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ABSTRACT A lattice relaxation algorithm is developed to solve the Poisson-Nernst-Planck (PNP) equations for ion transport
through arbitrary three-dimensional volumes. Calculations of systems characterized by simple parallel plate and cylindrical
pore geometries are presented in order to calibrate the accuracy of the method. A study of ion transport through gramicidin
A dimer is carried out within this PNP framework. Good agreement with experimental measurements is obtained. Strengths
and weaknesses of the PNP approach are discussed.

INTRODUCTION

The mechanism and properties of ion transport througtdrift-diffusion equations for all the ionic species moving
channel proteins embedded in lipid bilayers (e.g., cell wallsthrough the channel.
is a subject of wide current interest (Hille, 1992; Cooper et The PNP theory of electrodiffusion has for a long time
al., 1985; Fishman, 1985; Eisenberg, 1996, 1998). Thesbeen applied to liquid junctions and membrane electro-
structures provide gates for ions like NaCl~, K*, and  chemistry (see, e.g., Newman (1991)). Numerical solutions
Ca" to enter or leave the cell. By regulating passageof these nonlinear partial differential equations for ionic
through these gates, cells can maintain desired internal iompansport at liquid junctions demonstrated the limits of lin-
concentrations (which are often quite different from theirearized approximations used in analytical solutions, and the
concentration in the surrounding bulk solution) (Aidley andrelevance of this observation to ion transport through the
Stanfield, 1996). Important functions such as energy storaggmembrane channel was suggested (Riveros et al., 1989).
and signal transduction are also mediated via ion flowpye to their relative complexity, actual applications within
through biological pores. the latter context have been restricted to simplified geome-
Theoretical treatments of ion transport through channeries and involved simplifying assumptions (Levitt, 1991a,
proteins may be broadly classified as kinetic models, elech: Barcilon et al., 1992; Chen et al., 1992: Syganow and von
trodiffusion models, and stochastic models (Cooper et a'-Kitzing, 1995; Chernyak, 1995; Woolley et al., 1997). A
1985). One expects that with progress in computing powefy|ly self-consistent solution of the coupled PNP equations
and techniques, molecular dynamics (MD) methods (Rowxy three-dimensional (3D) systems was first targeted for a
and Karplus, 1993; Elber et al., 1995) will also becomecyjingrical channel model in Barcilon et al. (1992) and Chen
increasingly useful. Here we focus on the electrodiffusiong 5 (1992). The resulting set of equations, in leading order
framework, in which the mobile ions are represented as &,y certain limits which reduce the 3D equations to a 1D
continuous charge density and the dynamics is described By, o sentation, has been applied to various channel systems
the Poisson-Nernst-Planck (PNP) theory (see, for exampleg, ciion et al., 1992: Chen et al., 1992; Chen and Eisen-

Eisenberg (1996) and references therein). PNP theory Co”?)'erg, 1993a, b; Chen et al., 1997a, b). Such a reduction,
bines Nernst-Planck theory of electrodiffusion with the reC-powever. is not possible a priori in the general case of
_°9”iFi°” that the electric field esta_tblished_ in the Chann.elarbitrary ,channel geometry and complicated nonsymmetric
interior depends on the concentration profile of the moblleassembly of partial electric charges embedded in the pro-
ions in it. The latter feature results in the need to solve th

. ) o . L Sein. Clearly, a realistic description of the ion channel sys-
Poisson equation of electrostatics including contributions t‘%em must in general be three-dimensional. It requires knowl-

the electrlgal c_harge density ansing from the mobile Ionedge of the 3D structure of the channel protein in the lipid
concentration in the channel. Ultimately, PNP theory re-
embrane. Presently, several 3D channel structures are

quires self-consistent solution of the Poisson equation ana;own to high precision (Venkatchalam and Urri, 1983;

Unwin, 1995; Cowan et al., 1992; Weiss and Schulz, 1992;
, — o Kreusch and Schulz, 1992; Song et al., 1996; Doyle et al.,
nggllved for publication 16 June 1998 and in final form 14 September1998). Given reliable information abqut the channel struc-
Address reprint requests to Dr. Rob D. Coalson, Dept. of Chemistry,ture’ One, then needs the mathematical metho_dOIOgy and
University of Pittsburgh, Pittsburgh, PA 15260. Tel.: 412-624-8261; Fax:cOmputational resources to solve the PNP equations numer-
412-624-8611; E-mail: coalson@vms.cis.pitt.edu. ically. We note that the special case of the PNP problem
© 1999 by the Biophysical Society corresponding to no ion flow, i.e., when the mobile ions are
0006-3495/99/02/642/15  $2.00 in thermal equilibrium with their surroundings, has been
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extensively scrutinized via 3D modeling. In this case, themost easily explained by initially considering motion of a
PNP equations reduce to the Poisson-Boltzmann equatioBrownian particle in a prescribed external potenviéi) (R
for which flexible, efficient, and reliable numerical solution being the particle’s position) under conditions of high fric-
procedures exist (Nicholls et al., 1990; Luty et al., 1992;tion, where the Smoluchowski equation applies (Chan-
Coalson and Duncan, 1992; Walsh and Coalson, 1994jrasekhar, 1943).
Ben-Tal and Coalson, 1994).

The purpose of the present paper is to apply similar
numerical techniques to solve the 3D steady-state PNBteady-state solutions of the
equations under rather general conditions: arbitrary macrcSmoluchowski equation
lon geom.etnes., charge dlS'[I’IbL!tIOhS embedded N thg MaCtne Smoluchowski equation (SE) details the time-evolution
roions, dielectric constant profiles, etc. The application to

) - of the probability distribution of the Brownian particle, or,
calculation of the current through the gramicidin A Channe'equivalently, the concentration depender®, t) of an

demons”?‘te? that' the continuum theory appro'ach can givEhsemble of these particles. It has the form of a continuity
valuable insight into the understanding of 'On'Channelequation'

interactions.
Representing the mobile ions as a charge density and the ac(R 1) o

protein and water environment as dielectric continua obvi- = -V j(R1) 1)

ously ignores potentially important molecular characteris-

tics of the system. For example, the nature of the ior}Nhere the particle flux is given by:

solvation changes upon entering a narrow channel and this

change is not easy to include in a continuum theory. Even j(R 1) = —D[Vc(R 1) + BYV(RC(R, 1)] 2)

within the framework of PNP theory, one sometimes must

choose values for parameters which are not available frorwith D the diffusion constant an@ = 1/KT (k is Boltz-

experimental studies. We have utilized the simplest physimann’s constant and the absolute temperature). The two

cally justifiable parameters in such instances. For examplgerms contributing to the flux have clear physical meanings.

we use constant ionic concentrations in the intracelluar andhe first is due to diffusional processes, as quantified by

the outer reservoirs, even very close to the membrane arfeick’s first law. The second contribution is due to the drift

the entrance of the channel. One could argue that the ionieelocity —VV(R)/n induced by the systematic external force

distribution should not be uniform near the channel entrance-VV(R) and friction quantified by the friction constamt

and exit, but it is not known at present what this distribution(The Stokes-Einstein relatidd = kT/n is then invoked to

should be. [Note that models for this charge distribution,obtain the second term on the r.h.s. of Eq. 2.)

and the associated “access resistance,” have recently beenWe are interested in steady-state solutions, be(R t)/

discussed within the PNP framework (Chen and Eisenbergjt = 0 everywhere. The fluf then also becomes time-

1993a; Ramanan et al., 1994; Novak, 1997).] Despite théndependent. Any steady-state solution of the SE satisfies

limitations outlined above, our calculation demonstrateghe equation 0= V -, or equivalently:

that with careful 3D modeling of the channel based on the L L.

experimentally determined channel structure, the results 0=V-[VcR) + BVV(RIC(R)] 3)

obtained using PNP theory compare well to those obtained - . .

in experimental studies. Glyen c_(R) on the b.oundary surface, thls equation has a

The outline of the paper is as follows. In Theory, essentiaHnidue interior solution. Once the solution has been com-

elements of the PNP theory are briefly reviewed. The detail®Ute€d it is easy to determine the value of the flux vector to

of the numerical solution of the 3D PNP equations for anWhich it corresponds at any point in space (cf. Eq. 2).

arbitrarily shaped and charged channel are described in

Computational Methods. Calibration of the Accuracy of the . . L. .

3D code presents calculations on prototypical parallel platévIany lonic species and electrostatic interactions

and cylinder systems designed to calibrate the accuracy oh the problem of ion diffusion through channels two addi-

our 3D algorithm. Then, in the next section, 3D PNP theorytional complications arise. First, the potential felt by each

is applied to calculation of the ionic current through theion includes, in addition to effects of short-range forces

gramicidin A channel. Finally, discussion and conclusions(hard or soft core repulsion from atoms forming the channel

are presented. wall), long-range electrostatic interactions with other
charged species in the system. Second, there are in general
several ionic species. In the standard, mean field approxi-

THEORY mation, direct correlation between the motion of ions in the
channel is neglected. Hence we write the total potential

The steady-state PNP procedure combines steady-state ssrergy experienced by thth ion species as:

lutions of the Smoluchowski equation with solutions of the

Poisson equation, performed self-consistently. It is perhaps Vi(R) = UR) + zed(R) (4)

ot
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Here U(R) is the potential due to nonelectrostatic interac-1990; Luty et al., 1992; Coalson and Duncan, 1992; Walsh
tions, which for simplicity is assumed identical for all ion and Coalson, 1994; Ben-Tal and Coalson, 1994). We also
species.¢(R) is the electrostatic potentiat; is the ion’s  provide, in Appendix 2, a simple, explicit Successive Over-
valence, anéis the magnitude of the charge of the electron.Relaxation (SOR) (Press et al., 1992; Coalson and Beck,
The electrostatic potentiad depends on the distribution of 1998) scheme for solving the NP equation directly, includ-
charges in the system, as well as the dielectric constarihg easy and general implementation of zero-flux boundary
profile and the assumed boundary values (due, for exampleonditions, which arise naturally in the applications of in-
to an external voltage applied across the systedn)s  terest here. Both methods have proven effective in test
determined by solving the Poisson equation self-consisealculations.
tently with steady-state SE’s for each ionic species (below). In addition to a generic computer code for solving Eqgs. 5
Thus, the PNP procedure requires us to solve the Poissand 6, applications to biophysical systems require a method
equation taking into account all charges present in thdor discretizing 3D biological structures (e.g., the channel
system. These are of two types, charges which are embegrotein and cell membrane) onto a cubic lattice. Fortunately,
ded in the membrane protein, and charges carried by théhe same issue arises in studying electrostatic and equilib-
mobile ions. Since the density of mobile ions depends on theium electrolyte properties of biophysical systems via the
solution of the SE, and the solution of the SE depends on thBoisson and Poisson-Boltzmann equations, respectively.
electric potential, the following set of equations must beThus we have utilized Delphi (Nicholls et al., 1990), a

solved: well-known Poisson/Poisson-Boltzmann equation solver,
.. .. _ which allows mapping of the protein onto a 3D grid. The
0=V-[Va(R) + BVWi(RIG(R], i=1,...,N (5  Delphisource code was modified to include a procedure for

Hvrapping a membrane around the channel protein and map-
ping this membrane onto the 3D grid as well. The overall
system was partitioned into two regions. The first region is
N ] characterized by a low dielectric constaptand represents

; (6)

The Poisson equation must be solved self-consistently wit
these:

V- (e(RVHR) = —4a| p(R + > zeg(R) the protein gnd the memb'rane in which it is embe@ded. The
i—1 second region, representing the solvent reservoirs and the
permeable channel itself, is characterized by a high dielec-

herei labels the ionic specieg, is the dielectric constant tric constante,. In other wordse(R) in Eq. 6 was set to
profile, andp; is the density of fixed charges embedded in

the macroions found in the system (e.g., the channel pro- . €ms if Re {protein or membrarje

tein). The steady-state SE’s appearing in Eq. 5 are often «(R) = € otherwise

referred to as “drift-diffusion” equations [for example, in ) ) )

the semiconductor device design literature (Selberherr, The protein-solvent boundary is determined as the sol-
1984)] and as “Nernst-Planck” (NP) equations [for exam-Vent-accessible van der Waals surface using the method of

ple, in the biophysics community (Barcilon et al., 1992)]. Connolly (1983), as implemented in Delphi. The Delphi
Below we use these designations interchangeably. code was further modified to include steady-state Nernst-

Planck equations (cf. Appendix 2) along with the electro-
static Poisson equation solver. Other modifications included
COMPUTATIONAL METHODS the possibility of setting different salt concentrations in the

While the form of the PNP Egs. 5 and 6 is well known, solven_t on different sides of_the memb_rane, as well as a
. o . potential difference on opposite boundaries of the box (cor-
explicit solution in 3D has only been attempted in a few

cases, all of which to our knowledge have arisen in therespondlng to an applied potential created, for example, by
. : ? electrodes).
context of semiconductor device design (Selberherr, 1984): . . .
The calculations were performed on uniform cubic lat-

IIn Fhls work we develop a §|mple, rellablg, and efficient tices of up to (176)grid points. The boundary condition for

attice relaxation scheme which parallels widely used meth- o
: : . the flux equation is zero current through the channel wall,

ods for solving the Poisson and Poisson-Boltzmann equa- "

tions in biophysical (Nicholls et al., 1990; Luty et al., 1992) "~

and colloid science (Coalson and Duncan, 1992; Walsh and JZ = Olg_z, @)

Coalson, 1994; Ben-Tal and Coalson, 1994) applications. ’

Two algorithms for solving the NP Eq. 5 are described inwhereR, is a channel boundary point afjd is the flux

Appendices 1 and 2. In Appendix 1 we use the Slotbooncomponent normal to the boundary. Implementation of

transformation (Slotboom, 1969) in order to transform thezero-flux boundary conditions on a cubic lattice is discussed

NP equation to a Laplace equation (i.e., Poisson equatioim Appendix 2.

with no source charge) with a peculiar effective dielectric A fixed electric potential and ion concentrations were set

constant profile. Using the resulting Laplace equation, soen the upper and lower faces of the computational box. The

lution of the coupled Eqgs. 5 and 6 can be obtained utilizingchannel was oriented normal to these two faces (along the

standard 3D lattice Poisson equation solvers (Nicholls et alz-axis). On the side faces the potential was set according to
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a linear variation between upper and lower values along thevere available to us. Nevertheless, we tested our 3D PNP
vertical coordinate. Inside the membrane and protein, moeode against several limiting case solutions.
bile ion concentrations were set to zero. The concentrations The calculations presented below assume that the salt
of the positive and negative ions were equal to each other oooncentrations are given at the entrance and the exit of the
both top and bottom faces to ensure charge neutrality in thehannel. These concentration boundary conditions are set so
reservoirs. lon concentrations were allowed to change onlgs to enforce charge neutrality at these positions. In the case
in the interior of the channel. of monovalent cations and anions, this means that the con-
For the cylinder calculations presented below, a cylindri-centrations of cations and anions are the same at the en-
cal hole of the desired radius oriented from top to bottom oftrance to the channel (label this concentratignand at the
the box was made through the membrane layer (cf. Fig. 1)exit from the channel (label this concentratigr). [In the
The dielectric constants were setfp= 2 ande, = 80. The  gramicidin channel problem discussed below, it is not
gramicidin geometry reflects its molecular structure as deknown precisely whether the bulk concentration reservoirs
scribed below. The choice of dielectric parameters for theextend right up to the entrance to the channel, as implied by
gramicidin channel calculations will be discussed later.  the boundary conditions adopted here. Preliminary calcula-
Our program was executed on a DEfR1164a-clone tions on cylinder systems indicate that the current-voltage
workstation with 512Mb of RAM. The computational time characteristic is not very sensitive to this choice. A more
varied from 10 min/point of the current-voltage character-complete analysis of the ion flow through a cylinder within
istic on a 100X 100 X 100 grid, to several hours/point, PNP theory will be presented elsewhere.]
depending on the external salt concentrations (at the low We have focused our calibration efforts on the case that
ionic strength the computation time required increases) anthe ion channel is represented by a cylinder of leigénd
epsilon values chosen (see below). radiusR, whose interior is a high dielectric regiog, = 80,
permeable to water and simple ions. The exterior of the
cylinder represents the cell membrane, which is a low
CALIBRATION OF THE ACCURACY OF THE dielectric region withe,, = 2 and is impermeable to water
3D CODE or ions. A typical system is illustrated in Fig. 1.

Itis a challenge to calibrate the accuracy of the full 3D PNp  For this geometry, the case of no applied voltage has a
code, which consists of coupled lattice relaxation of 3DSImple exact solution. Namely, the concentrations of both
scalar fields representing the electrical potential and thdons is given by:

densities of all mobile ion species. Analytical solutions exist

only for a few special cases (see below). Moreover, no other c(2) = ¢ + (cL — )7L (8)

computer algorithms that solve the 3D PNP equations in the

context of biological channel proteins or related problemg\ote that the concentration is independent of the transverse
directionsx andy. Obviously, there is no net electric charge

anywhere in the system and the voltage on the boundary of
the system is zero, so the electric potentlakE 0 every-
where. Equation 8 is clearly a solution of the 3D drift-
diffusion equation for both+ ions when¢ = 0, and it
satisfies the desired boundary conditions. In particular, the
concentration gradient in the transverse directions (radially
out from the center of the cylinder) is zero, hence (wfith

0) there is no flux through the cylinder walls, as desired. We
have checked that when we solve the full 3D PNP equations
by lattice relaxation for the case of zero applied potential,
the solution just described emerges.

When a potential is applied on the boundaries, it polarizes
the mobile charge in the middle. This generates a net charge
distribution in the cylinder and makes the solution of Pois-
son’s equation and, in turn, the solution of the drift-diffu-
sion equations considerably more complex. At steady state
the electric potential and ion concentrations are complicated
functions ofzandr = Vx? + y?, for which no analytical

om \emrame‘ solution is apparent. However, we can partially test our code
M by imposing an electric potential(z) which is independent
of x andy, but otherwise arbitrary. Given only two types of

FIGURE 1 Geometry of cylindrical pore system. The coordinate systemmonovalent lons, namely’ cations of concentrationand

adopted in the text is shown and the radius and the length of the cylindeRNiONS of concentratior™, with equ_al diﬁus'ion 'Coe'fﬁ'
are indicated. cients, the steady-state concentration profiles inside the
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cylinder are also independent afandy, and can be ob- Note that there is only mobile (ho embedded) charge in the
tained by using the formula: system, and the dielectric constant is chosen to be that of
water. In Fig. 3 flux vs the transmembrane voltage for
c*(2) = exg F b Hceexp(= o)[SL) — S(2)] ©) cylinders of various widths are shown. These were obtained
~ using the full 3D PNP solver code. [Note that flux calcula-
+ cexp(= ¢ )S2)}/SL) tions depend on the appropriate diffusion constants. Here
_ we consider the case th&t, = D_, as indicated in the
with ¢ = ed/kT and caption to Fig. 3.] Once a self-consistent solution of the
PNP equations is achieved, the resultant concentrations of

N _ the mobile ion species and the electrical potential yield the
S2) = | dzZexd*¢(z)] particle fluxe§=(R) via Eq. 2. Each curve obtained from the
0 3D code is compared with the curve obtained from 1D PNP

) o o _ . theory (Egs. 9 and 10 above). The 1D calculation yields a
In Fig. 2 we show the variation of positive ion density with constant electrical current density. [Note that the flux of
z along the Chann_el cenFer when a linear potgntlal ramMRjectric charge is given bg(j* —J7).] Itis clear that as the
Vo — Vi =200 mV is applied, and the concentrations at thechannel becomes wider, the fully 3D cylinder results in-

entrance and exit of the cylinder channel age= 25 MM ¢reasingly resemble the 1D parallel plate limit results.
andc, = 3 mM, respectively, at a temperature of 25°C (i.e.,

KT = 25.7 meV). 3D solutions of the NP equations using
various grid sizes are compared to the 1D result given byAPPLICATION TO THE GRAMICIDIN A CHANNEL

Eq. 9 (specialized to the case of a linear potential profile). ltsramicidin A (GA) is a small polypeptide frorBacillus
is clear that the 3D result approaches the 1D formula as thSreviswhich is known to form an ion channel in the bac-

grid size becomes finer. We have also found, in accord Withgia| cel wall or in artificial lipid membranes (Wallace,

the theory, the 3D solution is independent of the radius 0&990' Andersen and Koeppe II, 1992; Venkatchalam and
theg\:hannﬁe\l chosen K)r the calculatlons._We have &sed Urri, 1983). The GA channel is g-helix dimer, comprised
10 A, 20 A, and 30 A for these calculations and found N0y jyentical subunits A and B (cf. Fig. 4), which forms a

difference in the final concentrations. _ narrow open pore permeable to simple monovalent cations
Next, we note that when the cylinder is very wid:— ¢+ Na* ‘and C<. The 3D structure of the dimer is known
%, we recover the problem of ion transport between paralle}. ; ., o>p NMR and NOE spectroscopy studies to a resolu-
plates of infinite extent. In this limit, both the NP and 4 of 0.86 A (Arsen’ev et al., 1986). The GA sequence
Poisson equations become strictly one-dimensional (varying,gjsts of alternating ando nonpolar amino acids which
in the z direction only). The concentrations are then 9IVeNyermit nonpolar side groups to extend into the membrane
exactly by Eq. 9, with the electric potential de.termlnedwh”e the pore is lined by polar peptide groups (see Fig. 4
(self-cansistently) from the 1D Poisson equation: a). The single-channel current has been studied (Aidley and

RbDIAZ = (—amele)c™ (@) — ¢ (2)] (10) Stanfield, 1996; Hille, 1992) under a variety of conditions.
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z (Angstroms) FIGURE 3 Flux versus voltage for three wide cylindrical channels of

different width-to-length ratio versus 1D parallel plate PNP solutapet
FIGURE 2 Positive ion density for the case of linear electric potential diamond$. For the cylinder channels, cylinder dimensions are (radius/
drop of 200 mV across cylinder length= 100 A. Open circles represent length): 5 Ax 100 A (R/L = 0.05), dashed line; 5 A 30 A (R/L = 0.17),
the 1D analytical solution whey, = 25 mM andc, = 3 mM. Large, filled dot-dashed line; 10 A 30 A (R/L = 0.33), open circles. Salt concentra-
circles correspond to the 3D solution on a ¥111 X 11 grid. Shaded tions at the entrance and the exit from the channetgre 25 mM andc_
squares correspond to the 3D solution on ax661 X 61 grid. = 3 mM; diffusion constants arB, = D_ = 1.27 X 10" ° cn/s.
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(Arsen’ev et al., 1986) were taken from the Protein Data
Bank (Bernstein et al., 1977). Partial charges for the GA
atoms were taken from the AMBERS6 force field (Pearlman
et al., 1991). Atomic radii were taken from Delphi (Nicholls
et al., 1990); the radii of the polar hydrogens were set to 1.0
A. The membrane and protein region (white area in Fig). 4

is described by the low dielectric constant = 2. Salt is
excluded from the interior of this region. The high dielectric
constante, = 80 is assigned to the aqueous region, i.e., the
volume outside of the protein-membrane region (black and
gray regions of Fig. 4). As indicated above, the electric
potential is set to assigned values (reflecting the applied
voltage) along the bottom and top faces of the simulation
box. On the side faces it is set by interpolating linearly
between top and bottom potential values. In the regions
indicated in black, mobile ion concentrations are held to
fixed “bath values,” whereas in the gray region mobile ion
concentrations are variable and are determined by solving
the PNP equations self-consistently.

It should be noted that our choice of dielectric response
distribution may be oversimplified. The dielectric constant
assigned to water in highly restrictive environments where
full molecular rotation is inhibited is considerably lower
than 80 (Bokris and Khan, 1993). At the same time the
appropriate epsilon for the protein environment may be
somewhat higher than the traditionally chosen value 2,
membrane membrane which accounts only for electronic polarizability of the

protein protein molecule. It was indicated recently (Warshel and Russell,
1984; Sharp and Honig, 1990) that vibrational polarizability
and conformational relaxation can be essential in the dielec-
tric response of the protein, and it is possible to account for
these contributions by setting the dielectric constant to a
higher value, such as 5. Takireg = 80 in the present study
reflects the fact that the loss of dielectric screening by water
in the channel is probably compensated, to some extent, by
FIGURE 4 @) Gramicidin A dimer. The two subunits are colored in the response of the channel itself to the presence of ions.
light and dark gray and marked A and B, respectively), gramicidin Furthermore, the value,, = 2 was chosen for the protein

Iattlc_:e _scheme.AZD ct_Jt through the _center of the S|mulat|on box along theand membrane region for the calculations reported in this
z axis illustrates the grid representation of the protein and the membrane.

The membrane and the protein region are shown in white, solvent resework after considering the fact that thehelix comprising
voirs are shown in black; the channel region (where mobile ion concenthe pore lining is a rigid structure, i.e., that vibrations of
trations are variable) is shown in gray. Grid size is 9191 X 91; the  polar groups in the backbone itself are restricted by mutual
length of the simulation box is 30 A. interactions. To elucidate the effect of a lower dielectric
constant ratioe/e,, on the current-voltage characteristics
produced by the PNP calculations, we performed additional
Because it is relatively small and well characterized ex-calculations withe, = 30 ande,,, = 5. The resulting current-
perimentally, GA has become a focal point for theoreticalvoltage curve coincides with the one produced wheand
efforts to explain the mechanism of ionic conduction in ¢, are set to 80 and 2, respectively, if one sets the diffusion
protein channels (Barcilon et al., 1992; Roux and Karplusconstant a factor of 1.37 times higher than the diffusion
1993; Andersen and Feldberg, 1996). In the present workonstant chosen for the, = 80, ¢,, = 2 case. (See the
we have utilized PNP theory to calculate this current as aliscussion of the choice of diffusion constants below.) Also,
function of voltage applied across the channel. we note that the computation time increased substantially
The system considered consists of a polypeptide dimer, when the lower dielectric constant for the water was chosen
membrane surrounding it, a pore region inside the gramiciftaking several hours/point on our workstation (see Com-
din helix and, finally, inner and outer solvent regions rep-putational Methods)]. This increase can be traced to the
resenting the electrolyte inside and outside of the cell memstrong electric fields generated by the point charges embed-
brane. The layout of the GA channel on the grid is shown inded in the gramicidin molecule, which are less shielded in a
Fig. 4 b. The coordinates of heavy atoms of the proteinlow dielectric medium.
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Within the PNP theory the computed steady-state ionic 2
currents scale linearly with the corresponding diffusion con-
stants. The diffusion constants for the positive and negative
ions, e.g., K and CI', have been measured to be approx-
imately equal to each other in bulk electrolyi2 (= D_ =
10> cn¥/s) (Hille, 1992). There is no experimental mea-
surement of appropriate values for these constants inside the
channel. A molecular dynamics simulation of an ion inside
a water-filled cylindrical pore having approximately the 11
same dimensions as the GA ion channel yielded diffusion
constants two to three times smaller (depending on ion
species) than their bulk values (Lynden-Bell and Rasaiah,
1996). In our calculations we have found that the values
D, =D_ =1.27x 10 °®cnv/s gave results consistent with
experimental observations, and these values were used fefgurRE 6 Current-voltage characteristics for the uncharged GA. Solid
all our calculations (withe, = 80, €, = 2). No further line is the total current, the line with+" represents positive ion current,
adjustment of parameters was attempted. line with “~", represents negative ion current.

To understand the effect of partial charges in the GA
protein on the transport of mobile ions through the channel,
an additional calculation was performed with no partialcorresponding positive ion charge density profiles are
charges on the GA atoms (uncharged GA). For both calcushown in Fig. 8.
lations the ionic strengths of salt in the external regions For the uncharged GA, the change in the potential along
were set to 500 mM at the channel entrance and 40 mM ahe channel is smooth (Fig.d). It is especially clear from
its exit. The current-voltage relations for GA and unchargedrig. 9 a that the shape of the potential in this case is largely
GA are shown in Fig. 5. The large difference in currentdue to the external linear potential drop across the mem-
calculated for GA and uncharged GA demonstrates that thbrane. For this parameter set, the potential generated by the
embedded charge distribution in the channel molecule sigmobile charge density has a small effect on the current
nificantly influences current through the channel. through the channel. In contrast, for the GA with partial

For the GA protein with no partial charges on its atomscharges turned on, one observes a nonuniform electric po-
andD_ = D_, the net PNP current is essentially antisym- tential distribution inside and around the channel (see Fig. 7
metric with respect to the direction of the applied voltage.b) and, in particular, a large potential “well” roughly in the
This situation is illustrated in Fig. 6, where the positive andcenter of the channel. In Fig.8 in which the correspond-
the negative ion currents are shown separately. Figure g positive mobile charge density is shown, a significant
shows the potential and the positive ion density along theeak in the density is observed in the center of the channel.
channel center axis, = 0, as discussed in detail below. = Comparison of the electric potential and density profiles

In Fig. 7 the electrostatic potential distribution around thealong the center of the channel in Figaandb for charged
channel is shown for both GA and uncharged GA. Theand uncharged GA demonstrates the significant modifica-
tions induced by the partial charges on the atoms which are
exposed into the channel. The GA with partial charges is
permeable mainly to positive ions; the local positive ion
density rises as high as 8 M. In contrast, the concentration
of the negative ions in the channel is very low for all
voltages (see Fig. 8). Additionally, in Fig. 9a the elec-
trostatic potential is shown for two external voltages, ap-
plied in opposite directions. Both profiles feature a potential
well inside the channel which attracts the mobile positive
charges into the channel while preventing the negative
charges from flowing inside at all voltages.

Consequences of this charge selectivity of the GA mol-
ecule for the electric current through the GA channel are
, ‘ ‘ . . shown in Fig. 10, where the total current as well as the
200 -100 6 100 200 300 currents of the positive and the negative ions are plotted

Vi(mV) separately. In this case (in contrast to what is observed in the
- ) simple cylinder or uncharged GA case), the negative ion
FIGURE 5 Current-voltage characteristics for charged Gifcles) and . . S
uncharged GAgquare$. lonic strengths in the lower and upper reservoirs C_urrent IS, essemla”y negllglplg. Because of the'concentra-
arec, = 500 mM andc, = 40 mM, respectively. Diffusion constants are tiOn gradient this current exhibits no symmetry with respect
D, = D_ = 127X 10 ¢ cn?/s. to direction of the applied voltage. The rectification of the

I (pA)

) . . ‘ ‘ .
-300 -200 100 O 100 200 300
V (mV)
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FIGURE 7 Electrostatic potential around the GA channel calculated via

PNP theory. Potential variation over a vertical plane slicing through the

center of the computational box is depicted, whantiere are no charges 0.0 2.0e-04 4.0e-04 6.0e-04

on atoms (uncharged GA)b) partial charges are set on the GA atoms Ch Akt

according to AMBERSG force field. lonic strengths in the lower and upper et 4

reservoirs arec, = 500 mM andc, = 40 mM, respectively. Potential

difference across the membrane is 300 mV. [Note the difference in coloFIGURE 8 Positive ion density distribution inside the GA channel along

scales for panelsaj and ). plane described in Fig. 7, whem)(there are no charges on atoms (un-
charged GA); If) partial charges are set on the GA atoms according to
AMBERSS force field. lonic strengths in the lower and upper reservoirs are

current when the ionic strength on one side of the membrang, = 500 mm andc, = 40 mM, respectively. Potential difference across

is different from the ionic strength on the other side isthe membrane is 300 mV. [Note the difference in shading scales for panels

observed only for the charged GA, as is the saturation of th&) and 6).]

current at moderate voltage differences (discussed below).
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FIGURE 9 @) Electrostatic potential at the centar € 0) of the GA
channel plotted along (channel)-axis obtained from the PNP calculation.
The dot-dashed line represemi@ = 0, 2) for the channel with no fixed
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FIGURE 10 Current-voltage characteristics for the GA with partial
charges on the atoms. Solid line is the total current, the line with “
represents positive ion current (indistinguishable from positive ion cur-
rent). Line with “=" represents negative ion current. lonic strengths in the
lower and upper reservoirs acg = 500 mM andc, = 40 mM, respec-
tively.

calculations the salt concentrations on the channel bound-
aries were taken to be equal. Current-voltage relations were
generated for two different salt concentrations: 0.01 M and
1.0 M. In Fig. 11, current calculatedifd M ionic concen-
trations on both sides of the membrane is plotted versus
potential difference across the membrane and compared to

partial charges; line with circles is the corresponding result for the channeéxperimental data of Oiki et al. (1994). The calculated curve
with partial charges turned on. In both cases the external potential acrosglosely resembles the experimental one. Both experimental

the membrane is set t6300 mV. The line with squares showsgr = 0,

2) for the channel with partial charges on and external potential across the

membrane is set t&-300 mV. lonic strengths in the entrance and exit
reservoirs are, = 500 mM andc, = 40 mM. (b) lonic concentration at
the center { = 0) of the GA channel plotted along (channel)-axis
obtained from the PNP calculation. Dot-dashed line represgifts= 0, 2)

for the channel with no fixed partial charges; the line with circles is the

and calculated curves indicate that the GA channel exhibits
no rectification and there is essentially no saturation of the
current even at high voltages. Th&/ behavior at low salt
concentrations is significantly different. In Fig. 12 the cal-
culatedl — V curve is plotted for the external salt concen-

same function in the channel with partial charges turned on. The line with

triangles represents the density of negative iong = 0, 2) in the channel

with partial charges on. lonic strengths in the lower and upper reservoirs 15t

are c, = 500 mM andc_, = 40 mM; the external potential across the
membrane is set t6-300 mV.

A closer look inside the channel at the mobile charge and

potential distributions enables one to understand how the
channel protein molecule influences the charge density
flowing into it. A more detailed consideration of the density
profile dependence on the external potential difference
across the membrane and the external salt concentrations
allows us to identify possible attractive sites for the positive
ions. Before presenting this analysis we address the impor-
tant question of how well PNP model results compare with
known experimental properties of GA channels.

For comparison with experiment we have chosen results

10}

215 L

300 200 100 O 100 200 300
V (mV)

FIGURE 11 Current versus voltage calculated via PNP for the GA

of smgle-channel recordlng of GA in CsCl salt reported bychannel $olid line). lonic concentrations on both sides of the membrane

the group of O. Andersen (Oiki et al., 1994; Mazet et al.

»are 1 M. Circles represents the experimental data taken from Oiki et al.

1984). In these measurements and in our correspondin@994).



Kurnikova et al.

Algorithm for 3D PNP Theory 651

02
<
S o1 02 |-
0 |
0
0.0 |
0 200
v (mv)

FIGURE 12 Current versus voltage calculated via PNP for the GA
channel. lonic concentrations on both sides of the membrane are 0.01

the current at high voltage, which is an important property
of many biological channels and is not reproduced by the
PNP model under consideration here if partial charges on
the channel atoms are not taken into account.

Let us now study the charge density profile inside the
channel as the current flows through it. At moderate to high
external salt concentrations (Fig. &&ndb) the calculated
density profile features four symmetrically located density
maxima,; the height of these peaks rapidly increases as the
concentration rises from moderatel M) to high (~10 M)

(Fig. 13 b). At very high concentrations the concentration
profile does not depend sensitively on external salt concen-
trations or the external potential (Fig. &8 From this figure

itis clear that at a variety of salt concentrations the locations
of the peaks observed are independent of external condi-
ions. These peaks can be identified as sites of attraction (or

Shown in the inset are the experimental data taken from Andersen (19835.65'dence) for positive ons travellng throth the channel. In

Fig. 14 their location is schematically represented with large
spheres placed inside the GA dimer channel according to

tration of 0.01 M and compared to the experimental curvethe locations of the ionic density maxima found in PNP
(see inset) from Andersen (1983). For this concentration théalculations, and corresponding to the four peaks of the
model again works reasonably well. At negative voltagegdensity observed in Fig. 13. The atomic groups closest to
(not shown) the line extends antisymmetrically; thus there ighis density maxima are polar oxygens of the peptide back-
no rectification. The model also reproduces the saturation dbone in the following amino acids (along the channel):

= 20M, 200mV
%% 20M, OmV

- 1.0M, 200mV
¢ 10M

¢ (x10%)

z (Angstroms)

= 0.02M, 200mV
%X 0.002M,100mV

= 0.002M, 500mV

0.5

1 1 1 |

0 5 10 15 20 25 30

z (Angstroms)

FIGURE 13 Mobile ion charge distribution along thi¢channel) axisc, = ¢, for all lines. The appropriate applied potential difference and entrance/exit
concentrations are indicated on each panel. [Note that the applied voltage is 200 mV for all curves i)danel (
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An estimation of the location of cation binding sites from
the experimental structural data was previously provided by
Urri et al. (1982a, b) and later by Jing et al. (1995) using
| NMR spectroscopy with**C-labeled gramicidin incorpo-
rated into lipid micelles. Changes in the NMR spectrum due

to the presence of the Nacation were observed for the
carbonyl carbon of Trp-11 and Trp-13, which is in accord
with our results. Studies performed using solid-state NMR
indicated that the carbonyls of Leu-10, Leu-12, and Leu-14
were affected by the presence of NéSmith et al., 1995;
Separovic et al., 1994). Thus, most of the available struc-
tural experimental data indicate that there is a cation binding
site near the entrance of the channel at a distance of 9-10 A
from the center of the dimer. A recent study of the binding
site of sodium in the GA channel (Woolf and Roux, 1997)
combined available experimental data with molecular dy-
namics simulation in order to refine the cation position at
the binding site in the channel. This study indicated that the
cation is located off the center of the channel and is coor-
dinated by carbonyl oxygens of Val-8, Leu-10, Trp-15, and

! two single file water molecules. No large distortions of the

/ channel structure due to the presence of the ion in the
channel were observed and the largest deviation from its
equilibrium position in the ion-free channel was exhibited
by the carbonyl group of Leu-10—Trp-11 amide plane. This
is also in accord with our result of finding large density
peaks near Trp-11 and Trp-13. It appears that most previous
FIGURE 14 Schematic picture of the GA dimer. Centers of the spheresauthors find no evidence that there is a cation binding site in
represent the calculated positive charge maximum positions inside thghe center of the channel (Urri etal., 1982b; Separovic etal.,
channel. Size of these spheres is chosen arbitrarily. 1994; Woolf and Roux, 1997), while our calculations indi-
cate the existence of the deep potential well and therefore a
large density peak near Ala-3. We believe that further
Trp-11 and Ala-3 in subunit A, Ala-3 and Trp-13 in investigations are needed to clarify this discrepancy be-
subunit B. tween our results and the experimental studies. One possible

At low salt concentrations and moderate voltages onlyexplanation may be that the channel is more rigid in the
one or two charge density maxima occur roughly in thecenter than in the entrance regions; therefore, its structure
center of the channel, as shown, for example, in Figefl8  does not change significantly when the ion binds at the
the external salt concentration 0.02 M and a 200 mV po-<enter of the dimer and hence cannot be resolved with NMR
tential difference across the membrane. The occurrence afpectroscopy. Another explanation may be that water mol-
these central attractive sites is nearly independent of exteecules, which our model does not explicitly include, are
nal conditions, while the attractive sites at the entrance/exipreferentially attracted to this site, thus preventing it from
of the channel are not pronounced in this regime. Theattracting a cation.
persistence of the central attractive sites revealed in our
calculations suggests that the ionic permeability through the
GA channel is mfluenced by the molecular structgre of theDISCUSSION AND CONCLUSIONS
protein in the middle of the channel. The experimentally
observed variation of the ionic current upon the substitutiorin this paper we have developed a numerical method for
of certain amino acids in the middle of the channel (e.g.solving the 3D Poisson-Nernst-Planck (PNP) equations.
Ala-1 to Tyr), and the relative lack of variation of the ionic The method is comprised of self-consistent solution of
current when Trp-13 is replaced by Val or Tyr (Mazet et al.,elliptic partial differential equations using straightforward
1984) support this hypothesis. A very high voltage dropsuccessive over-relaxation (SOR) techniques. Although this
across the membrane (500 mV) at low salt concentrationsolution procedure can be applied to a variety of problems
shifts the residence site to the side (exit) of the channein electrochemistry, we have focused here on an important
(Trp-13) (see Fig. 18l) where the potential created by this biophysical process, namely transport of simple ions
attracted positive charge compensates the external potentigidrough channel proteins embedded in biological cell walls.
and prevents more positive charge from going into theWe considered in detail the case of the nearly cylindrical
channel. pore created by the GA dimer, a system that has been much
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studied experimentally and theoretically. The flexibility of with the effective “dielectric profile’e.«(R) = exp[-BV(R)]. [This effec-
our method allowed us to treat the full 3D structure of thetive dielectric constant profile is a mathematical construction that arises in
gramicidin protein, and all partial charges embedded in it!® Mapping of a drift-diffusion equation to a Laplace-type equation. It
. . . . should not be confused with the physical dielectric constant profile which
We computed the induced ion current associated with Rnters into the solution of Poisson’s equation for the electric potential
range of applied voltages, i.e., the current voltage charadistribution; see Eq. 6.] Given its value on the boundary surfe(®) can
teristic, which agreed well with recent experimental mea-now be evaluated by standard lattice relaxation techniques.
surements of Andersen et al. Note that if the concentration of Brownian particles on the boundary is

Obviously, the model and theory presented in this papep°lizmann-distributed, they = 4, (a constant) on the boundaries. The
Interior solution in this case is alsp= s, i.e., Boltzmann equilibrium on

are greatly over5|mpI|f.|ed, 'and dgsplte their gpparent SUChe boundary implies Boltzmann equilibrium in the interior, gnet 0.
cess we should keep in mind their shortcomings. The fol-otherwise, the interior solution is nontrivial and the corresponding flux is

lowing issues are particularly important: nonzero.

1. The PNP model presented here is based on a continuum

picture. lon sizes as well as the molecular nature of wateAPPENDIX 2

are disregarded; _ S ~ Implementation of the successive over-relaxation
2. _The PNP theory is a mean field approxmat_lon_ in whichmethod for the Nernst-Planck equation

important correlations are neglected. Despite its known

successes. its validity in the narrow channel environmenthe Nernst-Planck (NP) equation for the mobile ion concentration of a
- given species is solved by cycling around the lattice and updating each

(Where the average number of ions at any time is typl-Iattice point based on the present value of its nearest neighbors. For

qally one or less) Shou'q be queSt'(_)ned- Ion-lpn Correla'notational and diagrammatic simplicity, we will develop the desired for-
tions such as the possible exclusion of an ion from amulas for a 2D system. Results for the 3D case follow analogously and are

channel that contains another ion of the same charge siggummarized below.
are not included in this theory; Fig. 15a shows the typical situation in the interior of the flow region in

- . D. Eachfl tor can iat ith the midpoint of th ntral gri
3. Some parameters and details of the calculation are uf>: Each fluxvector can be associated with the midpoint of the central grid
point and the nearest neighbor it connects to. For example, the flux in the

certain due to lack of kno‘_"’ledge _abOUt th_e actual SY_Ste_”& direction halfway betweeni,() and { + 1, j) has the lattice (finite

even though they could, in principle, be included within difference) representation (cf. Eq. 2):

the framework of the present treatment. For example, as .,
. X . . i X =C..:—C: + =V NG+ C

discussed above, the dielectric properties of water in the e = Gy = Gy + BViay = Vig)(Gaj + G)/2 (12)

channel are not known and the choice of diffusion con-[Note that the physical flux is-Dj*, ,/a, whereD is the diffusion constant,

stant values made for both '‘Kand CI” in the GA ais the lattice spacing, ang. ; is the expression in Eq. 12. However, the

calculation should be regarded as a fitting procedure. factor —D/a cancel_s_out of th_e following mampulatlons anq is therefore
ignored.] The condition that ; is at steady state is that there is no net flux

In view of the discussion above, the success of the presefftl® "¢ Pointt.J. ie.
calculation is remarkable. We leave for future studies the -t i —ia=0 (13)
guestion how much of this success is due to cancellation of . = . : .

between contributing factors and how much becaus‘léhls is simply the lattice version of the NP equation (Eq. 5).
errors be . . g . Substituting the explicit expressions for the flux components and solv-
the corrections involved are small. Some improvement ofng the resulting equation for the concentration at the central point, one
the model may be obtained by considering ion-ion correlafinds:
tions within the mean field level (Coalson et al., 1995).

. ( oo ) ) Cij ={Cu1j T Ci_1j+ Gjs1 t Gj1

More answers to these issues can, in principle, be provided

by MD simulations. However, realistic simulations of this + (BI2[(Vii1; — Vij)Giirj — (Vij — Vi1))Giyj
type on relevant length and time scales are beyond our
present capabilities. Dynamic Monte Carlo simulations can + (Mijrr = ViplGjen = (Vij = Vij-0)Gij—ar
also shed light on some of the issues by going beyond the A= (B — V) — (Ve — V.
mean field level of the theory. Such simulations are cur- ~ 14 = (B2 Viva; = Vi) = (Vi = Vi)
rently UnderWE\y + (Vi,j+l - Vi,j) - (Vi,j - Vi,j*l)}
This expression can be written in a more compact form if we label the
APPENDIX 1 central point by subscript 0 and all neighboring points by the subscript
. . 1, ..., 4;then:
Mapping the Nernst-Planck equation to a
Laplace equation _ 21+ (B — Voo 14
Equation 3 can be transformed into the standard 3D Laplace equation with 4- (B/Z) Ei‘l:l(vi o VO) !

a particular spatially dependent dielectric profile. As noted in the text, a
number of efficient grid methods have been developed to solve the 3
Laplace equation (Press et al., 1992; Coalson and Beck, 1998).

Specifically, if we letc(R) = exp[-BV(R)] ¥(R), then Eq. 3 above is ¢, =@1- w)ci?j'd + We, (15)
equivalent to

The ordering of the four nearest neighbor sites is clearly irrelevant.) Then,
n an SOR scheme, the poigt is updated according to

wherecfj'd is the pre-update value of; andw is a positive weight factor,

0=V- (eeﬁ(li)?(p(lfi)) (11)  adjusted to get the most rapid convergence without losing stability.
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b

FIGURE 15 Schematic representation of flux into central grid pain} or 2D system: §) central point is surrounded by nearest neighbors which are
all in the interior (flow) region; ) one nearest neighbor of the central grid point is external to the (impenetrable) boundary.

In the case that the central pointj) is adjacent to an impenetrable is on the exterior side of the boundary, then
boundary surface, as indicated in Fig. i5no particles flow through the

boundary surface so that, e.§,, = 0. In this case the condition of i5=1[1 + (B/Z)(Vi - VO)](;i

steady-state concentratiay is Co= 25 , (29)
o 5— (BI2)X° (V; — Vo)
Jiva — it ij+1 =0. (16) B i=1 °

Now the concentration of the central point is given in terms of the with the sum running over the five nearest neighbors in the interior of the
concentrations of its nearest neighbors, which are interior to the boundaryjgyy region. Analogous formulas follow for the case of two or more nearest

by: neighbors outside the boundary.
N n n We note in passing that the above reasoning applies equally well to the
G = {Ci+1,J' Cj+1 T Gj1 case of constant concentration boundary conditions. Then, in 3D, Eq. 18 is
used to update all interior points. Those points which abut the boundary
+ (3/2)[(Vi+1,i o Vi,i)CHl,J' + (Vi,J'Jrl o Vi,J')CiJ+l require knowledge of the concentrations of lattice points on the boundary,
but the latter are prescribed by the boundary conditions.
— (Vij = Vij-0Cij 1]}

13 (B/Z)[(VIH'] V"') * (V"JH V"') The authors thank Professors J. Shin, C. Wilcox, and N. Ben-Tal for
_ (Vij _ Vijfl)]} helpful discussions, and Professor R. S. Eisenberg for critical comments on
' ' the manuscript. A. N. also thanks Professor R. S. Eisenberg for introducing
Again, this can be written more compactly using the notation adopted irhim to the subject of ionic channels and for many illuminating discussions,
Eqg. 14 above, as: and professors M. Ratner and Z. Schuss for many helpful discussions.

3 _ This work was supported in part by NSF Grant CHE-9633561 (to
_ i:1[1 + (B/Z)(Vi VO)]Ci (17) R.D. C.), a Mellon predoctoral fellowship from the University of Pitts-
3- (ISIZ)Zi:‘}:l(Vi -V '’ burgh (to M. G. K.), and the NSF of Israel and the German-Israeli DIP

(A.N.).
where the sum runs over points which are nearest neighborgpé(d are
in the interior of the flow region (these can be indexed in any order). An
analogous procedure applies when more than one nearest neighbor j
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