposed that even the partial order in fibrilanalogous to using Beer’s law also misses the interference
arrangement found in electron micrographs would createffects that arise from multiple scattering. To study the
enough cancellation of scattered intensity to allow transpartransmission of light through the system, which is generally
ency. An essential difference in their calculation, whendisordered, one should ideally solve Maxwell’s equations
compared to that of Maurice, was that they summed thexactly, but only limited progress has been made toward this
electric fields before squaring them to obtain the intensitiesgoal. For disordered systems, some progress has been made
This procedure of summing the amplitudes before squaringn the question of localization of light, where destructive
to find the intensities gives some cancellation, which thesénterference prevents photons from propagating (John,
authors called the interference effects. These fields wer@993). However, in the limiting case of a perfectly periodic
summed by using the pair correlation functions of the po-system, Maxwell’s equations can be solved exactly. The
sitions of the fibrils as obtained from electron micrographmethods for doing this were developed in solid-state physics
studies. Hart and Farrell's calculation gave over 80% of theand are called photonic band structure calculations (Ya-
light to be transmitted by the cornea. Hart and Farrell alsglonovitch, 1987; John and Rangarajan, 1988; Economou
showed that using the pair correlation function for fibrils in and zdetsis, 1989; Yablonovitch and Gmitter, 1989; Ho et
totally uncorrelated positions is equivalent to Maurice’sa|., 1990; Leung and Liu, 1990a,b; Zhang and Satpathy,
estimate of summed intensities in place of amplitudes and990; Plihal and Maradudin, 1991; Maradudin and McGurn,
found, after correcting an error by Maurice, that 92% of the1993: Cassagne et al., 1995; Joannopoulos et al., 1995). To
light was scattered and only 8% transmitted in that approxapply this method, we approximate the fibril arrangement in
imation. Their calculation agreed with experimental data fofthe cornea by a periodic array, and indeed the fibrils in the
long wavelengths (7000—8000 A) but had a peculiar wavegomea do exhibit a substantial degree of order (Vaezy and
length dependence at shorter wavelengths not present in thgark, 1991). Although the sclera has a considerable degree
experimental data. The calculation did not include absorpyf disorder in the distribution of its fibrils (Vaezy and Clark,
tion effects, because of the extreme difficulty of such cal-1991) we also use an ordered model for this system. This
culations, although these effects could have been a factor igj| allow us to determine whether the distance between
the wavelength dependence of the experiments. fibrils in the cornea and sclera is such that light propagates

Hart and Farrell's and Benedek’s work, like that of Mau- through the system as if it were a uniform medium, or
rice, used electric fields describing light that is scatteredynether the structure of the rods has an effect on the
only by an isolated fibril. Benedek suggested that whenevepgpagation of light. Our ordered model for the sclera has a
the spacing of the fibrils is significantly smaller than the gpacing equal to the average spacing in the actual sclera,
wavelength of visible light, the amount of scattering must b&yhich is on the order of the wavelength of visible light. The
small and the tissue transparent (Benedek, 1971). He a'%‘?ngle-scattering spacing hypothesis predicts that our or-
suggested that the medium would be opaque if the spacingered model of the sclera would be opaque. Although we
were of the order of the wavelength of visible light or larger, \yii| not be able to solve the model that includes the effects
as in the sclera. Inspired by this proposal, Vaezy and Clarl gisorder to comment conclusively on the opacity of the
used scanning transmission electron microscopy to measut@|era, our calculations will be the first step in understand-
the spectral density of the two-dimensional density quctu-mg the role of the spacing of the rods in a calculation that

ations in the comnea and sclera. They supposed that the,q effectively included multiple scattering effects to all
refractive index of the material scaled with the density andqa s

consequently, that this measurement gave the spadial

rier components of the refractive index fluctuations. They

interpreted their results as confirming the proposal that the

transparency and opacity of structures of the eye are detePHOTONIC BAND STRUCTURE
mined by the size and spacing of the collagen fibrils in the, . . .
tissue (Vaezy and Clark, 1991). Light propagation in homogeneous media
To characterize the propagation of electromagnetic radia-
tion through the cornea and sclera, we will use photonic
band structure theory to solve Maxwell’'s equations. We will
assume that there are no free charges, no free currents, and
In dense systems like eye tissues, light bounces many timero magnetic susceptibility. Before we introduce photonic
off many fibrils. This is called multiple scattering. This band structure theory, it is instructive to begin with a
must not be confused with classical particle scatteringmedium that is uniform and isotropic. The derivation starts

Inclusion of multiple scattering
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with Fourier-transforming Maxwell's equations (Reitz et

Axis of Cylinder
al., 1993) in time to obtain (in cgs units)

R L iw
VD=0 VXE=FB
. (1)
. N iw. 2
V-B=0 VxH=-_D,

with the constitutive relations for a nonmagnetic medium,
D=¢E, B=H. 2)

When the dielectric constaat which is equivalent to the
square of the refractive index, is independent of the spatial

variables, eliminatingD and B leads to the differential y 0 i
equations
 ea?. Incident Light
VZE + ? E = O (3)
Cornea Surface
B
VH + ? H =0, (4) FIGURE 3 The cornea modeled as an ordered array of collagen fibrils.

The fibrils are idealized as parallel cylindrical rods. These rods are parallel

WherefE and I:I are the electric and magnetic field vectors to the cornea surface and so are perpendicular to the plane in which the
light propagates, denoted tixg plane here. The lattice constamis the

andc is the Speed_Of light in a Va(?uum_' The§e ?quatlon%istance separating the central axes of adjacent rods. The electri& fi¢ld

have the form of eigenvalue equations in whishis the  tne light passing through the tissue lies in the plane of the cornea surface

eigenvalue. The eigenfunctions are and is conveniently resolved into components that are parallel and perpen-
dicular to the rods.

E(f, ) = B’ )

and
. e the axes of the fibrils and in thedirection. These choices
H(r, w) = Hee" ', (6)  are convenient because these two polarizations propagate

in which E, andH, are constants is the wave vector, is |nq|_ehpend(atntI)/| of one gpother '?htht's ge%metry._ the ol
the position in three-dimensional space, and where the an_ackg dpzrrrlgz aérﬁg::f-rllc a{}?gﬁ th?a ;I'Vber'lccg(r)]f:rlssl'eeo(rzw Otf](:
gular frequencyw is related tok by P g in wh ori !

two-dimensional triangular lattice shown in Fig. 4. This
model for the cornea and sclera involves the same lattice
ok =-—rk (7)  structure as the semiconductor dielectric lattice model de-
scribed by Plihal and Maradudin (1991), and we use an
approach similar to theirs to calculate the photonic bands.
Dielectric lattice models Positions are projected onto thg plane as

1 ©

In the cornea and sclera, the differing dielectric constants of T, =3+ By, (8)
the collagen fibrils and the background substance cause

light to propagate in a more complicated manner than theo that the vectdi, lies in thexy plane. The lattice positions
simple plane waves of Egs. 5 and 6. We model the corneare integer multiples of the primitive lattice translation
and sclera by periodic arrays of infinitely long cylindrical vectors given by

collagen fibrils parallel to the axis, as shown in Fig. 3.

These fibrils have a dielectric constapiand are embedded a, =al, 0 9)
in a mucopolysaccharide background material of dielectric

constante,. Because the collagen fibrils lie parallel to the . 1 V@

outer surfaces of the cornea and sclera, the light that is at p=a 2 o ) (10)

normal incidence on these surfaces is perpendicular to the
rod axes, with the direction of light propagation in g ~ where a is the distance between the centers of adjacent
plane. We consider two polarizations of light. The first, fibrils, and the area of the primitive unit cell is

calledE, polarization, has the electric field perpendicular
to the fibrils and consequently in they plane. The second,

= N g \—E a. (11)
calledg, polarization, has the electric field vector parallel to

ac:|al><52|: 2
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y/a function now has a spatial dependence. This gives
P A e e A 1 MG @]l 1 aH(E, )
x| e(f) X ayle(,) 9y
(16)

(,()2 N
+ ? Hz(rii, (0) =0.

Similarly, for theE; polarization, it is simplest to use the

Y = x/a equation (Eq. 3), which is an equation fBg alone. This
1 (A P 0 =0, (17
- my*‘@ Ar), ) + 2Ef), @) = 0. (17)
Becausex(T)) is periodic with the periodicity of the lattice,
~ >5_<3 O X Bloch’s Theorem allows us to write the solution to these

equations (Egs. 16 and 17) as the product of a plane wave

FIGURE 4 A two-d|men5|onal_ tr_langu!ar lattice. _Th_ls lattice is used to with wave vectorkii and a function that has the periodicity
model the array of collagen fibrils, with each fibril represented as a

cylindrical rod perpendicular to they plane, which is the plane in which of the lattice, as we will see. o . .
light propagates through the cornea. The lengths of both primitive lattice 10 take advantage of the periodicity of the lattice in
vectorsd, and &, are the lattice constar&t The primitive unit cells are  solving Eqs. 16 and 17, it is useful to define the two-
parallelograms with sides given by the primitive lattice vectors, and one ofdimensional reciprocal lattice corresponding to the triangu-
these primitive unit cells is highlighted. lar array of Fig. 4. The sites of this reciprocal lattice are
found by translating a single primitive unit cell by various
reciprocal lattice vectors, which are integral multiples of the
Photonic band structure formalism E)rimiti\_/e translation vectors of the reciprocal lattioeand
b,, defined by
For the dielectric lattice, Maxwell's equations must be R
solved for a dielectric constar(r|) that depends on posi- 3 b=2m5 i,j=1,2. (18)
tion, because the dielectric constant inside the fibril is
different from its value in the background material. In a
periodic lattice of fibrils,e(f)) is a periodic function, and so
these equations can be solved using photonic band structure o B
methods, as we will describe below. (Maradudin and b, = a(l,—\?)) (29)
McGurn, 1993). For th&  polarization the electric field is

For the triangular lattice, using Egs. 9 and 10, these prim-
itive translation vectors are given explicitly by

perpendicular to the long axes of the collagen rods, and a  on/ 2.8

solution is sought that has the form B, = a(o' % ) (20)
E.(F), 0) = 3T}, ) + JE,(F), ) (12)  Then the reciprocal lattice vectors can be written as

H . (F IH,(F G, = n;b, + n,b,, 21

H. (r), o) = ZH,(r), o). (13) | = My + R0, (21)

with n; andn, integers.
For the E, polarization the electric field is parallel to the ~We need these reciprocal lattice vectors because if one
long axes of the collagen rods, and a solution is sought th&#xpands a periodic function in a Fourier series, only these
has the form wave vectors appear in that expansion. Bloch’s Theorem
states that the solution to Eq. 16 can be written in the form

rEH(FHv w) = 2Ez(Fu, ) (14) HZ(F”) = uki(Fii)él?rFu), (22)

Fiy (), @) = RH,(F), ) + TH(F), o). (15) Whereu(r)is a furlctl_on with the periodicity of the lattice.
The solution forE,(r)) is analogous to that in Eq. 22.

Substituting these into Maxwell's equations leads to a VWhen the periodic function (F)) is expanded in plane
partial differential equation in a single field component for Waves, the only wave vectors that appear are those corre-
each polarization of the electric field. F&r, polarization, sponding to the reciprocal lattice vectdgg so that
it is simplest to use thél equation (Eqg. 4), which is an T
equation foH, alone. The only difference from Eq. 4 is that H,(F), ®) = [ZA@(G)QG*]GK" (23)
a derivative ofe(f)) now appears, because the dielectric G
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and for E, polarization and
E, w) = [Ef‘&(i) éé'?]eﬂ?'?' (24) M =Lk + G,k + G [Ix(G,i =G, (32)
el k+Gj for E; polarization. For each polarization, the mati*

defined in this way is symmetrical. The matrix equations for
the E, and E; polarizations, respectively, can be written
gxplicitly in the form

In Eq. 24, the factor of, + G| in the denominator appears
to make future equations simpler and merely redefines th
unknown coefficientsAR‘(G”). These are actually Fourier
st parsons o b fls b i, e o e [, i, v, TNC) A
periodicity ice, only urier icients Mo Me M A e N
differ by reciprocal lattice vectors appear. To solve for the | = \# % AGLD | 2 AGy |
relation between frequency and wave vector that allows Stz T A(Gy ) A(Gy9)
solutions to Egs. 16 and 17, it is necessary to write the : :

functional form of the reciprocal dielectric constang(t). (33)
This can be represented in terms of the step fund8@f),  The unknown eigenvalues a&€/c’, and the components of
such that the unknown eigenvectors arg (G, ), which are the ex-

o pansion coefficients for the space-dependent factors of the
- 1, 1, inside fibrils . . X X o
oF) = 0 % outside fibri (25) fields, as given in Egs. 23 and 24. Diagonalization of the
» [ outside Tioriis. matrix for each polarization generates a set of frequencies
Then the reciprocal dielectric functionef#,) becomes for each wave vectak;, leading to a set of photonic bands
whose number equals the rank of the matrix, and each
11 /1 1 o 26 solution is labeled with a band index. In principle, this is a
e(f) & \& € ®). (26) matrix of infinite rank, and its solution represents an exact
R o o solution to the problem. For numerical calculations, a ma-
Because ¥(f) has the periodicity of the lattice, it can also trix of finite rank must be used, and the accuracy of the
be expanded in plane waves by using the reciprocal latticgo|ytion increases with the rank of the matrix.

vectors: To choose a range of valuesrqito use in Egs. 31 and 32,
1 we need to introduce the first Brillouin zone, which is the
= EK(éH)exméH-F”), (27)  hexagon shown in Fig. 5, whose sides are perpendicular
e(r) & bisectors of the shortest reciprocal lattice vectors or, in other

words, bisectors of the shortest lines between reciprocal

where lattice points, shown as the large dots. As is well known,
1 1 5
N f b
¢ 1 1)\/23(GR & 20 ®
€ B €p GHR ’ I 7 ’ 1
whereJ;(G/R) is a Bessel function of order one ahi the ° °
filling fraction, which is the ratio of the collagen fibril
cross-sectional area to the unit cell aegaiven in Eq. 11.
Using this explicit form of the reciprocal dielectric func- a/2m
tion, the eigenvalue equations (Eqgs. 16 and 17) become -1 17
s s . S s S o’
2Lk + G) - (g + GYIx(G — GHA(G) = 2 A(G) o o
&
Il (29)
for the E, polarization and "¢ First Brillouin Zone
2
D A I A7 A ANA- (7 _2 e FIGURE 5 The two-dimensional reciprocal lattice corresponding to the
GE[M * G”HK‘ + G”HK(GH G”)Ak‘(G”) TP Ak”(G”) triangular lattice of Fig. 4. The large dots show the reciprocal lattice points
|

(30) tpat corrgsponq to 'Fhe end points of the shortest reciprgcal lattice vectors
G. The first Brillouin zone is the hexagon shown and is formed by the
eperpendicular bisectors of the shortest reciprocal lattice vectors. The small
dots outline the triangular path around the irreducible segment of the first
Brillouin zone that we use to illustrate the photonic band structure in
subsequent figures. The symbols are conventional labels for points in the

M = [(EI + éu, i) (R\ + éH,j)]K(éH,i - é”,j) (31)  Brillouin zone.

for the E, polarization. These are both matrix eigenvalu
equations of the fornM*A = (w?/c?)A, where
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this scheme is useful because all solutions can be labeled, in E, - Polarization
addition to the band index, by a wave vector equivalent to 30
EI that lies within the first Brillouin zone (see, for example S 150
Brillouin, 1953). If k; is chosen outside this zone, it is L 20 ; ,;:
possible to find a reciprocal lattice vectGf such that, + 3 3
G, lies inside this first Brillouin zone, and it can be shown - 10%\ 1100
that the form of the solution in Eq. 22 is unchanged. Be- ‘F’{':,',';'ee\ T T~ 500
cause of symmetry, it is sufficient to consider only the ol B nlallelet Ittt <]
irreducible one-twelfth of the zone outlined by the black r M K r
dots in Fig. 5. As is standard in electronic band structure, the
special points in the zone are labeled with the symboM,
andK, as shown. -
E, - Polarization
30
e~ 1 150
Calculations for the cornea lattice model % 20 > ,;:
In this section, we describe our photonic band structure = 10%\ 1100 2
calculations for our periodic cornea model using the same Visible —
parameters as Maurice (1957), with values for collagen RANGe Rt -7y s e 114 500
radius and spacing chosen to be those of rabbit corneas, and 0 r M K T

the dielectric constants chosen to be those of oxen corneas.
For the cornea, we use a fibril radius Rf= 15.5 nm. For FIGURE 6 The first 10 photonic energy bands for the lattice model of
the lattice constand, we use the average Center-to-centerthe cornea. The horizontal axis represe_nts _the unfolded tr_iang_ular path
distance of the Collagen fibrilm = 62 nm. For these aroun_d the_ irreducible segmeqt of the Brlllo_um zone shown in Flg;S. As
o . . explained in the text, each point on that axis represents a wave \igctor
structural constants, the filling fraction, the fraction 0ccu- grawn from the origin to the given point in the two-dimensional Brillouin
pied by the fibrils, is given by = 0.23. The values for the zone. The photon energyw is given in electron volts on the left axis and
two dielectric constants are found by squaring the respectiveonverted to vacuum wavelengtiis= w/2w¢ on the right axis. Band
indices of refraction, giving; = 2.40 for collagen ané, = structures for t_he_ two polarizations, light with t_he_ electric vector perpen-
1.809 for the mucopolysaccharide background. Fig. 6 Show%lcular to the fibrils gppel) and parallel to the fibrilsl¢wer) are shown.
a plot of the lowest 10 eigenvaluesversusﬁ‘Qobtained by
diagonalizing the matrices given in Eq. 33,kagraces out .
the dotted triangle in Fig. 5 frorh to M to K and back to  The numbers of reciprocal lattice vecto@; that formed
I'. Each dot in that triangle, or each corresponding point orthese matrices were chosen to ensure that all of the recip-
the axis in Fig. 6, represents a vechrdrawn from the rocal lattice vectors up to a given length were included. This
origin of the Brillouin zone to that dot. Each continuous is analogous to choosing both positive and negative fre-
curve in this figure is called a band. In this figure, frequen-quencies up to a given cutoff frequency in a Fourier series.
cies are expressed in terms of the photon endgygiven ~ With each successively larger matrix, the frequencies con-
in electron volts, and the corresponding vacuum waveverge closer to limiting values, with convergence being
lengths A = w/27c are shown on the right axis. Visible faster for the lower bands. Results presented in Fig. 6 are for
light, which has vacuum wavelengths in the range of 400-the 755X 755 matrix, although a 1% 19 matrix was
700 nm, corresponds to frequencies that lie near the bottorsufficient to give quite good convergence for the first 10
of the lowest band, as shown. In this visible region, thebands.
lowest band has a nearly linear dispersion relation. In fact,
because we have chosen the dielectric constants to be tlae lculati for th | latti del
values appropriate for the visible region, the calculations are alculations for the sclera fattice mode
not strictly meaningful outside this region if the dielectric The sclera is also modeled as consisting of parallel collagen
constant is strongly frequency dependent. These bands dibrils of uniform diameter and spacing so that a planar slice
not include, for instance, the dispersion associated witlperpendicular to the long axes of the fibrils creates a trian-
electronic excitations that occurs in the ultraviolet, such agular lattice. Although the actual sclera exhibits very little
in the range of 190-250 nm (6.5-5.0 eV) (Feng et al.,uniformity in the size and spacing of its collagen fibrils, the
1997), or the dispersion of the infrared spectra in the rang@tention is to use a model that to first approximation has the
of 3800-1200 cm' (2600—8300 nm or 0.5-0.1 eV) same structure as the densely packed collagen in the sclera.
(Doyle et al., 1975). In this way we will be able to determine what effect the
These calculations were done at each of 50 evenly spaceaerage lattice spacing would have on the propagation of
points along the triangular path in the first Brillouin zone light in a periodic sclera-like material. That is, before em-
shown in Fig. 5. To establish convergence, 15 differentbarking on a study of disorder in the sclera, for which
matrix sizes were used, ranging fromxX77 to 755X 755.  calculations must necessarily be approximate, it is interest-
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ing to know for the sclera fibril spacing the results of anby considering the example of what is called the empty
exact calculation to understand clearly the effects of multi{attice. Imagine an array of lattice sites located where the
ple scattering in such a material. In the future, the mucHfibril centers would be in the cornea lattice model, but
more formidable task of approaching the disordered casehere these cylinders have exactly the same dielectric con-
could be considered. The fibril and background dielectricstante = ¢, as that of the background medium. This is, of
constants are identical to the values used in the corneeourse, simply a uniform medium with the background
lattice model. To calculate the filling fraction, averages fordielectric constant, and the dispersion relation for the pho-
the collagen fibril radius oR = 60 nm and spacing & = tons is simply the linear relation given by Eg. 7. However,
250 nm are determined from data presented by Vaezy ancbnsider what happens when this is plotted in the same way
Clark (1991) for human sclera. The corresponding fillingas the bands of Figs. 6 and 7. The linear dispersion relation
fraction, or the fractional volume occupied by collagenin two dimensions is actually a cone. Suppose one places
fibrils, is f = 0.21. The band structure found using thesethis cone with its apex at the origin of the picture of the
parameters is shown in Fig. 7. The upper part of the lowesBrillouin zone in Fig. 5. If the cone is now cut along the line
band and the lower parts of the second and third bands lie ifrom I" to M, for example, its edge traces out the lowest
the visible range. This visible region includes band gaps aband fromI" to M shown in Fig. 8. One then draws higher
the Brillouin zone boundaries (pointé andK) between the  Brillouin zones by bisecting lines to more distant reciprocal
lowest and the next two bands. Here, instead of the nearliattice points. Now one cuts the cones alone the lines in
linear dispersion relation found in the cornea, the bandshese higher Brillouin zones that correspond to the line from
bend over and become flat at the zone boundaries.@']’he I" to M in the first Brillouin zone. Those cut edges form the
values at which the frequencies were calculated were chdiigher bands shown alonig to M in Fig. 8. Similar con-
sen as in the previous section for the cornea, and similastruction along the lines fro to K and fromK back tol’
convergence tests were done. Again, ax199 matrix gave gives the remaining portions of the bands in Fig. 8. Thus the
quite good convergence for the first 10 bands, although Figplot of Fig. 8 is simply an unusual way (except in con-
7 was constructed using results calculated with #5855  densed-matter physics) of drawing a linear dispersion rela-
matrices. tion (Eqg. 7) in two dimensions that is really just a cone
(Ameen, 1996).

The photonic band structure shown in Fig. 6 for the
cornea lattice model is similar to that for the empty lattice
The physics underlying the plots of photonic band structuregnodel. However, introduction of the physical lattice makes
like those shown in Figs. 6 and 7 is most easily understoogeveral changes in the band structure, as can be seen by

comparing Figs. 6 and 8. One change is that the bands are
often flat at the Brillouin zone boundaries and at the zone

The empty lattice

E, - Polarization centerI in all bands but the lowest. Others are that the
7.5 degeneracies of bands are split and gaps are opened at the
~ Brillouin zone boundaries. The twofold degeneracy of the
- 90 1250 < lowest band fronM to K in Fig. 8 splits visibly in Fig. 6. An
Y & ________________ 2 example of a gap opening at the zone boundary can be seen
= 2-5/ ______ > ________ 1500 at theM point for the lowest two bands in Fig. 6.
\éﬂglee//? The splittings in Fig. 6 are fairly small because the
0= — = dielectric contrast, although typical of biological materials,
T M K T
Degeneracy
30 \(2)

75 - | ® > 1% »

. T 20 = s 3

E 5.0 {250 fg _}g 10 (%) 5 100 =

3 = 2
=25 1500 0 4500
\Fl*isible% - r M K T
ange
0= — — =

T M K T FIGURE 8 The first 10 photonic energy bands for the empty lattice

model with parameters representing the cornea. The horizontal axis repre-
FIGURE 7 The first 10 photonic energy bands for the lattice model of sents the triangular path around the irreducible segment of the Brillouin
the sclera. The horizontal axis represents the triangular path around treone (Fig. 5), as in Figs. 6 and 7. The photon enérgys given in electron
irreducible segment of the Brillouin zone (Fig. 5), as in Fig. 6. The photonvolts and as the corresponding vacuum wavelengts w/2mc. The
energyfw is given in electron volts and as the corresponding vacuumdegeneracies of the bands are given in parentheses unless the bands are
wavelengthh = w/27c. nondegenerate.
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is not exceptionally large. The dielectric contrast is the ratio E - Polarization

of the larger dielectric constant to the smaller, which is

&le, ~ 1.3 for the cornea. In artificial dielectric structures, 10.0 > 1100

the dielectric can be made larger, and this exaggerates the S 75 )

changes from the empty lattice model. An example of the 2 2
. . . . 3 5.0 1250

photonic band structure resulting from a larger dielectric = A

contrast is shown in Fig. 9 for the same type of two- 27 8 b 000

dimensional triangular lattice of rods as is used for the — Faoe~" 0¥ i — )

cornea lattice model. The contrast used in Fig. 8,jg ~ r M K r

13. Because the frequency is plotted in the dimensionless

units wa/2mc, the bands depend only on the dielectric con-

trast and the filling fraction, which in Fig. 9 is given Iliy= -

0.8358. (Recall that is the fractional volume occupied by E,- Polarization

the rods, which here have the smaller dielectric constant.) 10.0 1100

This is the filling fraction and dielectric contrast that was — e »

found to be optimal for creating band gaps (Plihal and E 7.8 5

Maradudin, 1991; Maradudin and McGurn, 1993). Here the 3 50 1250

changes from the empty lattice band structure are quite X154 Zh i R

pronounced, with considerably larger band gaps and band v:sible/ """"""""""""""" 1000

splittings. In fact, the splittings are so large that there Range ™ U5 M K T

appears to be a band gap for &l values (Plihal and

Maradudin, 1991; Maradudin and McGurn, 1993). An ex-FIGURE 10 Effective medium approximation for the cornea lattice

ample of such a gap is the shaded frequency interval ShOV\mOdeI' Only the lowest band is shown. The results of the full photonic band

for each polarization in Fig 9. Such a gap is of interest instru_cturg (Fig. 6) are shown as points,_and the_effective mgdium approxi—
L . s ; ) mation is the solid curve. The effective medium approximation gives

artificial semiconductor structures because light of this fre-excelient agreement with the full photonic band structure computations

quency cannot propagate in any direction, so that light caver the visible region.

be guided by a suitably designed structure.

Effective medium approximation visible range, which is the range for which our dielectric

Fig. 10 is a plot of the lowest band from Fig. 6, which showsconstants are appropriate, the dispersion relation is practi-

the photonic band structure for the cornea model. Over th&@lly linear along radial directions ik space. That is, the -
dispersion relation over this region looks like a cone, as is

E,- Polarization true in a uniform medium. The dispersion relation can thus
1.5 be written in the form of Eg. 7. However, the dielectric
Emas e conill] B constant that must be used in that equation is neither that of
1.0%% the fibril nor that of the background, but an effective me-
% %/’ dium valuee. that lies between these two. We determine
0.5 = «—Rand the value of this effective medium dielectric constant by
‘ fitting the cone-shaped linear dispersion of the empty
0.0= o - lattice,
[ M K T
c
W= "7 k, (34)
\ﬁeeﬁ
15 = rolanzaton to the low-frequency region of the dispersion relation cal-
culated from photonic band structure. The result of this fit is
jo——1— shown as the solid curves in Fig. 10, where it is compared
wa — with the calculated band structure as shown by the dots.
27 0.5 |,_Band We find that this effective medium dielectric constant is
— o different for the two polarizations and so is dependent on
0.0= | i J the orientation of the electric field, which is parallel to the
r M K r fibrils in the E, polarization case and perpendicular to the

fibrils in the E, polarization case. This means that the
FIGURE 9 The first 10 photonic energy bands for the high ContraStdiE|eCtriC properties of the medium are represented by a
dielectric lattice of Maradudin and McGurn (1993). The horizontal axis _,. - . . .
represents the triangular path around the irreducible segment of the Brilsllghtly anisotropic dlagonal dielectric tensqr. F_Or the cor-
louin zone (Fig. 5), as in Figs. 6—8. The shaded regions are believed to ba€@ model, the values for tie, and E; polarizations are

two-dimensional band gaps extending throughout the Brillouin zone. eelff = 1.930 andel,‘aﬁ = 1.945, respectively.
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We can use this effective medium approximation to in-lates as a function of the frequency of the incident light.
vestigate transmission through and reflection from the corThis comes from the factor cgsin Eq. 35. The inset shows
nea in the visible range, because the effective mediunan enlargement of the oscillations, where the maximum
dielectric constant gives a good description of the dispersiomamplitude of oscillations is~1%. If we had made this
relation in this frequency range. Consider a slab of uniformcalculation for a semi-infinite medium, i.e., with a single
material with parallel faces, so that the incident light from surface, the result would just @e= 1 — r%, = 0.98, which
medium 1 strikes the slab of medium 2 and the transmitteds about the same as the maximum transmissivity in Fig. 11.
light emerges into medium 3. The fraction of light reflected In an actual sample of cornea, a slice of material would not
is (Reitz et al., 1993) have perfectly parallel surfaces, and, because of nonunifor-
mity of the surface, the thickness would vary over the
_ (35) sample. For these reasons, in an actual measurement, these

1+ 13055+ 2ri5f 5c0s B’ oscillations may not be apparent, and one might observe
merely the average value of abolit= 0.97. There might
also be corrections for light striking at nonnormal incidence
apecause of rough surfaces.

The simplicity of this estimate illustrates the value of
finding the effective medium parameters as we have done

r2, + ra; + 2, »3C0SP

wherer; is the reflection amplitude on passing from me-
dium i to mediumj and B is a phase factor specifying
interference between the two interfaces. For light at norm
incidence the reflection amplitude is

Ve — & here. In contrast, Hart and Farrell presented an estimate of

My = e+ k& (36)  the light transmitted through the cornea using an approach

AR that neglected the effects of multiple scattering and required
and the phase factor is the evaluations of a complicated formula (Hart and Farrell,
— 1969). Their evaluation of this formula used summations of

B = 2wt, el (37) large numbers of terms that nearly canceled each other, and

where w is the angular frequency of the light, is the calculations made in this way are subject to large round-off

thickness of the slab of medium 2, aegis its dielectric ~ €MOrs- The variations in these results with frequency may be
constant. If medium 1 is air and medium 3 is water. thedue to such errors, because their calculations, like ours, did

dielectric constants arg, = 1, e; = 1.77, ande, = €. not include effects of absorption. This is one of the reasons
We choose a dielectric constay that is close tf) our We have emphasized that our calculations are only relevant
two values for the different electric field orientatiorg, = to the cornea and sclera in the visible region. Nevertheless,

1.94= €l = e, and a thickness of 0.5 mm to plot in Fig. their results give a transmissivity similar to ours and to
11 the fractionT = 1 — R of the light that is transmitted SCMe experimental data in the visible range. Experimental
through the slabsplid curve. Also shown are the experi- dgta do indicate that the transmissivity decreases subgta}n-
mental data in Fig. 4 of Hart and Farrell (1969) for com- t}ally as the frequency approaches.the uItravaet, and thls is
parison. Because the light reflects back and forth betweelikely due to large protein absorption bands in that region.

the two surfaces of the slab, the fraction transmitted oscil- 1 ne €ffect of the anisotropy of the dielectric tensor is very
minor here. It is of considerably more importance when

both the dielectric contrast and filling fraction are high, as in
A (nm) the calculations of Maradudin and McGurn (1993). In those
calculations, the dielectric contrast égle; ~ 13 and the
o 800 600 500 400 e

1. filling fraction isf = 0.8358, in comparison with/e, ~ 1.3
2 ) ] : andf = 0.23 for the cornea. Our calculations of their lowest
2 0.980 ] band for each of th&, andE, polarizations are shown as
@2 gl 0975 ] dots in Fig. 12. The slopes of the linear dispersion relations
£ 0.970 1 at low frequencies are quite different for ti& and E
S 0980 50 2005 2010 | polarizations. We determine the value of the effective me-
= . . ] dium dielectric constant for this system by fitting the cone-

1.5 20 25 3.0 shaped linear dispersion relations of the empty lattice from

ho (8V) Eq. 34 as we did for the cornea. This procedure gives
effective dielectric constantes/e; = 1.74 andelqle; =

FIGURE 11 Effective medium calculation of the transmissivity of the 2_'66 fc_)r thek | andE\I pplarlgatlons,.respe.ctlvely. Therefore
cornea $olid curvd compared with experimental dataofid dot§ from biological SYStEmS with h'gher c.helect.rlc contrast would
Hart and Farrell (1969) (Fig. 4). The fraction of light transmitted through have a larger anisotropy in the dielectric tensor.
a thin slab of dielectric material of thickness 0.5 mm is plotted; its
dielectric constant is the effective mediwgy = 1.94 found for the cornea.
The transmitted light intensity appears as a thick line~&7 + 1%  CONCLUSIONS

transmissivity because it is a rapidly oscillating function of the light . . . .
frequencyw that is not resolved on the scale of this plot. These oscillations | N€ Work presented here is believed to be the first applica-

can be seen clearly in the expanded view shown in the inset. tion of the methods of photonic band structure to any
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E, - Polarization Benedek, 1971; Vaezy and Clark, 1991), so that work was
inconclusive. In contrast, computations of photonic band
10.0 = structure provide an essentially exact solution of Maxwell’s
7.5 AR equations. The price that must be paid for this is that an
% 5.0 ordered model must be assumed. One conclusion that
) emerges from these solutions is that both the dielectric
25 contrast and filling fraction, in addition to the ratio of
oL L | . vacuum wavelength to fibril spacing, are important in gov-
r M K r erning light propagation in a two-component tissue.
Although the cornea and sclera are not perfectly ordered
systems, as was assumed for our models, the results never-
- theless should give reasonable approximations of the way
£ - Polarization light tes through these ti Th is actu-
ght propagates through these tissues. The cornea is actu
10.0 ally fairly well ordered, while the sclera has a high degree
of disorder. We expect the disorder to smear out the band
75 ] . . .
I N structure to some extent, while leaving the main features. It
2m 5.0 is possible that the disorder, in conjunction with the band
25 gaps, will be needed to give a complete picture of opacity in
0 the sclera. In the general treatment of transparency and
r M K r opacity in biological materials, it will be necessary to in-

corporate the effects of absorption. These are subjects that
FIGURE 12 Effective medium approximation for the dielectric lattice of \ye hope to address in future work.
Maradudin and McGurn (1993). Only the lowest band is shown. The
results of the full photonic band structure (Fig. 9) are shown as points, and
the effective medium approximation is the solid curve. The effective REFERENCES
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