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ABSTRACT A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids.
Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed
through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of
Berger et al. (1994. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with
a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach
allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many
relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this
model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance
of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff
within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the
computational model is also provided.

INTRODUCTION

The pathway by which icosahedral virus protein coats as- Experimental techniques for examining these pathway-
semble from their subunits is an important and incompletelydependent processes have thus far been hampered by the
described phenomenon, consisting of the self-assembly afomplexity of the system. However, modeling and simula-
many proteins into a complicated but regular structuretion-based approaches have the potential to assist in under-
Capsid structure has been described by the quasiequivalensganding such processes. Prior modeling and simulation
theory of Caspar and Klug (1962), which provides an ex-work has provided insight into many aspects of virus capsid
planation for the final assembled state of a capsid. Howevessembly but has not been directed at answering the specific
quasiequivalence offers little predictive power regarding theyuestions regarding assembly kinetics addressed by the
process of assembly. Although the subunits in a capsid argresent work. Horton and Lewis (1992) developed a method
usually chemically identical, they can adopt distinct confor-of ysing association energies of viral coat proteins to predict
mations in the assembled capsid, with the conformation Oéssembly intermediates. Reddy et al. (1998) extended this

any given subunit attained in a pathway-dependent faShi°H1ethod, applying the CHARMM energy calculation pro-

(Rossman, 1984; Johnson and Speir, 1997). It is not Culgram (Brooks et al., 1983) to the crystallographic structures
rently known what constraints, if any,

- CONSTH ! there are on assembly¢ e jcosahedral viruses to estimate the interaction en-
pathways or the distribution of intermediates. In addition, 'tergies that would be applied to the prediction of intermedi-

Is unknown what phys[cal properties of coat pr'otems WOUI.dates. The method, however, relies on the assumption that the
enforce these constraints. Other open questions regardi

th mblv br include th ints at which conf rrnr§(?ability and distribution of intermediates can be reliably
€ assembly process Inciude the points & ch contormag ¢ icted by examination of the final assembled structure.

tional switching occurs and the source of the observe% .
o . . iven the nature and extent of conformational changes
nucleation-limited behavior (Prevelige et al., 1993). All . . . :
icosahedral viruses must have some means of addressifg o Panyind capsid assembly (Steven et al.,, 1992; Galis-
Ilgo and King, 1993; Prevelige et al., 1994), this assumption

these questions, although the mechanistic answers may dif- L .
fer from one virus to another. Answers to these and othef"&Y Nt be reasonable for examining some aspects of capsid

questions may provide insight into viral assembly and havé\ssembly. Furthermore,dats) Lhe .present work attdem.pts to
the potential to assist in developing novel approaches tgemenstrate, unexpected behaviors may appear during as-
interfering with viral infection. sembly, even when the energetics of interactions are under-

stood, suggesting that the sort of information provided by
the work of Horton and Lewis and Reddy et al. might be
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composed entirely of pentamers. Although the approaches 1
of Marzec and Day and Tarnai et al. are useful for studying
symmetries of the final shell, they provide little insight into

its assembly process. Zlotnick (1994) developed a model
based on the assumption that fully formed and partially
formed capsids exist at equilibrium with free coat proteins,
giving rise to kinetics that appear to be nucleation-limited,;
this approach allowed for a more dynamic simulation of the"!/GURE 1 Local rule for aT = 1 capsid. Angles specify the angle

grovvth process than other methods. Zlotnick's al:)proacl,]between blndlng_ interactions. Arrows distinguish dlff_erent edge types, so
that any edge with an outward arrow on one subunit must connect to an

though, _exam'nEd Interactions at the Sca_le of poPu'?‘t'Onge with an inward arrow on another subunit, whereas an edge with no
distributions of large numbers of intermediates over time arrow on one subunit must connect to an edge with no arrow on another
rather than providing detailed information about a smallsubunit. Assembling subunits consistently with these rules can only pro-
number of capsids, as the present work attempts to dduce aT = 1 shell or a subset thereof.

Furthermore, Zlotnick’s simulations were specific to his

equilibrium model. It can also be noted that none of the . ) ) )
aforementioned approaches can model irregular or mafEXplanations for several puzzling observations about capsid

formed structures, an important goal of the present work. 25Sembly. Berger and Shor (1995) showed how only a

More general simulation techniques are also unable ténirlor change in a rule set could select betw&en 4 and
address the concerns of the present work, because of the = / 9eometries, providing a possible explanation for
computational cost of the problem. Low-level molecular oPserved links between the two geometries (Dokland et al.,

models that work at atomic or even amino acid resolutiont992; Earnshaw and King, 1978; Katsura 1983; Thuman-

cannot handle more than a few proteins the size of a typicar®Mmmike etal., 1998). In addition, Berger et al. (1994) used

viral coat protein. Simulations of capsid assembly kinetics2 €arly computer model of local rules to explore the

must consider hundreds or thousands of coat proteins; thré)bu_stness of rules sets to small deviations fr_om their ideal
molecular dynamics techniques currently used for proteif?iNding angles and to demonstrate a possible source of
structure determinations or protein docking simulations ar@Pserved shell malformations resulting from an error in

therefore unusable for studying many questions of capsi@PPIYing local rules.

assembly kinetics. Simpler lattice models that rely on com- N this paper, we apply the local rules theory to the

binatorial optimization would also be unsuitable for this dévelopment of an abstract model for subunit-subunit inter-

problem, because of their focus on equilibrium values rathefctions that allows for computationally feasible simulations
than kinetics. of the overall self-assembly reaction. By assuming that

Because the problems examined by the present work
cannot currently be adequately addressed experimentally or
by prior modeling and simulation approaches, we have N \'/ N
attempted to explore them through more abstract modeling : :
techniques based on the principle of local rules (Berger etizo ¢
al., 1994). The local rules theory proposes that coat proteins
take on distinct conformations determined by sets of “local 1
rules,” in which a protein chooses its conformation and its
relative position based on the conformations of its immedi-
ate neighbors. The local rules theory makes it possible to N\
describe the high-level symmetries of a completed capsid, i
using only information available to individual subunits. Fig. 11 * 127 ¢
1 shows the simplest local rules set, which describés=a
1 geometry. The rule indicates that a protein in conforma- 2
tion 1 is connected to three other proteins, each of confor-
mation 1. The angles between successive binding sites are
~120°, ~120°, and~108°. This rule provides an abstract
mechanism by which & = 1 capsid could form; each
subunit, as it connects to any other subunit, need only
ensure that its positioning relative to its neighbors is con-
sistent with the rule to ensure that the completed capsid will
haveT = 1 symmetry. Fig. 2 shows a more complicated
T = 7 rules set with seven conformations. (One also exist§/GURE 2 One set of local rules ford = 7 capsid. As with Fig. 1,

with four conformations.) L Lrul nalso d rib angles specify angles between binding interactions and arrows distinguish
our coniormatio S') ocalrules can also describe suc pes of edges. This rule set specifies seven distinct conformations, each

Co.mp'licated structures, although that capability is Not apwith its own set of neighbors and binding interactions. Assemblingrsit
plied in the present work. The local rules theory has offerechccording to these rules can only produce partial or comilete? shells.
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assembly proceeds according to local rules, we can remowgidly connected; such a subunit is shown in FigB.A(This
many details that then become irrelevant to answering mangepresentation is not used in the experiments presented here.)
of the questions that concern us. For example, by assuming Binding interactions between subunits are modeled
that interprotein binding always follows sets of local rules,through bonds that form between separate subunits. Each
we can disregard the complex combination of electrostaticdyond has a characteristic length, direction, rotational vector,
hydrophobic interactions, and other processes that may apair of activation energies for the association and dissocia-
tually be involved in binding. Other simplifications include tion reactions, set of spring constants used to model the
the use of probabilistic Boltzmann distributions for handling forces exerted by binding interactions, set of tolerances, and
binding and conformational shifting and the use of a modeket of allowable neighbors. A bond can attach to or detach
of Brownian motion for maintaining realistic thermody- from another bond probabilistically according to its charac-
namic behavior. By relying on theoretical and statisticalteristic energies, provided the two bonds are allowed to be
models to remove details that do not appear to be relevant teeighbors and their locations are within their permitted
the questions we are asking, we have been able to make thelerances. For a bond with activation energy of association
problem computationally tractable. This approach has th&, and activation energy of dissociatiorE,, the probabil-
additional benefit of allowing for a model that is general ity of binding to another bond of an allowed type within the
with respect to the specific details of assembly and can beorrect tolerance is=*"/(1 + €5%T), and the probability
adapted to many different assembly models. It remains to bef breaking an existing bond is (£ e5/%")~1 wherek, is
shown that we have retained sufficient detail to use our modeBoltzmann’s constant andl is the temperature. The forces
as a predictive tool for studying self-assembly behavior. bound subunits exert on each other are described in the next
The purpose of this paper is to describe our approach teection.
the computer modeling of capsid assembly dynamics. To Conformational shifting is implemented by allowing sub-
illustrate what can be accomplished with this approach, thenits to take on several shapes, each with a characteristic
paper presents the results of a series of simulation experenergy. A subunit shifts between its allowed shapes proba-
ments conducted using a simplified version of the simula-bilistically according to the Boltzmann distribution of the
tion model. Although the central focus of this paper is theenergies. The probability of a subunit shifting to a confor-
simulator itself, rather than the results of the particularmationk on a particular time step is given by
simulation experiments presented, the simulations nonethe-
less raise some interesting results relating growth rates and
malformation rates of simulate@l = 1 capsids, which the
paper describes. It then draws some conclusions about our . I
results and the applicability of our techniques to future WorkWhere E; is the energy of conformation T is the temper-

in biochemical simulation. Finally, the paper describes theture, andk, is Boltzmann’s constant. If the subunit has

simulation model and provides details of how it was imple-formEd any bonds, then the energies of thos.e bonds are
mented for the present work. added to the energy of the current conformation, as they

must be broken to shift conformations. Multiple-conforma-
tion subunits can be used as subsets of other subunits,

W/KpT

P(k) = S T

MATERIALS AND METHODS allowing separate domains to shift conformations indepen-
dently, although this functionality is not used in the exper-
Computer model iments presented here.

Defining a simulated system under the local-rules model

requires speC|fy.|ng' some basic asse;mbly .subunlt.. The fsu%ubunit-subunit and subunit-
unit may be an individual coat protein, as in the simulation

experiments. However, the model also allows for largerThe most important contributions to the force on a bound
subunits, such as dimers or capsomers, which can thensubunit are the bond forces exerted by its neighbors. Each
selves assemble according to local-rules binding patterns. tond is forced toward a characteristic angle and length. The
should also be noted that even if a larger subunit is used bfprces pushing a bond toward its ideal value are modeled as
the system being modeled, the simulation model describethree springs, representing a translational foFgea rota-
here can capture correct assembly in terms of monomers Bjonal torque around the bond,, and a bending torqudy,
biasing monomer kinetics to form the correct subunit morethat straightens bonds. These forces are calculated by the
readily than other subsets of a capsid. Simulated subunit®llowing equations:

are built from unions of spheres, each with a characteristic

solvent interactions

mass, radius, and binding configuration. In the simplest Fi=k{&—8&)

form, a subunit can be modeled as a single sphere with a set e e e

of bonds, each of which represents a potential binding Tr = k{(Uy X tp) - dy]dy
interaction with another subunit. One such subunit is shown 4%
Co . : 4, X 0
in Fig. 7 A. Subunits of different shapes can be made from T, = k0.5+ 0.5, - )

unions of these simple spheres, modeled as if they were |, X d|
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Here k;, k,, andk, are user-supplied spring constargisand  described above. The equations of motion can be described
&, are the end points of bonds one and twig;andl, are  in terms of the vectors of velocities, and positionsy, as
rotational vectors defining the desired relative rotations oftwo differential equations:

the two subunits around the bonds; atdandd, are the

directions of the two bonds. The end points of the bonds dx

define the optimal relative positions of the two bound sub- at v

units and need not have any relationship to the sizes of the

two particles. av .
Collisions between two subunits or between a subunit and at f(x, v)

an artificial boundary around the simulated solution create a
second class of forces. When two spheres collide, they exej{here f computes the accelerations based on the current

a force on each other, given by positions and velocities. The overall approach employed is
2 > an adaptive Euler method with Richardson extrapolation.
(ry+ 1% — (ry + 1)l . . . . . . X
min{ C . , This method is run in parallel, using the Cilk multithreading
(] system (Blumofe et al., 1995).

whereC is a constant set at 50 kDam/us?, d is a vector The Euler method is the simplest numerical integration
between the centers of the spheres, gndndr, are their ~ Scheme, computing the simulation state at a future time
radii. Likewise, when a sphere collides with the boundary ofo@sed on the state at the current time. A forward Euler for

the simulation, the boundary exerts a force on the Spherér)tegrating velocity is combined with a backward Euler for
given by integrating position, giving the following pair of iterations:

minlems— " oo Vs = VU + A, V)
(olr)?

whereM is the mass of the subunit,is the radius of the X1 = %o+ AlVyiy

sphere,o is the overlap distar_me be_tween _the e_dge of th":‘I'his gives a first-order accurate expression that requires one
sphere and the edge of the simulation, & defined as function evaluation for each time step

above. These forces were selected by trial and error to give g, .4 se of the irregular nature of the problem, this inte-

reasonable collisio_n behgvior while being inexpensive_ ©yration scheme is modified with an adaptive step size. When
compute and allowing quick convergence of the numerica he simulator attempts to advance the time by one unit of

metrt:o?c_s. Lal (f Its f del of B time, it first evaluates the problem with a step size of one
. The Inal class of forces results from a model of Brown- iy 1t then repeats the evaluation for all subunits with step
lan motion, intended to keep the average kinetic energy 0gizes of 0.5 units. It then uses an approximate test of

the particles close to a constant over long periods of tlme(:onvergence, testing whether the results for these two times

This model consists of two forces: a damping force and %re within a user-specified tolerance. If the two values are

randomized force of adaptive magnitude designed to Mot within that tolerance, then the evaluation is repeated

crease kingtic energ_y._The damping force on e_ach time StRith those subunits, using half of the previous step size, and
or partial time step is implemented by the assignments all other subunits, using the same step size used on the

Vv — dum?? previous round. This process continues until all parameters
L - have converged. Although this process does not provide any
0< 0 — dol absolute guarantee of bounded errors, it does set an approx-

whereV is the velocity,d is the angular velocityM is the ~ imate bound on the values of numerical errors.

subunit mass| is its moment of inertia about its axis of _ One further complication in the method is the use of
rotation, andd is a user-supplied damping constant. ThiSRlchQrdson extrapplgﬂon. Richardson extrapqlatlon is a
damping force alone would tend to reduce the energy of 4&&chnique for combining lower order representations to gen-
simulation. The randomized force adds small perturbation§rate a higher order representation. This is combined with
to the subunit velocity, whose distributions are adaptivelyth® adaptive step size, so that the values from different step
chosen to tend to increase subunit energy. The two force3Z€S are extrapolated to produce rh-order approxima-
together prevent small numerical errors from gradually in-tion whenn different step sizes are used. Because of the
creasing or decreasing the average kinetic energy over tHRessibility of discontinuous forces interfering with the ex-

course of a simulation but avoid drastically altering subunitirapolation, the simulator fries extrapolating with tke
paths over short distances. smallest step sizes available, for each valu&,aind uses

any that have converged, favoring higher order values if
more than one extrapolated value converges on a given step.
The numerical methods described here are implemented
The central computational problem of the simulator is thein a parallel, thread-based program. Each time one step of
integration of the equations of motion based on the forceshe Euler method is performed, a separate thread is spawned

Numerical methods
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for each subunit, allowing force calculations to proceed inlead to malformed capsids. Simulations can be halted at
parallel. various times to record data on the current state of the
population, allowing measurements of the numbers of on-
and off-pathway subunits at regular intervals. The reader is
referred to Materials and Methods for details of the simu-

The simulator uses a graphical user interface running as lation model.
front end to an interpreted control language. The graphical For these experiments, we did not attempt to model any
interface allows users to enter most common commandgarticular virus, but rather to create a generic modell of
through a simple, button-based system. Under this systerd, capsid assembly. Parameters were initially chosen to be
users can easily manipulate the graphics display, add dgasonably close to what would be expected for actual virus
remove subunits, advance the simulation time, or load angapsids and then were adjusted empirically, based on sim-
save simulations, using only a few button and key pressegilation runs, to give rapid growth. Subunits were designed
Thus most commands can be handled quickly and with littl0 polymerize according to the autostery model of Caspar
knowledge of simulator details. (1980); all subunits therefore shift between two conforma-
At a lower level, all user interactions are handled by thetions, a more stable, nonbinding conformation with a po-
interpreted control language. User commands enteretential energy of—2 kcal/mol, and an unstable binding
through the graphical interface are translated into text comconformation with zero potential energy. Bond angles for
mands, which are passed to the interpreter. In addition, usef§€ binding conformation were chosen to be ideal far=a
can type commands directly to the interpreter. The interl capsid. A single sphere was used to represent each coat
preter is also accessible by loading data files, allowing userBrotein. For this sphere, a mass of 100 kDa and a diameter
to create loadable modules that can redefine many aspec® 3 nm in the binding conformation and 1 nm in the
of simulator behavior. Users design simulations by creatingonbinding conformation were employed. The different
“rules files”; these are files of commands written in the Sizes were chosen to make the two conformations visually
control language that define the simulation parameters, addistinct, rather than for any anticipated effect on the simu-
the simulated subunits, and create any other data structurédion results. Parameters associated with binding interac-
needed by a particular simulation. The use of a powerfutions were selected empirically to allow a rapid rate of
control language ensures that the simulator is sufficientlycapsid growth while keeping the rate of malformations low.
versatile to adapt to a wide range of user needs, and thEhe base binding energies, which control the probability of

graphica] interface maintains ease of use for Commoﬂponds forming when they are within allowed tolerances and
commands. their probability of subsequently breaking, were set at

—8500 kcal/mol. An angular tolerance of 30° and a base
] ) distance tolerance of 10 nm were chosen. Each test used 300
Computational issues subunits. The base work space size was 125 nm in each

. . . . . 74 .
The simulator is written primarily in C. However, the force dimension, giving a concentration of 2.4710 " mol/liter,
calculations and most numerical routines are implemente@" 24-7 mg/ml. The unusually high concentration was meant

with the Cilk multithreading system (Blumofe et al., 1995), {© give a rapid growth rate, a constraint made necessary by
a parallel extension to C portable to several serial andn€ high computational costs of simulations. However, the
parallel architectures. For the tests described here, the paithors believe qualitatively similar results could be
allel routines ran on an eight-processor Sun Ultra Enterpris@chieved at substantially lower concentrations, given suffi-

5000 symmetric multiprocessor. The user interface ran segz€nt time, by adjusting binding energies or tolerances to
arately on a Silicon Graphics Indigo workstation, which compensate for the reduced thermodynamic probabilities of
generated the graphics contained in this paper. assembly a low concentration would produce. The binding

energy, tolerance, and work space size were modified for

some simulations, as will be described below. The meanings
RESULTS of the various simulation parameters are described in more
detail in Materials and Methods.

Growth and malformation rates were measured by exam-
Each simulation involves a number of subunits, representining, at five multiples of 5000 time steps, the numbers of
ing coat proteins, which move freely throughout a simulatechucleated on- and off-pathway subunits. For the purposes of
solution. Subunits are capable of forming binding interac-the experiment, a cluster of subunits was defined to be
tions with each other in accordance with local rules specifnucleated if it was a connected cluster of five or more
fying allowed binding patterns, provided they are within subunits. A subunit was defined to be on-pathway if it was
specified angular and distance tolerances of the ideal valuedtached only to a subset of a correctly fornfed 1 capsid
given by the local rules. Although the ideRl= 1 rules can  and off-pathway if it was attached to a cluster, any part of
only produce correctly formed = 1 capsids, the angular which was inconsistent with a correctly forméld = 1
and distance tolerances and the flexibility of existing bind-capsid. Thus even a single incorrect bond in an otherwise
ing interactions allow for nonoptimal binding, which can correctly formed cluster resulted in our classifying all sub-

User interface

Experimental design
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units in the cluster as off-pathway. The fixed cutoff time of Fig. 3B shows the amount of off-pathway growth for the
25,000 time steps was chosen to allow a significant amourthree simulations. With the exception of time step 10,000,
of growth. It has not been possible to determine the exacstronger binding interactions again consistently produced
mapping between time steps and physical time in terms ofmore growth. The exception at time step 10,000 occurred
time-dependent phenomena such as the diffusion rate. Hovbecause at that time the base simulation happened to expe-
ever, it is expected that the assembly times of the simulatedence a temporary increase in malformations that were
capsids are substantially shorter than the assembly time @brrected soon afterward, whereas thé kcal/mol simula-

an actual capsid, largely because computational limits retion experienced a temporary reduction, as several malfor-
quired biasing the binding parameters toward very rapidnations were corrected shortly before that time step. One
growth to perform the experiments in a reasonable timefeature to note is that the amount of off-pathway growth for
Each simulation required-5 h of computer time, so the a particular simulation sometimes decreases between two
time required to run them substantially longer would havetime steps; this is a result of malformations self-correcting
been prohibitive. during the simulations.

Fig. 3 C shows on-pathway growth for the three simula-
tions. (This is equivalent to the difference between the
values of the two previous plots.) As with off-pathway
The first experiment compares results of the base simulatiogrowth, values occasionally fell between two time points,
to one in which binding energies were altered-bg kcal/  typically as a result of a correctly formed cluster producing
mol and by—2 kcal/mol. The results are shown in Fig. 3. anincorrect bond. However, unlike the previous two graphs,

Fig. 3A shows the amount of total growth for each of the this one does not show the same simple relationship be-
three simulations, including both on- and off-pathway tween binding energies and growth rates. At various times,
growth. The graph shows growth in all three plots increas€ach of the three simulations had the highest total amount of
ing at each time step, with higher rates of growth resultinggrowth. However, by time step 25,000 (the end of the
from stronger binding interactions. simulation) the intermediate binding energy produced the
greatest total amount of on-pathway growth. The other two
plots reveal that although the2 kcal/mol simulation had
the most total growth, this was more than offset by its

Binding energy

Total Growth )
A 0300 ?a i . . greatly elevated level of malformed growth relative to the
3 K other two simulations, giving it ultimately the lowest
‘;;200 ] D amount of on-pathway growth. Whereas the base simulation
B had the lowest amount of off-pathway growth, it also had
3100- O base el the least total growth, yielding an intermediate amount of
§ f :; Eg:"mgl: pn-pathvyay growth. The-1 kcal/mol simulation, although
# it had neither the most total growth nor the least malformed
5000 Off1 %oaﬁgwa"g&%th 20000 25000  growth, had the highest final amount of on-pathway growth.
B 200 ] — y i These plots thus suggest a trade-off between the competing
< - factors of growth rate and malformation rate as functions of
T180r 1 binding energy and indicate that producing the most on-
}3' 100 ] pathway growth requires finding a balance between the two.
g
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For the second experiment, binding tolerance, which
roughly corresponds to the configurational entropy of bind-
. ing, was increased by two and four times relative to the base
p simulation. The results are illustrated in Fig. 4. The results
A show a pattern similar to that described in the previous
section, although with some differences.

Fig. 4 A shows the total amount of on- and off-pathway
15000 20000 25000 growth. Qualitatively, it shows the same relationship as that

seen in Fig. 3, with monotonically increasing growth over

FIGURE 3 Plot of growth as binding energy is varied. These graphstime for each simulation. Increasingly lenient tolerances
show the numbers of subunits involved in nucleated clustersh)inotal yielded increasingly rapid growth.

growth, @) off-pathway growth, and) on-pathway growth. Each plot .
shows values for the base simulation and for simulations in which binding Fig. 4B shows the amount of off-pathway growth for the

energies were altered byl kcal/mol and—2 kcal/mol. Data are presented €€ Simmatiqns- It also .ShOWS th? same qualitativ? pattern
at multiples of 5000 time steps. as described in the previous section. Except for time step
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despite having the least total growth, had considerably less
off-pathway growth than the other simulations and thus
finished with the most on-pathway growth of the three. This
illustrates a trade-off similar to that in the previous section,
in which there is a competition between growth and mal-
formation rates as functions of binding tolerance, although
the outcome of the competition was different from the
outcome described in the previous section.

Concentration

The final simulations explored the effects of doubling and
quadrupling the concentration relative to the base simula-
tion, by reducing the volume of the simulated solution.
Results are plotted in Fig. 5. The results show many qual-
itative similarities to the previous two experiments.

Fig. 5A shows the total growth for the three simulations.
Again, each simulation displays monotonic growth. In ad-
dition, increasing concentration corresponds to increased
growth between simulations.

Fig. 5B shows the amounts of off-pathway growth for the
three simulations. At each point in time, the amount of
off-pathway growth in the double-concentration simulation
is at least as high as that in the base simulation. Further-
more, with the exception of time step 5000, the amount of

FIGURE 4 Plot of growth as binding tolerance is varied. These graphs

show the numbers of subunits involved in nucleated clustersy)iriotal
growth, @) off-pathway growth, andQ) on-pathway growth. Each plot

shows values for the base simulation and for simulations in which bindingA

tolerances were increased by two times and four times.

10,000, increasingly lenient tolerances led to increasing

off-pathway growth. As with Fig. 8, the exception at time

step 10,000 was caused by the temporary increase in mal-
formation in the base simulation combined with a temporary
drop in the X tolerance simulation. One contrast to Fig. 3 B

B is that here, the amount of off-pathway growth for the
intermediate simulation continues to grow in the final two

time steps, yielding an intermediate value very close to the

highest value rather than the lowest.
Fig. 4 C shows the amount of on-pathway growth for the

three simulations. It is notable that despite the similarities

between Figs. & and 4A and between Figs. B and 4B,
Fig. 4 C is qualitatively very different from Fig. &. Again,
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although all three simulations produce the highest total
amounts of on-pathway growth at various times, here the
base simulation ultimately yielded the highest amount of
on-pathway growth. The double-tolerance simulation, de-
spite its high total growth, also had high off-pathway
growth; it therefore finished with the lowest amount of
on-pathway growth, although it had neither the least amount
of total growth nor the greatest amount of off-pathway
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the highest amount of total growth, it also had the highest

he numbers of subunits involved in nucleated clustersijnidtal growth,
B) off-pathway growth, and@) on-pathway growth. Each plot shows

a_mount of off-pathway growth and thus yielded an interr_ne'values for the base simulation and for simulations in which concentrations
diate amount of on-pathway growth. The base simulationwere increased by two times and four times.
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off-pathway growth in the quadruple-concentration simula-similar to that shown in Fig. @, in which subunits have
tion is at least as high as that in either of the other simulaformed a tetrameric structure where a pentamer would be
tions. The exception at time step 5000 occurred because @xpected. However, unlike in Fig.® the malformation in
a large number of malformations in the double-concentraFig. 6 C broke apart later in the simulation, allowing the
tion simulation, most of which were corrected by time stepinsertion of another subunit to yield a correct pentamer. The
10,000. cluster later went on to produce a correct, fully formed
Fig. 5 C shows the total amounts of growth for the three capsid. Malformations were frequently corrected in the sim-
simulations. As with the previous two experiments, each ofulations through similar local rearrangements of binding
the three simulations has the most total growth at somg@atterns. This was true not only for local errors, but also for
point in time. By time step 25,000, the intermediate simu-errors resulting from interactions of partially formed cap-
lation yielded the greatest amount of on-pathway growthsids, which occasionally broke apart to again yield two
As with varying the binding energies, the simulation with on-pathway partial capsids.
the greatest total growth also had the greatest malformed
growth, resulting in the least on-pathway growth for the
quadruple-concentration simulation. Furthermore, the bas
simulation had the smallest amount of off-pathway grovvthBIscussmN
but also the least total growth, yielding an intermediateWe have presented a new technique for simulating self-
amount of on-pathway growth. The double-concentratiorassembly systems, described an implementation of that
simulation, although it had neither the most total growth nortechnique, and discussed the results of three sample simu-
the least malformed growth, finished with the most on-lation experiments. The technique allows computationally
pathway growth of the three simulations. This again showdractable simulations of the complex process of self-assem-
a trade-off between growth and malformation rates, inbly of virus capsids from individual subunits. These simu-
which maximizing on-pathway growth requires finding a lations are configurable to different growth models and
parameter value that strikes a balance between the two. different values for a variety of subunit parameters. In
addition, they allow the gathering of qualitative and quan-
titative information on the behavior of the simulations under
different models.
The specific experiments described above were designed
Although it is not always possible to determine the source ofo illustrate some of the value of simulation models in
a malformation without saving and analyzing data for manygeneral and of local-rules simulation in particular. The
time steps, sources can be determined for many malformaxperiments involved changing various parameters of a
tions observed in the simulations. These data may be helpfydhysical system. Whereas some parameters, such as con-
in interpreting other results. Overall, three mechanismgentration, may be easily adjusted in a laboratory setting,
were found to affect the number of malformations observedthers, such as binding energy or the entropic penalty of
in a simulation. binding, may be difficult or impossible to alter with preci-
One source of observed malformations was interactionsion and without affecting other binding properties. How-
of incomplete capsids. Occasionally, the growing edges oéver, in a simulation, parameters such as these can be easily
two partially formed capsids came sufficiently close to eachand precisely adjusted in isolation from any other factors.
other that it was possible to form a binding interaction Furthermore, the experiments involved examining low-level
between subunits in the two capsids. The two capsids thudetails of the experimental state at specific time intervals.
become connected into a single malformed structure. MalMany aspects of the state of a laboratory experiment cannot
formed structures of this type can continue to add subunitbe precisely examined by existing experimental techniques;
after they have formed. An example of such a malformatiorthese include the data on distributions of on- and off-
is shown in Fig. 6A. pathway subunits examined in the present work. However,
Another source of malformations is the development ofin a computer simulation, the complete state of the system
small local errors in a growing capsid, which can lead tois available to the user. In addition, it may not be possible to
significant structural deformities. An example is shown inquench an actual biochemical reaction at a specific point in
Fig. 6 B, in which a group of subunits that should have time without possibly altering its state. A simulation,
formed a pentamer have instead incorrectly bonded into ¢hough, can easily be frozen, examined, and resumed at any
tetrameric structure. The capsid continued to grow after théime. Purely theoretical work is unlikely to be a valid
malformation appeared, producing a closed structure imeplacement for simulation work for applications such as
which all other binding interactions were locally consistentthis, which involve the interplay of many parameters in a
with a correct capsid, but in which the overall capsid wascomplicated and incompletely understood system. For the
abnormally small. reasons given above, the simulation experiments presented
A final factor affecting malformation rate is the ability of illustrate how simulation work may provide insights that
malformed capsids to correct themselves after a malformacannot be found either through laboratory work or through
tion has appeared. Fig. 6 shows a local malformation purely theoretical analysis. Such insights, in turn, can sug-

Mechanisms of malformation rates
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FIGURE 7 Two examples of simulated proteind) A simple subunit
model consisting of a single sphere with three edges projecting from it,
representing binding sitesBY A more complicated subunit built from a
union of spheres. The separate spheres are treated as if they are rigidly
connected for the purpose of calculating the effects on the entire subunit of
forces acting on any part of it.

gest hypotheses that might themselves be independently
confirmed in the laboratory.

Our particular experience suggests that the abstract local-
rules framework can be useful for simplifying otherwise
intractable problems involving the assembly of repeating or
symmetrical structures. Virus capsids represent an excellent

application of local-rules simulation due to the relative
FIGURE 6 Demonstration of sources of increased malformations in sim-

ulations with elevated growth ratesd)(A simulated malformation pro- complexity of the problem and the consequent difficulty of
duced when a binding interaction formed between the growing edges of

two incomplete capsidsBj A malformed capsid produced when a group
of subunits incorrectly formed a tetrameric structure where they shouldcontains a tetramer in place of a pentamer, aBjnHlowever, the incorrect
have formed a pentamer. The capsid was able to continue growing ttetramer breaks apart later in the simulation and is corrected into a pen-
produce a closed particle with an incorrect siz€) @ malformation tamer before the mistake can lead to larger structural errors. The partial
produced by local a binding error that is later corrected. The capsidshell goes on to form a correct, complete capsid.
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creating predictive mathematical models. However, local-cause coat proteins on the two capsids to move within their
rules simulation may also be used for simulating otherbinding tolerances of each other. More lenient binding tol-
self-assembly systems. An earlier local-rules simulator hasrances might also stabilize errors, by ensuring that if an
already been adapted to the study of carbon-silicon comincorrect binding interaction is broken, the proteins in-
pounds (Hobbs et al., 1998). A particularly useful aspect ofolved will have a greater opportunity to reestablish that
local-rules-based simulations that was demonstrated by thateraction. Finally, greater concentrations could increase
sample experiments is their ability to model malformations,the probability of collisions and the probability that a sub-
which have proved difficult to analyze by both experimentalunit bound in a slightly nonoptimal position will be able to
techniques and purely mathematical models. form a new binding interaction that stabilizes that position

Although our central result is the simulator itself rather before it can be corrected. Thus, if actual viruses exhibit
than our specific simulation experiments, we can also conmechanisms for producing and correcting errors similar to
sider possible implications of those experiments. The exthose observed in local-rules simulations, then there are
perimental results suggest a trade-off between growth antheoretical arguments for proposing that the relationship
malformation rates as functions of the parameters we exbetween growth and malformation rates observed with lo-
amined. For all three parameters, modifications that resultedal-rules simulations might hold for actual viruses as well.
in increased growth rates also led to increased incidence of Avenues for continuing this work include several areas in
malformations. This implies that achieving a maximumwhich our techniques can be applied and our model refined.
number of on-pathway subunits required striking a balanc&xploring models of kinetics for more complicated rule sets
between these competing factors. If these results accuratetyay allow examination of a wider range of virus growth
reflect the biological system they model, then they mayproperties. Simulations could also be improved by develop-
have several implications. First, if the observed competitioring more realistic models of simulated proteins that better
between growth and malformation rates is found in actuabpproximate known structures and measured physical prop-
viruses, then this may provide an evolutionary argument foerties as the relevant biochemical data become available and
malformations observed in real virus growth. Specifically, if as increasing computer speeds reduce the run times of our
viruses can only suppress their malformation rate by sacrisimulations; more detailed models may assist in determin-
ficing growth rate, then it may be that the optimum evolu-ing the dependence of assembly properties on those details.
tionary strategy for a virus is to allow some small number ofThe approach described by Reddy et al. (1998) offers a
malformations in exchange for an accelerated growth ratpossible means of deriving some of this data and may
over a similar virus that produces no malformed capsidstherefore provide a valuable complement to the simulation
Such a trade-off might also have implications for the desigrapproach described in this paper. A potentially significant
of capsid assembly-targeted antiviral drugs. If virus capsid$ocus for future work is exploring the feasibility of different
have evolved to find a balance between competing growtlavenues for blocking or misdirecting capsid growth to assist
and malformation rates, then this suggests the possiblin the development of capsid assembly targeted antivirals.
counterintuitive strategy of introducing agents that will pro- This work will require studying the sources of naturally
mote capsid growth as a means of attacking that growth. Fasccurring malformations, the circumstances under which a
example, an agent that catalyzes capsid nucleation or stabialformed capsid can recover, and the dependence of these
lizes binding interactions might increase malformation ratesevents on different binding properties, to gain clues to the
more than enough to offset the increased growth rates #spects of binding an antiviral agent should affect to achieve
would produce and thus could be an effective antiviral. maximum effectiveness.

The nature of malformations observed in the simulations
suggests possible mechanisms by which changes in bindir‘ge thank Jonathan King for encouraging us to apply computational tech-
parameters of actual viruses may affect growth and malforniques to exploring the kinetics of virus capsid assembly. We also thank
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