Regulation of the Cardiac Ryanodine Receptor Channel by Luminal Ca2¹ **Involves Luminal Ca2**¹ **Sensing Sites**

Inna Györke and Sandor Györke

Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430 USA

ABSTRACT The mechanism of activation of the cardiac calcium release channel/ryanodine receptor (RyR) by luminal Ca²⁺ was investigated in native canine cardiac RyRs incorporated into lipid bilayers in the presence of 0.01 μ M to 2 mM Ca²⁺ (free) and 3 mM ATP (total) on the cytosolic (*cis*) side and 20 μ M to 20 mM Ca²⁺ on the luminal (*trans*) side of the channel and with Cs⁺ as the charge carrier. Under conditions of low *trans* Ca²⁺ (20 μ M), increasing *cis* Ca²⁺ from 0.1 to 10 μ M caused a gradual increase in channel open probability (P_o) . Elevating *cis* Ca²⁺ above 100 μ M resulted in a gradual decrease in P_o . Elevating *trans* [Ca²⁺] enhanced channel activity (EC₅₀ \approx 2.5 mM at 1 μ M *cis* Ca²⁺) primarily by increasing the frequency of channel openings. The dependency of *P*_o on *trans* [Ca²⁺] was similar at negative and positive holding potentials and was not influenced by high cytosolic concentrations of the fast Ca^{2+} chelator, 1,2-bis(2-aminophenoxy)ethane-*N,N,N,N*-tetraacetic acid. Elevated luminal Ca²⁺ enhanced the sensitivity of the channel to activating cytosolic Ca²⁺, and it essentially reversed the inhibition of the channel by high cytosolic Ca²⁺. Potentiation of P_0 by increased luminal Ca²⁺ occurred irrespective of whether the electrochemical gradient for Ca^{2+} supported a cytosolic-to-luminal or a luminal-to-cytosolic flow of Ca^{2+} through the channel. These results rule out the possibility that under our experimental conditions, luminal Ca $^{2+}$ acts by interacting with the cytosolic activation site of the channel and suggest that the effects of luminal Ca^{2+} are mediated by distinct Ca^{2+} sensitive site(s) at the luminal face of the channel or associated protein.

INTRODUCTION

In mammalian cardiac myocytes contractile activation occurs in response to Ca^{2+} influx from the extracellular space, triggering Ca^{2+} -induced Ca^{2+} release (CICR) via Ca^{2+} release channels located in the membrane of the sarcoplasmic reticulum (SR) (Bers, 1991; Stern and Lakatta, 1992). The Ca^{2+} -sensitive Ca^{2+} release channel of the SR has been identified as the ryanodine receptor (RyR), a homotetrameric protein with a total molecular mass of \sim 2.3 MDa. The function of the cardiac RyR has been studied extensively by measuring SR Ca^{2+} fluxes and by recording single-channel currents with the planar lipid bilayer technique (Coronado et al., 1994; Meissner, 1994). These studies have shown that the activity of the RyR is controlled by a number of cytoplasmic ligands besides Ca^{2+} , including ATP, Mg^{2+} , and calmodulin. Consequently, the cytoplasmic side of the RyR is thought to carry the corresponding binding sites.

Recently it has been demonstrated that the activity of the RyR also can be influenced by Ca^{2+} at the luminal side of the channel. It has been reported that the open probability (P_o) of single cardiac RyR channels incorporated into lipid bilayers increases if Ca^{2+} on the luminal side of the channel is elevated (Sitsapesan and Williams, 1994; Lukyanenko et al., 1996; Sitsapesan and Williams, 1997). The effects of luminal Ca^{2+} are particularly important for understanding alterations in Ca^{2+} release that occur under pathological

© 1998 by the Biophysical Society

0006-3495/98/12/2801/10 \$2.00

conditions, when the Ca^{2+} content of the cell becomes exceedingly high (Ca^{2+} overload). The exact mechanism of potentiation of channel activity by luminal Ca^{2+} is not known. One possibility is that the effects of luminal Ca^{2+} are due to Ca^{2+} passing through the open channel and acting at the cytoplasmic activation site, as has been suggested for the skeletal RyR channels (Tripathy and Meissner, 1996; Herrmann-Frank and Lehmann-Horn, 1996). Alternatively, the effects of luminal Ca^{2+} could involve a distinct Ca^{2+} binding site(s) on the luminal side of the channel. This possibility would be consistent with the observations that luminal Ca^{2+} activated only channels affected by allosteric modulators such as sulmazole and ATP (Sitsapesan and Williams, 1994; Lukyanenko et al., 1996). In the present study we investigated the mechanism of action of luminal Ca^{2+} in cardiac Ca^{2+} release channels/ RyRs. Crude microsomes obtained from dog heart were fused with planar lipid bilayer membranes, and the activity of single Ca^{2+} release channels was recorded in symmetrical CsCH₃SO₃ media. The effects of various luminal $\lceil Ca^{2+} \rceil$ (0.1–20 mM) on channel activity were studied at different cytoplasmic Ca²⁺ concentrations (0.01 μ M to 2 mM) and membrane potentials. Our results suggested that the effects of luminal Ca^{2+} were not mediated by the cytoplasmic $Ca²⁺$ activation mechanism, but rather involved a different $Ca²⁺$ regulatory site on the luminal side of the channel or associated protein.

MATERIALS AND METHODS

Heavy SR microsomes were isolated by differential centrifugation from the ventricles of dog heart as described previously (Dettbarn et al., 1994). Dogs were killed by injection of Nembutal. Membrane vesicles were frozen

Received for publication 20 May 1998 and in final form 25 August 1998. Address reprint requests to Dr. Sandor Györke, Department of Physiology, Texas Tech University HSC, Lubbock, Texas 79430. Tel.: 806-743-2520; Fax: 806-743-1512; E-mail: physg@ttuhsc.edu.

rapidly and stored in liquid nitrogen. SR microsomes were fused into planar lipid bilayers, and single-channel currents were monitored as described previously (Lukyanenko et al., 1996). Bilayers were composed of 80% phosphatidylethanolamine and 20% phosphatidylcholine dissolved in decane at a final concentration of 50 mg/ml. SR vesicles were added to one side of the bilayer (defined as *cis*), and the other side was defined as *trans* (virtual ground). Channel sidedness was determined by the channel's response to ATP. Reconstituted channels were consistently oriented with the cytoplasmic channel face on the *cis* side of the bilayer (Györke et al., 1994). Standard solutions contained 350 mM *cis* CsCH₃SO₃, 20 mM *trans* CsCH₃SO₃, 20 μ M CaCl₂, 20 mM HEPES (pH 7.4). After channel incorporation, the *trans* CsCH₃SO₃ was adjusted to 350 mM. Single-channel recordings were performed with an Axopatch 200A (Axon Instruments, Foster City, CA) patch-clamp amplifier. Data were filtered at 2 kHz and digitized at 5–10 kHz. Acquisition and analysis of data were performed with Pcalmp 6.01 software (Axon Instruments). The free Ca^{2+} concentrations at given total Ca^{2+} , Mg^{2+} , ATP, and EGTA concentrations were determined using a computer program (Bers et al., 1994) and verified by measurements with a Ca^{2+} -selective electrode (World Precision Instruments, Sarasota, FL).

RESULTS

SR microsomes were fused into planar lipid bilayers, and single-channel currents were recorded with $Cs⁺$ as the charge carrier. It has been shown previously that the activation of channels by luminal Ca^{2+} requires the presence of ATP (or another allosteric agonist, i.e., sulmazole) on the cytoplasmic side of the channel (Sitsapesan and Williams, 1994; Lukyanenko et al., 1996). Because the focus of this study was the action of luminal Ca^{2+} , all of our measurements were performed in the presence of 3 mM cytoplasmic ATP. First we defined the sensitivity of the channel to cytosolic (*cis*) Ca^{2+} at constant (20 μ M) luminal (*trans*) Ca^{2+} . In general agreement with the results of previous single-channel studies obtained in the absence of ATP (Laver et al., 1995; Xu et al., 1996; but see Chu et al., 1993), the activity of most of the channels was regulated by cytosolic $[Ca^{2+}]$ in a bimodal fashion. At low concentrations (\leq 10 μ M) *cis* Ca²⁺ activated the channel; at high concentrations ($> 100 \mu M$), *cis* Ca²⁺ inhibited the channel. A significant fraction of channels (4 of 17) exhibited no inhibition in the high *cis* $[Ca^{2+}]$ range (not shown). This is consistent with the fragility of Ca^{2+} inhibition of cardiac RyRs reported previously (Laver et al., 1995; Copello et al., 1997). Records from two typical channels, measured with and without Mg^{2+} (free *cis* $[Mg^{2+}] \approx 1$ mM) at different free *cis* Ca^{2+} concentrations are shown in Fig. 1. Fig. 2 summarizes these series of experiments by plotting separately the relationships between P_0 and free *cis* $[Ca^{2+}]$ with and without Mg^{2+} . It is apparent that in the presence of Mg^{2+} , the concentration of Ca^{2+} needed to achieve halfmaximum activation increased from \sim 1 to \sim 30 μ M, whereas inhibition of the channel by high Ca^{2+} was not altered. Channel properties at near-threshold and maximally activating and inactivating cytosolic Ca^{2+} concentrations with and without Mg^{2+} are summarized in Table 1. Increasing *cis* Ca^{2+} resulted in a gradual prolongation of the average open time. Inhibition by Ca^{2+} was caused by an increase in the duration of closures.

To investigate the effects of luminal Ca^{2+} , we varied $[Ca^{2+}]$ in the *trans* chamber over a range from 20 μ M to 20 mM and recorded channel activity at submaximum activating concentrations of *cis* Ca^{2+} (1 μ M). Fig. 3 shows a representative experiment in which channel activity was measured at ± 40 mV holding potentials before and after elevation of luminal Ca^{2+} from 20 μ M to 5 mM. At both potentials, elevation of *trans* Ca^{2+} resulted in a dramatic increase in channel activity. In the presence of high luminal Ca^{2+} , unitary current is reduced as Ca^{2+} competes with the primary charge carrier, Cs^+ , in the pore (Tu et al., 1994). Because of symmetrical distribution of Cs^+ on both sides of the lipid bilayer, the currents through the channel at $+40$ and -40 mV had opposite directions. However, at both potentials, the electrochemical gradient for Ca^{2+} favored a luminal-to-cytosolic (*trans*-to-*cis*) Ca^{2+} flux through the channel, owing to the large excess of Ca^{2+} on the luminal side of the channel ($E_{Ca} \approx 198$ mV). It has been suggested that luminal Ca^{2+} flowing through the channel might regulate channel activity by having access to the cytoplasmic activation site of the channel (Tripathy and Meissner, 1996). Alternatively, the effects of luminal Ca^{2+} could be mediated by Ca^{2+} acting at distinct binding sites on the luminal side of the channel. The primary goal of the present study was to discriminate between these possibilities.

Fig. 4 describes the relationship between channel P_0 and luminal $\lceil Ca^{2+} \rceil$ at $+40$ and -40 mV determined at a constant *cis* $\lceil Ca^{2+} \rceil$ of 1 μM in experiments similar to that illustrated in Fig. 3. The two P_0 /*trans* $[Ca^{2+}]$ curves virtually superimpose. The EC_{50} values, obtained by fitting the data by a logistic function, were 2.2 \pm 0.9 mM and 2.8 \pm 1.1 ($n = 5$) mM for $+40$ mV and -40 mV holding potential, respectively. Hill slopes at $+40$ and -40 mV were 1.9 and 1.6, respectively, implying that more than one Ca^{2+} ion must bind for maximum activation of the channel. These results indicate that the effect of luminal Ca^{2+} on P_0 was not influenced by the membrane potential. The effects of luminal Ca^{2+} on channel properties at $+40$ and -40 and at a *cis* $[Ca^{2+}]$ of 1 μ M are summarized in Table 2. On average, P_{o} tended to be higher at positive than at negative membrane potentials, but the degree of potentiation by luminal Ca^{2+} was similar in the two cases. The increase in *P*_o was due primarily to an increase in the frequency of openings. A relatively small increase (less than twofold) in the mean duration of open events was also observed in some experiments (Table 2). The marked increase in the number of openings as well as a lack of voltage dependence of the effects of luminal Ca^{2+} are not consistent with the hypothesis that the effects of luminal Ca^{2+} are due to Ca^{2+} interacting with the cytoplasmic activation side of the channel (see Discussion).

To further assess the potential role of luminal-to-cytosolic Ca^{2+} fluxes in RyR activation, we investigated the impact of the fast Ca^{2+} buffer 1,2-bis(2-aminophenoxy)ethane-*N,N,N,N*-tetraacetic acid (BAPTA) on the activity of the channel exposed to high luminal Ca^{2+} . Channel activity was recorded in the presence of 50 nM free $\text{cis} Ca^{2+}$

FIGURE 1 Effect of varying cytosolic $[Ca^{2+}]$ on the activity of cardiac RyRs. Representative traces of current recordings from channels activated by Ca^{2+} and ATP with (A) and without (B) Mg²⁺. Single-channel currents shown as upward deflections. Current recordings were obtained at $+40$ mV holding potential in symmetrical 350 mM CsCH₃SO₃, pH 7.4. The *cis* chamber contained 3 mM Na₂ATP or MgATP and the indicated free $[Ca^{2+}]$. The *trans* chamber contained 20 μ M Ca²⁺.

and 20 mM BAPTA with either 20 μ M or 5 mM Ca²⁺ on the luminal side of the channel (Fig. 5). The addition of 5 mM Ca²⁺ to the luminal side of the channel resulted in potentiation of channel activity to an extent similar to that observed without BAPTA ($P_0 = 0.018 \pm 0.001$ versus 0.137 ± 0.024 ; $n = 4$, $p < 0.05$). These results are consistent with the possibility that luminal Ca^{2+} acts at the luminal side of the membrane. However, they do not necessarily rule out the possibility that luminal Ca^{2+} binds to the cytoplasmic activation site, because if the site is located close enough to the channel mouth ("BAPTA-inaccessible" space; Stern, 1992a), it could be reached by Ca^{2+} before the Ca^{2+} ions are chelated by BAPTA.

To test further the possibility that luminal Ca^{2+} activates the channel by having access to the cytoplasmic activation site, we investigated the effects of luminal Ca^{2+} at increasing cytosolic $[Ca^{2+}].$ Our intention was to determine whether luminal Ca^{2+} would still be able to activate the channel if the cytosolic activation sites were saturated by Ca^{2+} and/or if the luminal-to-cytosolic Ca^{2+} flow were no longer supported by the electrochemical gradient for Ca^{2+} . In the series of experiments exemplified in Fig. 6, free $[Ca^{2+}]$ on the cytosolic side of the channel was increased stepwise first from 200 nM to 20 μ M and then from 20 μ M to 1 mM at constant (20 μ M) *trans* [Ca²⁺], and channel activity was recorded at $+40$ mV. In accordance with the cytosolic Ca^{2+} sensitivity of the channel defined earlier (Fig. 2), channel activity increased upon elevating *cis* Ca^{2+} from 200 nM to 20 μ M and then decreased after a further elevation of Ca^{2+} to 1 mM. Elevation of luminal Ca^{2+} from

FIGURE 2 Dependence of cardiac RyR P_0 on cytosolic $[Ca^{2+}]$ in the presence of 3 mM ATP without (\blacksquare) or with (total [Mg²⁺] 3 mM, \blacktriangle) Mg²⁺. Single-channel activities were determined at $+40$ mV potential in symmetrical 350 mM $CsCH₃SO₃$, pH 7.4, at indicated concentrations of free cytosolic [Ca²⁺]. Luminal [Ca²⁺] was 20 μ M Ca²⁺. Data are presented as means \pm SEM of 5–16 determinations from different experiments. Continuous curves were obtained by fitting the data according to the equation $P_{o} = P_{o}^{\max} \{ [Ca^{2+}]^{\max} / ([Ca^{2+}]^{\max} + K_{a}^{\max}) \} * \{ 1 - [Ca^{2+}]^{\min} / ([Ca^{2+}]^{\min} + K_{i}^{\min}) \},$ where $P_0^{\text{max}} = 0.25$ and 0.27, $K_a = 25.8$ and 1.8 μ M, $K_i = 596$ and 608 μ M, na = 3.7 and 1, ni = 0.70 and 0.66 for data obtained with and without Mg^{2+} , respectively.

20 μ M to 10 mM caused a dramatic increase in the activity of the channel inhibited by cytosolic Ca^{2+} . At these Ca^{2+} concentrations on the two sides of the channel and with the holding potential employed $(+40 \text{ mV})$, the electrochemical gradient for Ca^{2+} still slightly favored a luminal-to-cytosolic Ca²⁺ flow through the channel ($E_{C_3} \approx 60$ mV). This Ca^{2+} flow, however, could not have contributed to the observed potentiation of the channel, because the activation

binding sites must have been saturated by high $[Ca^{2+}]$ already present on the cytosolic side of the channel (Fig. 2). Any surplus Ca^{2+} on the cytoplasmic side could only contribute to inhibition of the channel. Similar results were obtained in 16 other experiments, in which luminal Ca^{2+} was increased from 20 μ M to 5 or 10 mM (Table 3).

In another series of experiments, the conditions were designed to prevent any Ca^{2+} flow from the luminal to the cytosolic sides of the channel. Channel activity was recorded at $+40$ mV in the presence of either 20 μ M or 2 mM $Ca²⁺$ on the cytosolic and luminal sides of the channel (Fig. 7). The experiments were started at 20 μ M *cis* Ca²⁺, then *cis* Ca^{2+} was increased to 2 mM at constant *trans* Ca^{2+} (Fig. 7, *A* and *B*, respectively). As in the experiments described above, *P*^o decreased because of inhibition of the channel by *cis* Ca^{2+} . Under these conditions, the net Ca^{2+} flow should have a *cis*-to-*trans* direction because of the large excess of Ca^{2+} on the cytosolic side of the channel $(E_{C_3} \approx -117 \text{ mV})$. Increasing luminal Ca²⁺ to 2 mM (Fig. 7 *C*) did not change the direction of the net Ca^{2+} flux through the channel because, although the concentration gradient had been abolished, the positive holding potential still favored the movement of Ca^{2+} from the cytosolic to the luminal side of the channel ($E_{\text{Ca}} \approx 0 \text{ mV}$). Nevertheless, elevated luminal Ca^{2+} increased channel P_0 in a manner similar to that observed in the previous experiments. Similar results were obtained in seven other experiments (Table 3). These experiments clearly show that luminal Ca^{2+} acts at the luminal but not the cytosolic side of the channel.

Fig. 8 summarizes the effects of elevating luminal Ca^{2+} from 20 μ M to 5 mM on channel P_0 in the range of cytosolic Ca²⁺ from 0.01 μ M to 1 mM. Elevated luminal Ca^{2+} enhanced P_0 at all *cis* $[Ca^{2+}]$ investigated. The values of EC_{50} for cytosolic Ca^{2+} activation, obtained by fitting a logistic function to the raising phase of the P_0/cis [Ca²⁺] curves, decreased from 0.86 \pm 0.04 to 0.23 \pm 0.03 μ M $(n = 7)$. The impact of luminal Ca²⁺ on P_0 was most

Channel properties were obtained from 2-min continuous recordings carried out in symmetrical 350 mM CsCH₃SO₃ medium in the presence of 3 mM Na₂ATP or 3 mM MgATP (rows labeled $-Mg^{2+}$ and $+Mg^{2+}$, respectively) at the indicated concentrations of free *cis* [Ca²⁺]. The *trans* chamber contained 20 μ M Ca²⁺. The holding potential was 40 mV. Data are presented as means \pm SEM of 5–16 determinations from different experiments. $*p < 0.05$ versus values at 0.2 or 6 μ M Ca, respectively.

 $**p$ < 0.05 versus 10 or 60 μ M Ca, respectively.

 $15pA$

 $0.5 s$

FIGURE 3 Effect on channel activity of increasing luminal $[Ca^{2+}]$. (*A* and *B*) Representative traces of channel recordings at $+40$ mV (*A*) and -40 mV (*B*) holding potential before and after increasing luminal Ca²⁺ from 20 μ M Ca^{2+} to 5 mM. Current recordings were obtained in symmetrical 350 mM $CsCH₃SO₃$, pH 7.4. Channel openings are shown as downward or upward deflections from closed levels (*marked with dashes*). The *cis* chamber contained 3 mM Na₂ATP and 1 μ M free $[Ca^{2+}].$

dramatic in the inhibitory concentration range of *cis* Ca^{2+} ($>100 \mu M$), where *trans* Ca²⁺ essentially reversed the inhibition by *cis* Ca^{2+} . These results suggest that luminal $Ca²⁺$ acts by enhancing the activation and by reducing the inhibition of the channel by cytosolic Ca^{2+} .

DISCUSSION

It is known that the activity of the RyR is controlled by high-affinity Ca^{2+} activation and low-affinity Ca^{2+} inactivation sites accessible from the cytosolic side of the channel (Meissner and Henderson, 1987; Chu et al., 1993; Laver et al., 1995; Xu et al., 1996, this study). In the present study we established the existence of distinct Ca^{2+} regulatory sites residing on the luminal side of the channel (or associated protein). These sites can sense changes in luminal Ca^{2+} concentration in a range of 0.2–20 mM, rendering increased activation and reduced inactivation of the channel by cytosolic Ca²⁺ upon interaction with luminal Ca²⁺. This mechanism provides means by which the activity of the RyR can be coupled to the Ca^{2+} loading state of the SR, and it may be important for regulation of Ca^{2+} release under normal conditions as well as pathological conditions, such as Ca^{2+} overload.

Luminal Ca2¹ **acts at the luminal side of the RyR**

Our conclusion that the effects of luminal Ca^{2+} do not involve the cytosolic Ca^{2+} activation site of the RyR is based on the following evidence:

FIGURE 4 Relative open probability (P_0) as a function of luminal [Ca²⁺]. Single-channel activities were determined at $+40$ mV (\bullet) or -40 mV (\blacktriangle) holding potential at indicated concentrations of luminal Ca²⁺. The *cis* chamber contained 3 mM Na₂ATP and 1 μ M free [Ca²⁺]. Data are presented as means \pm SEM of 5–9 determinations from different experiments. Continuous lines were obtained by fitting the data according to the equasion $P_o = P_o^{\text{max}}\{[(Ca^{2+}]^{\text{na}}/((Ca^{2+}]^{\text{na}} + K_a^{\text{na}})\}\)$, where $P_o^{\text{max}} = 705$ and 740; $K_a = 2.2$ and 2.8; na = 1.9 and 1.6, for data obtained at $+ 40$ and -40 mV, respectively.

Holding potential	Channel properties	<i>trans</i> $\lceil Ca^{2+} \rceil$		
		$20 \mu M$	2 mM	10 mM
$+40$ mV	Open probability (P_0)	0.08 ± 0.02	$0.30 \pm 0.08*$	$0.64 \pm 0.14*$
	No. of events	10560 ± 2950	$15856 \pm 2249*$	$32426 \pm 3020*$
	Mean open time (ms)	1.15 ± 0.19	$2.28 \pm 0.46^*$	1.52 ± 0.42
	Mean closed time (ms)	13.21 ± 1.9	$7.12 \pm 1.07*$	$2.81 \pm 0.95*$
-40 mV	Open probability (P_0)	0.06 ± 0.02	$0.26 \pm 0.07*$	$0.44 \pm 0.09*$
	No. of events	12750 ± 4750	$31295 \pm 8091*$	$50140 \pm 8460*$
	Mean open time (ms)	0.66 ± 0.05	$1.05 \pm 0.09*$	0.84 ± 0.16
	Mean closed time (ms)	10.62 ± 2.34	$3.83 \pm 0.8^*$	$2.23 \pm 0.97*$

TABLE 2 The effects of luminal Ca on RyR gating at holding potentials of 1**40 and** 2**40 mV**

Channel properties were obtained from 2-min continuous recordings carried out in symmetrical 350 mM CsCH₃SO₃ medium at $+40$ or -40 mV holding potential and the indicated $[Ca^{2+}$]'s in the *trans* chamber. The *cis* chamber contained 3 mM ATP (total) and 1 μ M Ca²⁺ (free). Data are presented as means \pm SEM of 5–9 determinations from different experiments.

 $* p < 0.05$ versus values at 20 μ M *trans* [Ca].

1. Luminal Ca^{2+} increased channel activity primarily by increasing the number of openings rather then by increasing their duration (Tables 2 and 3). Luminal Ca^{2+} could have access to the cytosolic activation site only when the channel opens and Ca^{2+} can flow through the pore. When the channel closes, the local Ca^{2+} gradient in the vicinity of the channel dissipates very rapidly (microseconds; Stern, 1992a), making rebinding of Ca^{2+} to the channel unlikely. Therefore, the increase in frequency of openings observed in the present study cannot easily be accounted for by Ca^{2+} flowing through the channel and binding to the activation site.

2. The relationship between P_0 and luminal $\left[Ca^{2+}\right]$ was similar at positive and negative holding potentials $(+40 \text{ mV})$ versus -40 ; Fig. 4). With elevated luminal Ca²⁺, negative holding potentials should result in larger luminal-to-cytosolic Ca^{2+} fluxes than positive holding potentials. Therefore, it would be expected that if Ca^{2+} flowing from the luminal to the cytoplasmic side of the channel had access to the cytosolic Ca²⁺ activating site, P_0 would be higher at negative potentials.

3. Introducing high concentrations of the fast Ca^{2+} chelator BAPTA to the cytosolic side of the channel had no significant impact on the potentiation of channel activity by increased luminal Ca^{2+} (Fig. 5).

4. Increased luminal Ca^{2+} caused a potentiation of channel activity in a $[Ca^{2+}]$ range in which the cytosolic activation sites should be saturated by Ca^{2+} and any additional increase in $[Ca^{2+}]$ in the vicinity of the channel could have only contributed to inhibition of channel activity (Fig. 6).

5. Luminal Ca^{2+} exerted its potentiating effects regardless of whether Ca^{2+} flowed from the luminal to the cytosolic or from the cytosolic to the luminal side of the channel. These results clearly show that the site of action of luminal

FIGURE 5 Effects of increasing luminal Ca²⁺ on channel activity in the presence of 20 mM cytosolic BAPTA. (*A* and *B*) Representative segments of single-channel traces recorded before (*A*) and after (*B*) *trans* [Ca²⁺] was increased from 20 μ M to 5 mM. The *cis* chamber contained 3 mM Mg²⁺, 20 mM BAPTA, and 14 mM Ca²⁺ (free [Ca²⁺] \approx 50 nM). The *trans* chamber contained 20 μ M or 5 mM Ca²⁺, as indicated. The records were obtained in symmetrical 350 mM CsCH₃SO₃, pH 7.4, at $+40$ mV holding potential.

FIGURE 6 Effects of increasing luminal Ca^{2+} on activity of a channel suppressed by high cytosolic Ca^{2+} . (*A, a, b, c,* and *d*) Representative segments of single-channel traces recorded sequentially in the course of a single experiment at various cytosolic and luminal $[Ca^{2+}]$. The *cis* chamber contained 3 mM Na₂ATP, 100 μ M EGTA, and the indicated concentration of free $[Ca^{2+}]$. The *trans* chamber contained 20 μ M or 10 mM Ca^{2+} , as indicated. The records were obtained in symmetrical 350 mM $CsCH₃SO₃$, pH 7.4, at $+40$ mV holding potential. (*B*) Diary of P_0 of the experiment illustrated in *A*, *a*, *b*, *c*, and *d*, respectively. Continuous records were divided into intervals of 20 s; P_0 in each segment was plotted as a bar of length 0–1.

 Ca^{2+} is at the luminal side of the channel. Because our experiments have been performed with native RyRs, they do not provide evidence regarding whether the effects of

luminal Ca^{2+} are caused by interaction of Ca^{2+} with the channel protein itself or are mediated by an auxiliary regulatory protein. Growing evidence suggests that regulation

		TABLE 3 The effects of luminal Ca^{2+} on RyR gating at high cytosolic $[Ca^{2+}]$	
--	--	--	--

Channel properties were obtained from 2-min continuous recordings carried out in symmetrical 350 mM CsCH₃SO₃ medium at the indicated concentrations of Ca in the *cis* and *trans* chambers. The *cis* chamber contained 3 mM Na2ATP or 3 mM MgATP. The holding potential was 140 mV. Data are presented as means \pm SEM of 6–16 determinations from different experiments.

 $*_{p}$ < 0.05 versus values at 20 μ M *trans* [Ca].

FIGURE 7 Effects of increasing luminal Ca^{2+} on channel activity under conditions when a luminal-to-cytosolic flow of Ca^{2+} through the channel is not supported by the electrochemical gradient for Ca^{2+} . Representative segments of channel recordings under control conditions (*A*), after the addition of 2 mM Ca^{2+} to the *cis* chamber (*B*), and after subsequent addition of 2 mM Ca^{2+} to the *trans* chamber (*C*). Single-channel currents are shown as upward deflections. The records were obtained in symmetrical 350 mM CsCH₃SO₃, pH 7.4, at $+40$ mV holding potential.

of Ca^{2+} release by luminal Ca^{2+} may involve a complex molecular machinery composed of multiple proteins, including RyR, clasequestrin, triadin, and junctin (Ikemoto et al., 1989; Kawasaki and Kasai, 1994; Guo and Campbell, 1995; Zhang et al., 1997). On the other hand, potentiation of P_0 by increased luminal Ca²⁺ was observed in purified sheep cardiac RyRs (Sitsapesan and Williams, 1994); thus it appears luminal Ca^{2+} can also regulate the channel directly, at least in some preparations.

FIGURE 8 Effect of increasing luminal Ca^{2+} on the relationship between P_{α} and cytosolic $[Ca^{2+}].$ Single-channel activities were determined before (\bullet) and after (\blacktriangle) Ca²⁺ is elevated in the *trans* chamber from 20 μ M to 5 mM at indicated concentrations of free *cis* Ca^{2+} . Data are presented as means \pm SEM of 6–16 determinations from different experiments. Continuous lines were obtained by fitting the data according to the equation $P_{o} = P_{o}^{\max} \{ [Ca^{2+}]^{\max}([Ca^{2+}]^{\max} + K_{a}^{\max}) \} * \{ 1 - [Ca^{2+}]^{\min} / ([Ca^{2+}]^{\min} + K_{i}^{\min}) \},$ where $P_0^{\text{max}} = 110$ and 270, $K_a = 0.86$ and 0.23, $K_i = 650$ and 8136, na = 1 and 1, ni = 1 and 1, for data obtained with 20 μ M and 5 mM *trans* $[Ca^{2+}].$

Relation to previous studies

The Ca^{2+} sensitivity of RyR activation with and without cytosolic Mg^{2+} (half-maximum activation near 1 and 30 μ M, respectively) is consistent with those found previously (i.e., Coronado et al., 1994). Regarding inactivation at high *cis* $[Ca^{2+}]$, whereas some studies showed no signs of this mechanism (Rousseau et al., 1986; Rousseau and Meissner, 1989; Chu et al., 1993), others showed variable inhibition at 0.5–10 mM $[Ca^{2+}]$ (Laver et al., 1995; Copello et al., 1997; Marengo et al., 1998). Our results are in agreement with these last reports. Inactivation by 10 μ M to 1 mM Ca²⁺ was consistently observed in Ca^{2+} release studies with SR vesicles (Chamberlain et al., 1984; Zimanyi and Pessah, 1991; Chu et al., 1993) and permeabilized cells (Fabiato, 1985), which more closely mimic the membrane environment of the channel in situ than do the conditions of the lipid bilayer experiments, suggesting that Ca^{2+} -dependent inactivation of the RyRs is operational in vivo. The variability in the extent of inhibition at high cytosolic $[Ca²⁺]$ among various studies has been attributed to the fragility of the inactivation mechanism, which can be disrupted by high $Cs⁺$ concentrations and solubilization by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (Laver et al., 1995). Furthermore, inactivation at high Ca^{2+} can be modified by sulfhydryl oxidation (Marengo et al., 1998) and through modulation of the RyR channel by ATP (Györke and Györke, unpublished observation). In the present study we show that the extent of inactivation is also highly sensitive to luminal Ca^{2+} (Fig. 8). The reduced ability of cytosolic Ca^{2+} to promote inactivation at high luminal Ca^{2+} could also explain the results of Fabiato (1992), who showed that in skinned cardiac cells, spontaneous Ca^{2+} release can occur at high basal Ca^{2+} concentrations, at which CICR must be inactivated.

Our conclusion that the effects of luminal Ca^{2+} are not mediated by the cytosolic activation site is consistent with the results of previous studies demonstrating that the effect of luminal Ca^{2+} depends on the mode of activation of the RyR. It has been shown in both native and purified sheep (Sitsapesan and Williams, 1994) and native canine cardiac RyRs (Lukyanenko et al., 1996) that luminal Ca^{2+} has no effect on channels activated by cytosolic Ca^{2+} alone, but it potentiates channels activated by Ca^{2+} and ATP or sulmazole. Similar results were obtained in native sheep skeletal RyRs in which potentiation by luminal Ca^{2+} was observed only in the presence of ATP or ATP and Ca^{2+} but not Ca^{2+} alone on the cytosolic side of the channel (Sitsapesan and Williams, 1995). In addition, similar to the results reported here (Fig. 4), the effect of luminal Ca^{2+} on sheep skeletal RyRs activated by ATP and Ca^{2+} exhibited no voltage dependence (Sitsapesan and Williams, 1995). Recently it has been reported that luminal to cytosolic Ca^{2+} fluxes can increase the P_0 in purified skeletal RyRs activated by ATP or Ca^{2+} (Tripathy and Meissner 1996; Herrmann-Frank and Lehmann-Horn, 1996). At the present time, the reasons for these different results are not clear. They may reflect species/isoform differences or differences in the degree of isolation of the RyRs in different laboratories. It is possible that luminal Ca^{2+} can influence the RyR through both (i.e., cytosolic and luminal) Ca^{2+} activation mechanisms, and the prominence of one or the other mechanism depends on the experimental conditions.

Luminal Ca2¹ **is an allosteric modulator of the RyR**

It has been suggested that RyR is an allosteric enzyme, the activity of which is controlled by a number of cooperatively and noncooperatively interacting endogenous $(Ca^{2+}, Mg^{2+},$ ATP, calmodulin) and exogenous (caffeine, ryanodine) ligands acting at the cytosolic side of the channel (Meissner, 1992, 1994). Potentiation of RyR activity by luminal Ca^{2+} appears to be a case of allosteric modulation involving a luminal regulatory site. Luminal Ca^{2+} enhanced the sensitivity of the cytosolic activation mechanism to Ca^{2+} , and it essentially reversed inhibition of the channel induced by high cytosolic Ca²⁺. The relief of the cytosolic Ca²⁺induced inhibition by luminal Ca^{2+} is consistent with our previous finding that luminal Ca^{2+} reduces the level of inhibition of the channel by the allosteric inhibitor tetracaine (Györke et al., 1994). It has been demonstrated that local anesthetics (i.e., procaine) reduce the activity of the

RyR by promoting transitions to a long inactivated state in a manner similar to that of inhibition caused by high cytosolic Ca^{2+} (Zahradnikova and Palade, 1993). Thus it is conceivable that high cytosolic Ca^{2+} and tetracaine inhibit the channel through the same mechanism, which can be reversed by luminal Ca^{2+} .

Physiological implications

Nuclear magnetic resonance studies suggest that free intra-SR $[Ca^{2+}]$ in heart varies from 1 to 5 mM (Chen et al., 1996). Thus the effects of luminal Ca^{2+} on channel activity occur within the range of free $[Ca^{2+}]$ in the SR and may represent a physiological mechanism whereby luminal Ca^{2+} regulates Ca^{2+} release. In the CICR process, where Ca^{2+} is both the triggering signal and the output signal, the danger of spontaneous oscillations is always present. Theoretical studies suggest that to maintain a stable CICR, the cells may have to self-regulate their release gain by adjusting the activity of the RyRs to the SR Ca^{2+} load (Stern, 1992b). We have shown that the activity of the RyR is under continuous control of luminal $[Ca^{2+}]$. Lowering Ca^{2+} in the lumen of the SR would decrease channel activity, thereby stabilizing CICR during release. Interestingly, the effect of luminal $Ca²⁺$ was coupled to inhibition of RyR by high cytosolic Ca^{2+} (Fig. 8). Thus these two stabilizing mechanisms could reinforce each other during the release process when a decrease in $[Ca^{2+}]$ in the SR would be accompanied by an increase in cytosolic $[Ca^{2+}]$. Alternatively, luminal Ca^{2+} sensitive release channels could provide an adjustable leak pathway through which the cells could self-regulate their SR $Ca²⁺$ load to maintain a stable CICR. Consistent with this possibility, cardiac cells exhibit a considerable diastolic $Ca²⁺$ release, primaraly through RyRs, which increases upon elevation of the SR Ca^{2+} load (Bassani et al., 1997). Under pathological conditions of Ca^{2+} overload, the destabilizing effects of increased SR Ca^{2+} content would be exacerbated by increased activity of the channel caused by luminal Ca^{2+} , resulting in increased spontaneous Ca^{2+} release activity.

We thank Drs. R. Nathan, A. Neely, and A. Zahradnikova for critical reading of the manuscript.

This work was supported by the National Institutes of Health (HL 52620 and HL 03739-01). S. Györke is an Established Investigator of the American Heart Association.

REFERENCES

- Bassani, R. A., J. W. Bassani, S. L. Lipsius, and D. M. Bers. 1997. Diastolic SR Ca efflux in atrial pacemaker cells and Ca-overloaded myocytes. *Am. J. Physiol.* 273:H886–H892.
- Bers, D. M. 1991. Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publishers, Dordrecht, the Netherlands.
- Bers, D. M., C. W. Patton, and R. Nuccitelli. 1994. A practical guide to the preparation of Ca²⁺ buffers. *In* A Practical Guide to the Study of Calcium in Living Cells. R. Nuccitelli, editor. Academic Press, New York.
- Chamberlain, B. K., P. Volpe, and S. Fleischer. 1984. Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. *J. Biol. Chem.* 259:7540–7546.
- Chen, W., C. Steenbergen, L. A. Levy, J. Vance, R. E. London, and E. Murphy. 1996. Measurement of free Ca^{2+} in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-*N,N,N',N'*-tetraacetic acid by ¹⁹F NMR. *J. Biol. Chem.* 271:7398–7403.
- Chu, A., M. Fill, E. Stefani, and M. L. Entman. 1993. Cytoplsmic Ca^{2+} does not inhibit the cradiac muscle sarcoplasmic reticulumryanodine receptor Ca^{2+} channel, although Ca^{2+} -induced Ca^{2+} inactivation of Ca²⁺ release is observed in native vesicles. *J. Membr. Biol.* 135:49–59.
- Copello, J. A., S. Barg, H. Onoue, and S. Fleicher. 1997. Heterogeneity of $Ca²⁺$ gating of skeletal muscle and cardiac ryanodine receptor. *Biophys. J.* 73:141–156.
- Coronado, R., J. Morrissette, M. Sukharova, and D. M. Vaughan. 1994. Structure and function of ryanodine receptors. *Am. J. Physiol.* 266: C1485–C1504.
- Dettbarn, C., S. Györke, and P. Palade. 1994. Many agonists induce "quantal" Ca^{2+} release or adaptive behavior in muscle ryanodine receptors. *Mol. Pharmacol.* 46:502–507.
- Fabiato, A. 1985. Time and calcium dependence of activation and inactivation of calcium-induced calcium release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. *J. Gen. Physiol.* 85:291–320.
- Fabiato, A. 1992. Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. *In* Excitation-Contraction Coupling in Skeletal, Cardiac and Smooth Muscle. G. B. Frank, editor. Plennum Press, New York. 245–262.
- Guo, W., and K. P. Campbell. 1995. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. *J. Biol. Chem.* 270:9027–9030
- Györke, S., P. Velez, B. Suarez-Isla, and M. Fill. 1994. Activation of single cardiac and skeletal ryanodine receptors by flash photolysis of caged Ca²⁺. *Biophys. J.* 66:1879–1886.
- Herrmann-Frank, A., and F. Lehmann-Horn. 1996. Regulation of the purified Ca^{2+} release channel/ryanodine receptor complex of skeletal muscle sarcoplasmic reticulum by luminal calcium. *Pflugers Arch.* 432: 155–157.
- Ikemoto, N., M. Ronjat, L. G. Meszaros, and M. Koshita. 1989. Postulated role of calsequstrin in the regulation of calcium release from the sarcoplasmic reticulum. *Biochemistry.* 28:6764–6771.
- Kawasaki, T., and M. Kasai. 1994. Regulation of calcium channels in sarcoplasmic reticulum by calsequestrin. *Biochem. Biophys. Res. Commun.* 199:1120–1127.
- Laver, D. R., L. D. Roden, G. P. Ahern, K. R. Eager, P. R. Junankar, and A. F. Dulhunty. 1995. Cytoplasmic Ca^{2+} inhibits the ryanodine receptor from cardiac muscle. *J. Membr. Biol.* 147:7–22.
- Lukyanenko, V., I. Györke, and S. Györke. 1996. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. *Pflugers Arch.* 432:1047–1054.
- Marengo, J. J., C. Hidalgo, and R. Bull. 1998. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. *Biophys. J.* 74:1263–1277.
- Meissner, G. 1992. Ligand binding and cooperative interactions among the subunits of the tetrameric Ca^{2+} release channel complex of sarcoplasmic reticulum. *In* Excitation-Contraction Coupling in Skeletal, Cardiac and Smooth Muscle. G. B. Frank, editor. Plenum Press, New York. 277–287.
- Meissner, G. 1994. Ryanodine receptor/ Ca^{2+} release cchannels and their regulation by endogeneous effectors. *Annu. Rev. Physiol.* 56:485–508.
- Meissner, G., and J. S. Henderson. 1987. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca^{2+} and is modulated by Mg^{2+} , adenine nucleotide, and calmodulin. *J. Biol. Chem.* 262:3065–3073.
- Rousseau, E., and G. Meissner. 1989. Single cardiac sarcoplasmic reticulum Ca²⁺ release channel: activation by caffeine. *Am. J. Physiol.* 256: H328–H333.
- Rousseau, E., J. S. Smith, J. S. Henderson, and G. Meissner. 1986. Single channel and $45Ca^{2+}$ flux measurements of the cardiac sarcoplamic reticulum calcium channel. *Biophys. J.* 50:1009–1014.
- Sitsapesan, R., and A. J. Williams. 1994. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca^{2+} -release channel by luminal Ca²⁺. *J. Membr. Biol.* 137:215–226.
- Sitsapesan, R., and A. J. Williams. 1995. The gating of the sheep skeletal sarcoplasmic reticulum Ca^{2+} release channel is regulated by luminal Ca²⁺. *J. Membr. Biol.* 146:133-144.
- Sitsapesan, R., and A. J. Williams. 1997. Regulation of current flow through ryanodine receptors by luminal Ca^{2+} . *J. Membr. Biol.* 159: 179–185.
- Stern, M. D. 1992a. Buffering of calcium in the vicinity of a channel pore. *Cell Calcium.* 13:183–192.
- Stern, M. D. 1992b. Theory of excitation-contraction coupling in cradiac muscle. *Biophys. J.* 63:495–517.
- Stern, M. D., and E. Lakatta. 1992. Excitation-contraction in the heart: the state of the question. *FASEB J.* 6:3092–3100. 489 2, 319–326.
- Tripathy, A., and G. Meissner. 1996. Sarcoplasmic reticulum lumenal $Ca²⁺$ has access to cytosolic activation and inactivation sites of skeletal muscle Ca²⁺ release channel. *Biophys. J.* 70:2600-2615.
- Tu, Q., P. Velez, M. Cortez-Gutierrez, and M. Fill. 1994. Surface charge potentiates conduction through the cardiac ryanodine receptor channel. *J. Gen. Physiol.* 103:853–867.
- Xu, L., G. Mann, and G. Meissner. 1996. Regulation of cardiac Ca^{2+} release channel (ryanodine receptor) by Ca^{2+} , H^+ , Mg^{2+} , and adenine nucleotides under normal and simulated ischemic conditions. *Circ. Res.* 79:1100–1109.
- Zahradnikova, A., and P. Palade. 1993. Procaine effects on single sarcoplasmic reticulum Ca^{2+} release channels. *Biophys. J.* 64:991–1003.
- Zhang, L., J. Kelley, G. Schmeisser, Y. M. Kobayashi, and L. R. Jones. 1997. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. *J. Biol. Chem.* 272:23389–23397.
- Zimanyi, I., and I. N. Pessah. 1991. Coparison of [³H]ryanodine receptors and $Ca²⁺$ release from rat cardiac and rabit skeletal muscle sarcoplasmic reticulum. *J. Pharmacol. Exp. Ther.* 256:938–946.