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ABSTRACT The effects of ribosome-inactivating proteins (RIPs) from Ricinus communis and from Viscum album on the
water permeability, Pf, and the surface dielectric constant, «, of model membranes were studied. Pf was calculated from
microelectrode measurements of the ion concentration distribution in the immediate vicinity of a planar membrane, and « was
obtained from the fluorescence of dansyl phosphatidylethanolamine incorporated into unilamellar vesicles. Pf and « of fully
saturated phosphatidylcholine membranes were affected only in the presence of a lectin receptor (monosialoganglioside,
GM1) in the bilayer. It is suggested that the membrane area occupied by clustered lectin-receptor complexes is markedly less
permeable to water. Protein binding to the receptor was not a prelude for hydrophobic lipid-protein interactions when the
membranes were formed from a mixture of natural phospholipids with a high content of unsaturated fatty acids. These
membranes, characterized by a high initial water permeability, were found to interact with the RIPs unspecifically. From a
decrease of both Pf and « it was concluded that not only water partitioning but also protein adsorption correlates with looser
packing of polyunsaturated lipids at the lipid-water interface.

INTRODUCTION

The potent plant toxins (see Table 1) ricin (RCA60) and the
mistletoe lectins I (MLI) and III (MLIII) are heterodimeric
proteins consisting of an A-chain, which has 28S ribosomal
RNA N-glycosidase activity, joined to a B-chain, which is a
galactose and/orN-acetyl-D-galactosamine-specific lectin
(Lee et al., 1994). The binding of the B-chain to cell surface
galactose-containing proteins is followed by endocytosis
(Sandvig and van Deurs, 1994). The subsequent transloca-
tion across the membrane of an intracellular compartment to
enter the cytosol is the transport step least understood in the
entire cell intoxication process (Raso, 1994; Wellner et al.,
1995). Much evidence currently suggests that toxin entry
and routing inside cells are not toxin-specific and mimic
pathways of physiological molecules (Barbieri et al., 1993).
It is believed that the lectin is delivered into the cytosol by
the protein transport machinery of the endoplasmic reticu-
lum (ER) after having been transported across thetrans-
Golgi network in retrograde direction (Sandvig and van
Deurs, 1996). Alternatively, membrane destabilization as a
result of direct lipid-protein interactions is hypothesized to

be involved in the translocation mechanism (Utsumi et al.,
1989; Agapov et al., 1997; Pohl et al., 1998).

From a comparison of the interaction of various lectins
with the lipid bilayer, a better insight in the mechanism of
translocation across an intracellular membrane barrier into
the cytosol is expected. The knowledge of this transport step
is crucial for a therapeutic utilization of ribosome-inactivat-
ing proteins (RIPs) in the treatment of cancer (Brinkmann
and Pastan, 1994), autoimmune (Raso, 1994), and graft-
versus-host diseases. The study of the interaction of lectins
with lipid membranes is also important because generally,
the membrane insertion of water-soluble proteins is of basic
interest in membrane biosynthesis and secretion (Montich et
al., 1995; Ladokhin et al., 1997).

Protein partitioning into the membrane, which leads to
defects in membrane structure, is assumed to introduce
some additional bilayer compressibility. Therefore, an en-
hanced water membrane permeability (Pf) is expected
(Needham et al., 1988). An increasing amount of water
penetrating the hydrocarbon, as reported for small peptides
after hydrophobic binding at the bilayer interface, is also
expected to translate into higher water permeation rates
(Jacobs and White, 1989). Nevertheless, the protection of
isolated thylakoids against freeze-thaw damage by some
galactose-specific lectins was afforded by a reduction of the
hydraulic membrane conductivity (Hincha et al., 1993). The
mechanism responsible for this contradictory finding is
unknown.

In molecular dynamics simulations it is anticipated that
the phospholipid headgroups are engulfed in water, which
then intermittently partitions into the region of the hydro-
phobic aliphatic chains of the fatty acids (Haines and Liebo-
vitch, 1995). As a result of protein adsorption to the mem-
brane surface some of the interfacial water may be expelled
(Hoekstra and Wilschut, 1989). In this case, the portion of
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the membrane surface covered by the protein should be
markedly less permeable to water than normal. To test this
hypothesis, we have measured membrane water permeabil-
ity and surface hydrophobicity under the same conditions.
For the surface dielectric constant («) measurements, a
fluorescence spectroscopic method (Ohki and Arnold, 1990;
Kimura and Ikegami, 1985) was used, which detects the
environmental effect on the membrane surface upon the
addition of different RIPs.

The investigations were carried out with bilayers of dif-
ferent composition because it is expected that partitioning of
adsorbing molecules into lipid monolayers depends on
membrane mechanical properties (Needham, 1995). For wa-
ter, an increase of membrane compressibility (i.e., a de-
crease in tension) was reported to be accompanied by a
deeper penetration into these bilayers and a progressive
increase of bilayer water permeability (Bloom et al., 1991).
In the present study, nonspecific nonelectrostatic interac-
tions between the RIPs and lipid bilayers were also found to
be lipid-dependent. It was concluded that not only water
(Huster et al., 1997), but also protein partitioning correlates
with looser packing of polyunsaturated lipids at the lipid-
water interface.

MATERIALS AND METHODS

Liposomes

Unilamellar vesicles were made from diphytanoyl phosphatidylcholine
(DPhPC), egg phosphatidylcholine (EPC; both from Avanti Polar Lipids,
Alabaster, AL), phosphatidylethanolamine (PE), phosphatidylserine (PS),
and ergosterol (all from Sigma, Dreisenhofen, Germany). In some of the
experiments 10 mol % monosialoganglioside (GM1, Sigma) were added.
The lipids were dissolved in a chloroform/methanol mixture. For labeling,
dansyl phosphatidylethanolamine (DPE; Avanti Polar Lipids) was given to
the lipid at a molar ratio lipid/DPE of 1:100–1:200. Large unilamellar
vesicles were prepared by an extrusion technique (MacDonald et al., 1991)
using the small-volume apparatus LiposoFast (Avestin Inc., Ottawa, Can-
ada) with filters of 100 nm pore diameter. The final lipid concentration was
25 mM in a buffer solution consisting of 100 mM NaCl, 10 mM HEPES,
and 10 mM MES.

Planar bilayers

Planar bilayer lipid membranes (black lipid membranes, BLMs), 0.8 mm in
diameter, were spread by a conventional method (Mueller et al., 1963)

across a circular hole, in a diaphragm separating two aqueous phases of a
polytetrafluorethylene (PTFE) chamber. By using this technique a consid-
erable amount of solvent remains dissolved in the bilayer. Nevertheless, the
water permeability properties of lipid bilayer membranes are intrinsic to
the bilayer structure and do not depend on the presence of hydrocarbon
solvent in the membranes (Finkelstein, 1987).

The membrane-forming solution consisted of 20 mg DPhPC or 30 mg
EPC (50 mol %) and PE (50 mol %) or EPC (50 mol %) and ergosterol (50
mol %) per ml of ann-decane/chloroform/methanol mixture (all Merck,
Darmstadt, Germany) (volume ratio5 7:2:1). Ten mol % monosialogan-
glioside GM1 were added to the membrane-forming solution in some
experiments. The bathing solution contained 20 mM Tris (Fluka, Buchs,
Switzerland), 20 mM MES (Boehringer, Mannheim, Germany) and 100
mM NaCl (Merck, Darmstadt, Germany). It was agitated by magnetic bars.

For monitoring bilayer capacitance a sine wave input voltage (source:
Model 33120A, Hewlett-Packard, Loveland, CO) was applied to the mem-
brane. The output signal was first amplified by a current amplifier (Model
428, Keithley Instruments Inc., Cleveland, OH) and then visualized with an
oscilloscope. Conductance measurements were carried out with the same
amplifier (Model 428, Keithley Instruments Inc.) using the built-in voltage
source for voltage clamping.

Measurements of the hydraulic
membrane permeability

It is well known that even in vigorously stirred systems there is usually a
stagnant layer adjacent to a membrane that leads to concentration differ-
ences, i.e., water that passes through the membrane dilutes the solution it
enters and concentrates the solution it leaves (Fettiplace, 1978). From the
ion concentration distribution within the unstirred layer (USL) the osmotic
permeability of a planar bilayer may be calculated (Pohl et al., 1997). It is
assumed that the ion concentrationC depends only on the distancex from
the membrane and that there is a gradual change of the stirring velocity in
the immediate membrane vicinity which can be described by the model of
stagnant point flow. Within a USL of the sized (2d # x # d) the
concentration course is found as (Pohl et al., 1997)

C~x! 5 Cse
(2vx/D)1(ax3/3D) (1)

wherea, D, andv are the stirring parameter, the diffusion coefficient of the
impermeable solute (here Na1), and the velocity of the transmembrane
water flow, respectively. Fitting Eq. 1 to experimental concentration pro-
files allows us to find the unknown parametersv anda. With the knowl-
edge of v the transmembrane water permeabilityPf can be calculated
(Finkelstein, 1987):

Pf 5
v

CosmVW
(2)

TABLE 1 Proteins

Protein Function Molecular Mass (kDa) Subunits References

Ricin (RCA60) Type 2 ribosome-inactivating
protein

63 A-chain
B-chain

(Lord et al., 1994)

Ricinusagglutinin (RCA120) Type 2 ribosome-inactivating
protein

120 Two A-chains
Two B-chains

(Saltvedt, 1976)

Viscumin (MLI) Type 2 ribosome inactivating
protein

120 (in concentrated
solutions)

Two A-chains
Two B-chains

(Olsnes et al., 1982)

Mistletoe lectin III (MLIII) Type 2 ribosome inactivating
protein

60 A-chain
B-chain

(Eifler et al., 1994)

Ricin A-chain (RTA) Cleaves theN-glycosidic bond at
adenine4324 in 28S rRNA

30 (Endo and Tsurugi, 1987)

Ricin B-chain (RTB) Binds to galactose orN-
acetylgalactosamine residues

33 (Sandvig and van Deurs, 1996)
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where Vw is the partial molar volume of water andCosm is the near-
membrane concentration of the solute used to establish the transmembrane
osmotic pressure difference.Cosm has to be corrected for dilution of the
urea bulk concentration,Curea, at the hypertonic side and the transmem-
brane difference of NaCl concentrationDC that is induced by the volume
flow:

Cosm5
CsCurea

Cb
2 4DC (3)

Concentration changes of sodium ions in the immediate membrane vicinity
due to the water flow across the membrane were monitored with the help
of microelectrodes. An osmotic gradient was induced by urea (Laborche-
mie Apolda, Apolda, Germany) added to thetrans side of the membrane
only. The sodium-sensitive electrodes were made of glass capillaries con-
taining cocktail A of sodium ionophore II (Fluka, Buchs, Switzerland)
(Amman, 1986). Their tips had a diameter of;1–2mm. Electrodes with a
90% rise time below 0.5 s were selected. The experimental arrangement
was similar to the one described previously (Pohl et al., 1993). Voltage
sampling was performed routinely every second by an electrometer (Model
617, Keithley Instruments Inc.) connected via an IEEE-interface to a
personal computer. The microelectrode was moved perpendicular to the
surface of the BLM by a hydraulic microdrive manipulator (Narishige,
Tokyo, Japan). The touching of the membrane was indicated by a steep
potential change (Antonenko and Bulychev, 1991). Since the velocity of
the electrode motion was known (2mm s21) the position of the microsen-
sor relative to the membrane could be determined at any instant of the
experiment. The accuracy of the distance measurements was estimated to
be 68 mm.

The effect of the lectins on the hydraulic conductivity was assessed after
adding them to both sides of the BLM.Pf was determined with a total error
of ;62 mm/s, and the standard deviation was kept even smaller as a result
of averaging 5–10 concentration profiles.

Lectins

RCA60, RCA120, RTA, and RTB were purified fromRicinus communis
seeds as described earlier (Tonevitsky et al., 1990). To completely remove
RTB, preparations of RTA were additionally purified on Sepharose 4B
(Pharmacia, Sweden) with fixed asialofetuin (Sigma). MLI and MLIII were
isolated fromViscum album(Eifler et al., 1994). Different lectin isoforms
were separated on an FPLC chromatograph (Pharmacia) using a Mono S
HR column (53 5) with a linear NaCl gradient (0–500 mM) in 15 mM
citric buffer, pH 4.2.

Evaluation of local dielectric constant by
fluorescence spectroscopy

Lectin-induced changes in the dielectric constant around the polar region of
lipid bilayer membranes were obtained from the emission spectrum of a
fluorescence probe incorporated in unilamellar vesicle membranes
(Kimura and Ikegami, 1985; Ohki and Arnold, 1990). The« of the DPE
environment in the lipid membrane was calculated from an empirical law
that relates the wavelength (l) at the maximum of the emission spectrum
to its dielectric properties. This experimental relationship has been ob-
tained from DPE fluorescence spectra in organic solvents with known«

(Kimura and Ikegami, 1985; Ohki and Arnold, 1990). The measurements
were performed at a constant temperature of 20°C.

RESULTS

Neither conductance nor capacitance of planar membranes
was affected by the addition of the RIPs; 1.26 0.3 nS
cm22, 1.7 6 0.3 nS cm22, and 286 1 nS cm22, respec-
tively, were measured for DPhPC/GM1, EPC/PE, and EPC/

ergosterol bilayers. The respective membrane capacitances
were equal to 0.396 0.7 mF cm22, 0.426 0.5 mF cm22,
and 0.476 0.6 mF cm22. Consequently, it is ruled out that
the solubility of the solvent in the planar membrane is
changed due to the addition of the RIPs. Furthermore, an
eventual augmentation of the water permeability cannot be
attributed to channel activities. This result conflicts with an
earlier report where RCA60 was shown to increase the
conductance of planar bilayers from glycerolmonooleate
(Kayser et al., 1981). The lack of carboxifluoresceine leak-
age from RCA60-treated liposomes (Utsumi et al., 1984),
however, supports our result about the invariability of the
membrane conductance.

The Pf of pure DPhPC membranes was not affected by
RCA60, RCA120, and MLI. The sodium concentration pro-
files obtained in the presence of the RIPs were not distin-
guishable from those measured in their absence. Only after
the membrane was enriched with monosialoganglioside
GM1 (10 mol %), that is known to act as a lectin receptor
(Utsumi et al., 1987; Tonevitsky et al., 1990), a measurable
drop ofPf from 25 to 23mm/s was induced by RCA60 (Fig.
1). The difference is rather small. It does not exceed the
deviation usually measured from one membrane to another
(the ratio of the initial to the final membrane permeabilities
is equal to 0.926 0.05). A further decrease ofPf from 23

FIGURE 1 Averaged sodium concentration profiles obtained at thetrans
side of a planar membrane made from 90 mol % diphytanoyl phosphati-
dylcholine and 10 mol % monosialoganglioside (50 mol % phosphati-
dylethanolamine and 50 mol % egg phosphatidylcholine). The osmotic
water flux was induced by 0.8 M urea. The concentration shift near a
protein-free membrane is diminished due to the addition of 1mM RCA60.
The corresponding hydraulic conductivities (Pf) are 25mm/s (47mm/s) and
23 mm/s (33mm/s). A subsequent pH drop from 7.5 to 4.5 decreasedPf to
21 mm/s. Buffer composition: 10 mM Tris, 10 mM MES, 100 mM NaCl.
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mm/s at pH 7.5 to 21mm/s at pH 4.5 was calculated from
the Na1 concentration distribution according to Eqs. 1–3.
Binding to the galactose residues of GM1 was specific
because the initial osmotic permeability of 25mm/s was
reestablished after galactose (1 mM) was added to the buffer
solution surrounding the BLM. The effect of pH was re-
versible, too. If in the presence of 1mM RCA60 neutral pH
was settled up again or if the membrane was reformed after
rupturing in an acidic milieu,Pf was equal to 23mm/s. In
control experiments it was established that within the ex-
perimental error, the hydraulic permeability of protein-free
bilayers made from the DPhPC/GM1 mixture did not vary
in the pH interval from 4.5 to 7.5.

Analogous to RCA60, the effect of RTA also appeared to
be a function of pH. In Fig. 2 Na1 concentration profiles
measured in the vicinity of a GM1-containing membrane
are shown.Pf was decreased from 25 to 19mm/s at pH 7.5
and up to 17mm/s at pH 4.5. The ratio of the initial water
permeability and the one measured in the presence of RTA
was the same for GM1-containing and GM1-free mem-
branes. It was not affected by galactose. These results were
expected, because only the B-chain of RCA60 has galactose
affinity. RTB was found to have a maximal effect at neutral
pH. A permeability of 20mm/s was measured after the
addition of 1 mM RTB (Fig. 2). A pH reduction did not
result in an increased association of RTB to the BLM (Pf 5
21 mm/s).

In the case of DPhPC membranes the lectins reduced the
parametersPf and« most effectively at acidic pH provided
that a lectin receptor had been incorporated. Most probably,
the decreased osmotic permeability at low pH values cor-
responds to a conformational change of the A-chain because
only the isolated A-fragment provoked a decrease ofPf at
acidic pH.

At neutral pH both MLI and MLIII reduced the hydraulic
conductivity of BLMs containing 10 mol % GM1. Like
RCA60 and RTA, these lectins required acidic pH to max-
imally decreasePf. The profiles shown for MLIII in Fig. 3
correspond to a drop of the initial hydraulic permeability
from 25 to 17mm/s at pH 7.5 and to 14mm/s in an acidic
milieu. After addition of galactose competitive to galactose-
containing ligands incorporated into model membranes (Lee
et al., 1994) an increase ofPf up to the initial value of 25
mm/s was observed.

The effect of the RIPs on the water permeability of
DPhPC/GM1 membranes was compared with the one of
cholesterol that is known to expel water from central re-
gions of the bilayer, thereby decreasingPf (Subczynski et
al., 1994). At acidic pH MLIII is nearly as effective as
cholesterol in the highest concentration allowing it to form
a bilayer. Forty-five mol % cholesterol in the membrane-
forming solution led to a decrease ofPf to 12 mm/s under
our conditions (see Fig. 5). Half that amount of cholesterol
induced an effect close to the one of MLI, MLIII, RTA, or
RTB at physiological pH values (see Fig. 5).

In contrast to RCA60, the structurally very similar ag-
glutinin RCA120 did not alter the hydraulic membrane
permeability of pure DPhPC or GM1-containing (10 mol %)
membranes at physiological or acidic pH, although up to 5
mM were added. Membranes made from a mixture of 50
mol % EPC with either 50 mol % natural PE or 50 mol %
ergosterol interacted more effectively with the agglutinin.

FIGURE 2 Changes of averaged sodium concentration profiles induced
by the addition of 1mM of A- and B-chains of RCA60. GM1 content of the
DPhPC membrane was 10 mol %. Other conditions as in Fig. 1. The
A-chain decreased the initialPf from 25 mm/s to 19mm/s (pH 7.5) and
further to 17mm/s (pH 4.5), whereas at pH 7.5 the B-chain diminishedPf

from 25 mm/s to 20mm/s; it failed to reducePf after acidification (21
mm/s).

FIGURE 3 Representative sodium concentration profiles measured be-
fore and after the addition of (A) 1 mM mistletoe lectin III to a DPhPC/
GM1 membrane. (B) 1 mM mistletoe lectin I to a membrane made from
EPC/ergosterol, or (C) 1 mM mistletoe lectin I to a PE/EPC membrane. The
calculated hydraulic permeabilities are (A) 25 and 17mm/s, (B) 47 and 36
mm/s, and (C) 34 and 30mm/s, respectively. In case (A) 14 mm/s were
measured after pH switching from 7.5 to 4.5. The osmotic gradient was 600
mM urea in (A) and 800 mM in (B) and (C). Except for the lower stirring
velocity, all conditions were as in Fig. 1.

Pohl et al. Lectin-Induced Dehydration 2871



Upon the addition of 3mM RCA120,Pf decreased measur-
ably (Fig. 4). Membranes of this composition underwent
dramatic changes of their permeability if MLI (Fig. 3),
MLIII or RCA60 (Fig. 1), were added. Here, the augmen-
tation of the concentration above 1mM revealed no addi-
tional effect.

These dramatic changes of the hydraulic bilayer conduc-
tivity are a result of unspecific interactions between the
bilayer and hydrophobic domains of the proteins that most
probably substitute interfacial water during the process of
membrane binding. To test this hypothesis we looked for a
lectin-induced increase in membrane surface hydrophobic-
ity. The latter is measurable as a decrease of the apparent
dielectric constant in the headgroup region of the phospho-
lipid bilayer (Kimura and Ikegami, 1985). Consequently, a
fluorescent probe was used to monitor the local polarity. For
vesicular membranes made from DPhPC and doped with
DPE a dielectric constant of 32–35 was measured (Fig. 6).
This value corresponds well to the one reported for phos-
phatidylcholine membranes in the literature (Kimura and
Ikegami, 1985; Ohki and Arnold, 1990).

For the experiments carried out with liposomes, we were
forced to enhance the protein concentration to detect an
effect. However, a direct comparison with the concentration
used for experiments carried out on planar bilayers is not
very useful because here the protein-lipid ratio is difficult to
assess. RCA60 exhibited a modest effect on the surface
dielectric constant of vesicles made from DPhPC that was
not altered by the incorporation of 10 mol % GM1 into the
bilayer (Fig. 6). Whereas the fluorophore is located in the
glycerol backbone region of the lipid bilayer (Waggoner
and Stryer, 1970) the oligosaccharide portion of the GM1
molecule extends beyond the PC headgroup into the fluid
space, i.e., the GM1 headgroup is nearly fully extended
from the bilayer surface (McIntosh and Simon, 1994). Upon
acidification, the polarity of the membrane surface de-
creased below 12. This dramatic effect was found only in
the presence of GM1 (10 mol %) in the vesicular membrane
(Fig. 7). Our observation is consistent with a literature

report where RCA60 was described to be bound to galactose
moieties on the surface of liposomes at neutral pH and to be
associated with the bilayer at acidic pH (Utsumi et al.,
1987). It was suggested that specific binding to the receptor
(GM1) is a prelude for hydrophobic protein-lipid interac-
tions. Under our conditions, this is true only for fully
saturated DPhPC membranes. Fig. 6 shows that RCA60
interacts very efficiently with bilayers made from a mixture
of lipids (50 mol % PE, 20 mol % PS, 10 mol % EPC, 20
mol % ergosterol). The same holds for MLIII (Fig. 8) and
all other RIPs investigated. Addition of 10 mol % GM1 only
slightly accelerated protein-induced dehydration at acidic
pH (Fig. 7). The surface of totally uncharged membranes
(50 mol % EPC and 50 mol % PE) is dehydrated as well
(Fig. 9). Electrostatic attraction or repulsion seems to be of
minor importance because neither GM1 bearing one nega-
tive charge per molecule nor the charged phosphatidylserine
(20 mol %) was able to inhibit or promote the changes in

FIGURE 4 Changes of averaged sodium concentration profiles in the
vicinity of a PE/EPC membrane (50 mol % each) caused by the addition of
3 mM RCA120. The correspondingPf values are 46mm/s (solid line) and
39 mm/s (dashed line). All conditions were as in Fig. 1.

FIGURE 5 Effect of cholesterol on representative sodium concentration
profiles in the membrane vicinity. The membranes were composed of 90
mol % DPhPC, 10 mol % GM1 (—); 68 mol % DPhPC, 10 mol % GM1,
and 22 mol % cholesterol (—z —); and 45 mol % DPhPC, 10 mol % GM1,
and 45 mol % cholesterol (—z z —). The correspondingPf values are 26
mm/s, 19mm/s, and 12mm/s. All conditions were as in Fig. 1.

FIGURE 6 Surface dielectric constant of unilamellar vesicles made from
DPhPC (triangles) or a lipid mixture (20 mol % PS, 20 mol % ergosterol,
10 mol % EPC, 50 mol % PE;circles) after addition of RCA60. Filled
triangles or circles indicate the additional incorporation of 10 mol % GM1
into the model bilayers.
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surface hydrophobicity (Figs. 6, 7, 9). Furthermore, it is not
a special kind of lipid that is required for the interaction
with the proteins. For example, substitution of PE by ergos-
terol did not vary the dehydrating effect of RCA120 (Fig.
9). In agreement with earlier reported results (Hoekstra and
Düzgünes, 1986) a modulating action of RCA120 on Ca21-
lipid interactions was monitored (Fig. 10). Only small
amounts of free Ca21 were needed (Hoekstra and Du¨z-
günes, 1986) to shift« below 12 where fusion is possible
(Ohki and Arnold, 1990; Ko¨hler et al., 1997).

DISCUSSION

In the present work the interactions of several water-soluble
ribosome-inactivating proteins with model bilayers were
studied by monitoring the transmembrane water flow and
the hydrophobicity of the membrane surface. The four-
chain (RCA120 and MLI) and the two-chain (RCA60,
MLIII) RIPs (Citores et al., 1993) as well as the subchains

RTA and RTB were found to interact with model mem-
branes in a lipid-dependent manner.

By adsorbing to the membrane surface, all lectins de-
creased the hydraulic conductivity of the bilayer. Assuming
that packing defects are introduced by the partitioning of the
RIPs into the bilayer, the opposite effect was expected
(Needham et al., 1988). At least for small peptides binding
to the bilayer, it was found that their distribution is mirrored
by water (Jacobs and White, 1989). According to the solu-
bility-diffusion model for water permeation, an enhanced
water concentration in the bilayer tends to increase the
water permeability (Paula et al., 1996, 1998). The most
plausible explanation for the diverging effects of model
peptides and lectins is that receptor-mediated lectin adsorp-
tion to the membrane surface causes a reduction in diffusion
pathways. It is suggested that the RIPs occupy points of
water entry into bilayers at the interface. Very recently this
case was discussed for ethanol that also decreasesPf, al-

FIGURE 7 Effect of pH on the surface dielectric constant of unilamellar
vesicles pretreated with 5.8mM (circles) or 3.0mM (squares) RCA60. The
vesicles were made from DPhPC (circles) or a lipid mixture (20 mol % PS,
20 mol % ergosterol, 10 mol % EPC, 50 mol % PE;squares). Filled
squares or circles indicate the additional incorporation of 10 mol % GM1
into the model bilayers.

FIGURE 8 Surface dielectric constant of unilamellar vesicles made from
50 mol % EPC and 50 mol % PE after addition of MLIII (triangles), RTA
(open circles), or RTB (filled circles). pH was 7.4.

FIGURE 9 Surface dielectric constant of unilamellar vesicles after ad-
dition of MLI (dashed line) or RCA120 (solid line). The vesicles were
made from 50 mol % EPC and 50 mol % PE (filled squares and circles) or
from 50 mol % PC and 50 mol % ergosterol (triangles), or from a lipid
mixture (20 mol % PS, 20 mol % ergosterol, 10 mol % EPC, 50 mol % PE;
open circles).

FIGURE 10 Effect of Ca21 on the surface dielectric constant of unila-
mellar vesicles (20 mol % PS, 20 mol % ergosterol, 10 mol % EPC, 50 mol
% PE) incubated with 0.7mM RCA120 (filled circles). The dielectric
constant of untreated vesicles (open circles) was nearly constant. The
buffer solutions (pH 7.4) contained 1 mM EDTA.
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though it enhances the water content within bilayers (Huster
et al., 1997). Extensive patches of bound lectin coexist with
occasional areas that are apparently devoid of glycolipid
receptor (Peters et al., 1984b). Because of the high affinity
(Grant and Peters, 1984) of RCA60 to GM1 (association
constant5 2.2 z 106 M21), all available receptor molecules
may be assumed to be occupied. The clusters formed (Peters
et al., 1984a) are, most probable, markedly less permeable
to water than the rest of the membrane (Fig. 11). Because
the fluorescent dye (DPE) is excluded from the clusters,
only a moderate decrease of« was found under these
conditions. From the GM1 concentration (10 mol %) the
clusters are expected to occupy at least 10% of the mem-
brane area. Accordingly,Pf should be dropped by 10% also.
This assumption was confirmed experimentally (Fig. 1).
However, the effects induced by MLI and MLIII are larger
(compare Fig. 3). Nevertheless, because of its bulkiness, the
lectin may act as an additional barrier for water diffusion in
an area that is two or three times as large as the area
occupied by the receptor.

When the RCA60-lipid complexes are exposed to acidic
pH, the protein bound to GM1-liposomes becomes associ-
ated with the phosphatidylcholine bilayer (Utsumi et al.,
1987); it penetrates deeply into the model membrane (Ra-
malingam et al., 1994). In this case the protein probably
induces a reduction in the mobility of the aliphatic chains
(Hincha et al., 1993) that also may tend to decrease the
membrane hydraulic conductivity. However, the rate-limit-
ing step of water transport is the permeation through the
dense part of the lipid tails, where the resistance is the
highest (Marrink and Berendsen, 1994). Therefore, it may
be suggested that the lectins induce an increase in lipid
packing density in this region, which in turn is expected to
reduce water permeation rates (Huster et al., 1997). Indirect
support for this hypothesis comes from the observation that

the dielectric constant of the membrane surface is de-
creased. The corresponding increase in surface hydropho-
bicity correlates with an increase in interfacial tension of the
membrane (Ohki and Arnold, 1990; Ohki and Zschornig,
1993). The latter then is predicted to be accompanied by a
decrease of the water permeability (Evans and Needham,
1986), which was observed in the experiment.

The impact of changes in microviscosity or tension is
difficult to assess from our experiments, but another mech-
anism seems to be more important for the alterations of the
hydraulic conductivity. From the sharp decrease of the
dielectric constant observed on the membrane surface, it is
likely that the surface of the planar membrane is completely
covered by the lectin. The size of the osmotic barrier in-
creases (Fig. 11). At the interface, the solubility of the
osmolute is changed. Consequently, at a constant urea con-
centration difference, the osmotic gradient is diminished. As
a result, both in the case of DPhPC/GM1 mixtures at acidic
pH and mixtures of natural lipids at pH 7.5, the transmem-
brane water flux is reduced.

The impact of electrostatics on the protein-lipid interac-
tions seems to be rather small because the incorporation of
20 mol % PS did not modify the lectin-induced effects (Fig.
9). Until now it was believed that at physiological pH a
receptor is required for RCA60-membrane interactions to
occur (Hincha et al., 1993; Utsumi et al., 1987; Ramalingam
et al., 1994). This conclusion is based on experiments car-
ried out with PC membranes only. Substituting DPhPC for
an EPC/PE mixture ensured that not only RCA60, but the
other lectins as well, interacted very efficiently with lipid
bilayers not bearing GM1 (Figs. 1, 3, 4, 6–10). Ergosterol
was found to be as competent as PE in promoting hydro-
phobic interactions (Figs. 3 and 9). It is therefore unlikely
that protein partitioning requires a distinct species of lipid.
Rather, differences in the mechanical membrane properties
seem to be involved.

It is the tension that also governs the hydraulic conduc-
tivity: the greater the tension, the lowerPf (Bloom et al.,
1991; Needham, 1995). For lysolecithin, an increase in
bilayer tension was shown to increase its membrane solu-
bility (Zhelev, 1996). The insertion of lysolecithin occurs in
two steps. First it accumulates in one of the monolayers that
is extended. The resulting increase in tension promotes the
formation of monolayer defects. A subsequent collective
lipid transport through short-lived monolayer defects then
contributes to the apparent lipid transfer rate (Needham and
Zhelev, 1995). From these experiments the impact of ten-
sion to lysolecithin partitioning into the first monolayer is
not evident. It is possible that its intercalation into the first
monolayer is hindered by an increase in tension, similar to
the partitioning of water. Therefore, this experimental find-
ing (Needham and Zhelev, 1995) does not conflict with our
observation that protein adsorption to the membrane surface
is promoted by lipids capable of facilitating water partition-
ing into the bilayer. In fact, the membranes with the lowest
permeability for water are poor substrates for protein ad-
sorption. Fully saturated DPhPC bilayers only interact with

FIGURE 11 Mechanism for the decrease in water permeation. (A) Clus-
ters of RIPs bound to the GM1 receptor make a portion of the membrane
markedly less permeable to water than normal. Probably, the lectin occu-
pies water diffusion pathways. (B) A complete protein layer that adsorbs to
the membrane increases the thickness (d) of the osmotic barrier. Although
the urea concentration difference remains unchanged, the osmotic gradient
(Cosm/d) is decreased.
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the lectins if a specific receptor is present. Membranes from
natural lipids, mixtures made from PE/EPC and PE/ergos-
terol, have a higher initial water permeability and their
interaction with the RIPs requires neither GM1 nor acidic
pH. Looser packing at the water-lipid interface and a deeper
penetration of water into unsaturated bilayers (Huster et al.,
1997) is responsible for the differences in water permeation
that were found between bilayers made from DPhPC, and
EPC/PE or EPC/ergosterol. The fully saturated DPhPC
membrane has, as expected, the lowest water permeability.
Following the partitioning of water, protein adsorption is
governed by membrane tension, too. Our experimental re-
sults are in agreement with the prediction (Gawrisch et al.,
1995) that a change in lipid-lipid interaction in the hydro-
carbon core of the membrane, for example as a result of the
introduction of polyunsaturated fatty acids, will alter lipid-
solvent and lipid-peptide interactions at the interface.

This project was supported by the Deutsche Forschungsgemeinschaft (Po
533/1-1 and 436 RUS 113/60).
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