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Molecular Theory of Lipid-Protein Interaction and the L -H,, Transition
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ABSTRACT We present a molecular-level theory for lipid-protein interaction and apply it to the study of lipid-mediated
interactions between proteins and the protein-induced transition from the planar bilayer (L,) to the inverse-hexagonal (H,)
phase. The proteins are treated as rigid, membrane-spanning, hydrophobic inclusions of different size and shape, e.g.,
“cylinder-like,” “barrel-like,” or “vase-like.” We assume strong hydrophobic coupling between the protein and its neighbor
lipids. This means that, if necessary, the flexible lipid chains surrounding the protein will stretch, compress, and/or tilt to
bridge the hydrophobic thickness mismatch between the protein and the unperturbed bilayer. The system free energy is
expressed as an integral over local molecular contributions, the latter accounting for interheadgroup repulsion, hydrocarbon-
water surface energy, and chain stretching-tilting effects. We show that the molecular interaction constants are intimately
related to familiar elastic (continuum) characteristics of the membrane, such as the bending rigidity and spontaneous
curvature, as well as to the less familiar tilt modulus. The equilibrium configuration of the membrane is determined by
minimizing the free energy functional, subject to boundary conditions dictated by the size, shape, and spatial distribution of
inclusions. A similar procedure is used to calculate the free energy and structure of peptide-free and peptide-rich hexagonal
phases. Two degrees of freedom are involved in the variational minimization procedure: the local length and local tilt angle
of the lipid chains. The inclusion of chain tilt is particularly important for studying noncylindrical (for instance, barrel-like)
inclusions and analyzing the structure of the H,, lipid phase; e.g., we find that chain tilt relaxation implies strong faceting of
the lipid monolayers in the hexagonal phase. Consistent with experiment, we find that only short peptides (large negative
mismatch) can induce the L, — H,, transition. At the transition, a peptide-poor L , phase coexists with a peptide-rich H,, phase.

INTRODUCTION

Proteins interact with membranes in different ways. Theyrigid hydrophobic inclusion, thus ignoring specific chemical
can adsorb to the lipid headgroup region, partially penetratand steric interactions between the protein and the surround-
the hydrophobic core, or fully span the bilayer membraneing lipids. Furthermore, although the present theory can be
In most cases the protein interacts with both the hydrophiliextended to treat mixed lipid membranes, in this paper we
headgroup region and the hydrophobic interior of the memshall only consider single-component (“pure”) bilayers. The
brane; yet, at least approximately, these interactions argonstituent lipids will be characterized by their hydrophobic
separable. The outcome of the interaction depends on thghain length, the strength of the repulsive interaction be-
structure and chemical composition of both the protein andyeen their polar headgroups, and the hydrocarbon-water
the lipid membrane. For example, integral hydrophobicsface energy. These characteristics dictate the structural
proteins embedded in multicomponent (‘mixed”) mem-anq elastic properties of the lipid layer, namely, the equi-
branes tend to surround themselves with lipids of matchingpiym area and (“spontaneous”) curvature, as well as the
chain length, thus inducing local demixing of the lipid enqing and area-compressibility moduli of the membrane.

components. At high enough protein concentration, thisynaiher, jess familiar elastic constant that can be expressed
preferential “wetting” may lead to global phase separation;, o of the molecular force constants appearing in our
Similarly, electrostatically adsorbed charged proteins can. odel is the tilt modulus of the lipid chains

induce the formation of (oppositely) charged lipid domains. The key factor for stable integration of proteins into

Our interest in this paper focuses on integral, membrane- . ; . .
. . o . membranes is strong hydrophobic coupling or, in other
spanning proteins. More specifically, our goal is to analyze . . .
L S L 7 “words, maximum overlap between the hydrophobic regions

the role of protein size and shape in lipid-protein interaction,

with special emphasis on lipid-mediated protein-protein in-Of the protein and the membrane, so as to minimize the

teractions and the protein-mediated transition from the plagxposure of these regions to the aqueous solvent. Interest-

nar bilayer () to the inverse hexagona() lipid phase. ingly, the match between the hydrophobic regions of the

To study these phenomena, we shall treat the protein asR{Ct€in and the (protein-free) host membranes need not be
an optimal one. Indeed, for some systems it is known that a

certain degree ohydrophobic mismatch,e., a difference
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reorganization and aggregation of proteins in membranes We have two major objectives in this paper, one of which
(Ryba and Marsh, 1992), affect the lipid melting transitionis rather specific: to explain, theoretically, the molecular-
(Piknova et al., 1993), and lead to molecular lipid sorting inelastic mechanisms governing the — H,, transition. The
mixed membranes (Dumas et al.,, 1997). Other possiblether, more general objective is to present the theoretical
mechanisms involve a change in the peptide transmembramaodel used to explain this transition and describe its poten-
orientation (e.g., helix tilt; Ren et al., 1997) or conforma- tial applications to other phenomena associated with (elas-
tional modifications of the protein that may be accompaniedicity-driven) lipid-protein interaction, e.g., the role of pro-
by a change in protein activity (Killian, 1998). Conversely, tein size and shape in determining protein aggregation in
proteins can induce morphological changes in the embedipid bilayers or helix tilt with respect to the membrane
ding lipid environment. More specifically, it was recently normal. Some aspects of these phenomena, especially the
shown that some artificial, hydrophobichelical peptides lipid-mediated protein interaction in bilayers, are necessary
(Killian et al., 1996; Morein et al., 1997) as well as gram- ingredients in the description of the, — H,, transition and
icidin A (Killian, 1992; Killian and deKruijff, 1988) are will unfold naturally in the course of our analysis.

able to induce a morphological change of a bilayer in its Considerable theoretical effort has been devoted to the
fluid, L, phase into a nonlamellar structure, such as thestudy of nonspecific (i.e., elastic) lipid-protein coupling and
inverse hexagonahl,, phase. lipid-mediated protein-protein interactions. The variety of

The peptide-mediated, — H,, transition is remarkable approaches include statistical lattice theories (Sperotto,
because the lipids used in the above experiments are pho$997), microscopic and phenomenological molecular mod-
phatidylcholines, which, in the absence of peptide, selfels (Fattal and Ben-Shaul, 1993; Marcelja, 1976; Mouritsen
assemble into planar bilayers. It was found that the transiand Bloom, 1984), molecular dynamics simulations (Chen
tion from the lamellar to the inverse hexagonal (or anet al., 1997), as well as continuum theories of long-range
isotropic) phase depends strongly on the degree of hydrdnteractions between inclusions driven by membrane fluc-
phobic mismatch and the initial peptide concentration. Morguation (Goulian et al., 1993). Several other models are
explicitly, the appearance of the, — H,, transition re- based on continuum elastic theories, treating the membrane
quires a largenegativehydrophobic mismatch; that is, the as a layer of a smectic liquid crystal with boundary condi-
hydrophobic peptide span must be considerably shorter thaions dictated by the size and shape of the hydrophobic
the equilibrium hydrophobic thickness of the bilayer. In thisinclusions (Helfrich and Jakobsson, 1990; Huang, 1986;
case, the maximum solubility of the peptide in the bilayerNielsen et al., 1998). Variational minimization of the elastic
corresponds to a molar peptide/lipid ratio of roughly 1/30.free energy functional, subject to these boundary conditions,
The peptide concentration in the ensulthgphase is highly  then yields the optimal profile of the membrane interface
enriched, corresponding to a peptide/lipid ratio ei/6.  and the magnitude of the interaction energy. Several con-
Based on qualitative packing considerations, it was sugtinuum elastic models emphasize the role of the bending and
gested that the peptides in thiy phase are concentrated in stretching characteristics of the membrane, especially the
the regions between neighboring tubules of the hexagonapontaneous curvature of the constituent lipid monolayers
lattice, spanning the entire hydrophobic thickness in theséDan et al., 1993, 1994; Aranda-Espinoza et al., 1996). One
regions (Killian et al., 1996; Morein et al., 1997; Killian, important prediction of these theories, with important im-
1992). In Fig. 1 we show the structure of the peptideplications for the lateral organization of proteins in the
containingL, and H,, phases, the latter according to the membrane, is that under certain conditions the interaction
model proposed by Killian. It should be noted that all of the potential between inclusions may exhibit one or more min-
peptides known so far to induce the — H,, transition are ima at finite separations between the inclusions. The opti-
uncharged, their N- and C-termini are blocked, and theymal distance depends on the spontaneous curvature of the
contain tryptophan residues that are localized near the hylipid monolayer and the hydrophobic mismatch. A related
drocarbon-water interface of the membrane. It has beeimteresting conclusion is that the incorporation of a “non-
suggested that these interface-anchored tryptophans prevenatching” inclusion into a lipid bilayer can actually relieve
peptide aggregation in the membrane. some of the elastic frustration energy associated with its
formation from two monolayers of nonzero spontaneous
curvature. This is the case, for instance, when a short
inclusion is incorporated into a bilayer made of two mono-
layers of positive spontaneous curvature (Aranda-Espinoza
et al., 1996).

Most of the theories mentioned above are based on the
assumption of strong hydrophobic coupling between the
protein and the membrane lipids. That is, the lipid chains
surrounding the protein are assumed to adjust their length to
FIGURE 1 Structural models of the lipid-peptide matrix: the bilayer, bridge the hydrophoblg mismatch and hence prevent th_e
phase left) and the inverse hexagondt,, phase iight), the latter as ~ €Xposure of hydrophobic segments to water. Of course, this
suggested by Killian et al. (1996). assumption sets an upper limit on the (normal) thickness of
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the hydrophobic inclusion, namely, twice the length of aproteins or peptides of thickness&l2 We shall treat the
fully extended lipid chain. proteins as rigid hydrophobic inclusions, symmetrical with

Like previous theories of lipid-protein interaction, the respect to reflection through the bilayer midplane and cy-
theory presented in the next section is based on the assumimdrically symmetrical with respect to rotation around their
tion of strong hydrophobic coupling. Similarly, we treat the long axis. More specifically, in addition to simple cylindri-
protein as a rigid hydrophobic inclusion that imposescal inclusions, we shall also consider the vase-like and
stretching or compression boundary conditions on theébarrel-like inclusions depicted in Fig. 2.
neighboring lipid chains, as dictated by the requirement for The elastic deformation free energy of the lipid bilayer
hydrophobic matching. However, our model differs from and related properties, such as the interfacial profile of the
earlier theories in two important respects. First, it employsmembrane, depend on the geometrical characteristics of the
a molecular-levelfree energy expression to describe theinclusions as well as their lateral distribution in the mem-
variations in lipid packing around and between inclusionsbrane plane. As in other models of lipid-protein interaction,
More explicitly, the local free energy per lipid molecule is we shall adopt a mean-field approximation, whereby the
expressed as a sum of three terms, accounting for thital perturbation free energy of the membrane is treated as
repulsive interaction between the polar headgroups, tha sum of single inclusion contributions (Dan et al., 1993,
hydrocarbon-water surface energy, and the lipid chairl994; Aranda-Espinoza et al., 1996). More specifically,
length. For the first two terms we use a familiar simplewith each inclusion we associate a two-dimensional
model of these “opposing forces” (Israelachvili, 1992; May (Wigner-Seitz) cell and assume that the perturbation in lipid
and Ben-Shaul, 1995). The chain stretching/compressiopacking around the inclusion is radially symmetrical. The
term is based on treating the hydrophobic tail as a shorperturbation extends from,, the radius of the inclusion at
Gaussian chain. Our simple three-term model, can be cast the bilayer midplane, to a distancg, corresponding to the
the form of a continuum elastic free energy. Familiar elasticaverage “radius” of the cell. For convenience we may as-
constants such as the bending rigidity and spontaneousume that the proteins form a 2D hexagonal lattice, as
curvature can then be expressed in terms of the moleculaltustrated in Fig. 1, with 25 denoting the distance between
interaction parameters. nearest-neighbor inclusions. It should be noted that al-

The second difference between our model and previouthough hexagonal order is likely to appear in protein-rich
ones is concerned with the calculation of the elastic deformembranes (smail;), the mean-field and radial symmetry
mation free energy associated with the presence of menapproximations improve as the density of inclusions de-
brane proteins. As usual, we write the system free energy ageases (largeg).
an integral over local contributions and determine the equi- Focusing on one cell of the lipid-protein membrane, we
librium state by variational minimization of the free energy define a Cartesian coordinate system whose origin is located
functional, subject to the boundary conditions imposed byat the center of the cell, i.e., in the middle of the principal
the size, shape, and lateral distribution of the inclusionsaxis of the inclusion, with the axis along the membrane
However, unlike in previous models, where the free energynormal and thex, y plane coinciding with the membrane
integral is minimized with respect to one variable, themidplane. Because the inclusions considered here are sym-
membrane shape profile, our model involves two structurametrical with respect to reflection through the midplane, we
elastic degrees of freedom: the locahkin lengthandchain ~ may limit the discussion to one, say the “upper’> 0),
tilt. The inclusion of the tilt degree of freedom in the free lipid monolayer. As the perturbation free energy is radially
energy functional is not a merely technical elaboration ofsymmetrical around the inclusion, we also introduce a cy-
existing models; it arises naturally from the need to accounlindrical coordinate systenn, iy, zwith r = (x* + y?)*?and
for nonlamellar lipid morphologies, as well as to describeys denoting the azimuthal angle, i.&.= r cosy, y = r sin
the membrane response to hydrophobic inclusions withy. We use this coordinate system to characterize the local
skewed boundaries. perturbation of the lipid monolayer at a radial distance

In the following section we introduce our molecular from the center of the inclusion, as shown in Fig. 3. Two
model, relate its parameters to the elastic layer propertiegyunctions specify the perturbation: the (average) local chain
explain the evaluation of the inclusion-induced elastic mem-
brane energy, and establish the — H,, phase coexistence
conditions. The Results and Discussion present humerical
results for the interaction of inclusions in planar mem-
branes, the formation of an inclusion frelg phase, and the
inclusion-induced., — H,, transition.

6,<0 6,=0 6,>0

2d,,

THEORY vase-like cylinder-like barrel-like

Consider a symmetrical, single-component lipid bilayer ofrigURE 2 Cross sections, containing the principal axes, of vase-like,
(unperturbed) hydrophobic thicknes®,2and embedded cylindrical, and barrel-like inclusions.
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lipid headgroup, such as its size, shape, and charge. We
shall usel,, to denote the distance between the plane of

headgroup repulsion and the hydrocarbon-water interface
where the area per moleculeas in a planar membrane,

a = &.

The second term in the molecular free enerigyrepre-
sents the surface energy associated with the hydrocarbon-
water interface. The bilayer tends to minimize this unfavor-
F'GUR'tE_ 3 | bL,?C""' Ehaféci‘ﬁzs:\f;gf:gf]i:":”l‘é'r‘fcttg? i?ﬁhrgotﬂ?fﬁefem 2able contribution by lowering the contact area between the
symmetrical pilayero(r) Is . . .
w);th respect to tf):e bi(lezyer midplane?atjds the aggI(e)between the ?ocal hydrophoblc Co_re and the aque(,)u,s solvent, resulting ,m
chain director and the hydrocarbon-water interface. effective attraction between the lipid molecules. For this

term we shall use another simple expressios, ya;, where

v is the effective surface tension at the water-hydrocarbon
length,b(r), and the local tilt angle of the hydrophobic tails, interface (Tanford, 1980; Israelachvili, 1992), commonly
6(r). These functions, to be evaluated by functional mini-estimated to bey = 0.1%;T/A? at room temperaturef is
mization of the system’s free energy, determine the locathe temperature ank; is Boltzmann’'s constant.
perturbation free energy and the hydrophobic thickness pro- The last contribution to the molecular free enerfy,
file h(r') = b(r) coso(r), wherer’ = r — b(r) sin 6(r). Note  accounts for the interaction between the lipid tails within the
that neither the effective lipid chain length nor the tilt angle hydrophobic interior of the membrane. This term involves
is a static quantity for a bilayer in the liquid, disordered two contributions: 1) the cohesive (van der Waals) attrac-
state. Rather, they result from an averaging over manyion between tail segments responsible for the membrane
different chain conformations. Note also that the effectiveintegrity and 2) theepulsiveinteraction between the lipid
lipid chain lengthb, cannot exceed the maximal, &&ns,  tails, reflecting the loss of conformational entropy associ-
chain lengthb,,.. ated with the tight packing (and hence stretching of the

From the assumption of strong hydrophobic couplingotherwise flexible) hydrocarbon chains. The cohesive bulk
discussed in the previous section, it follows that the lipidenergy depends on the density of chain segments within the
chains surrounding the inclusion must either stretch or comhydrophobic core. In the disordered fluid state of the mem-
press, and if necessary tilt, to prevent the exposure obrane, this density is uniform and liquid-like throughout the
hydrophobic regions to water. In our model this implies thecore; hence the cohesive energy is constant and, for conve-
boundary conditionb(r = r,) = dz/c0s0, ando(r,) = 0,4, nience, may be set equal to zero. The conformational free
with 6, denoting the angle between the inclusion surfaceenergy contribution td, plays an important role in deter-
and the normal to the bilayer midplane. mining amphiphile packing properties, membrane elasticity,

The elastic deformation free energy of the membrane peand lipid-protein interaction characteristics (for a review
inclusion F) can be expressed as an integral over locakee, e.g., Ben-Shaul, 1995). It may be noted, however, that
contributions Af(r) = f(r) — fo, wheref(r) is the free energy  in many standard treatments of amphiphile self-assembly,
per molecule (whose tail end is) af andf, is the free  the conformational entropy contribution fds neglected,
energy per molecule in the inclusion-free membrane. Ouresulting in the simple free energy expression f, + f,, =
molecular-level model of(r) takes into account all of the +ya, + B/a,, also known as the “opposing forces” model
relevant lipid-lipid and lipid-solvent interactions. These in- (Israelachvili, 1992). The balance between the opposing
teractions depend explicitly on the local chain lendifr),  forces (headgroup repulsion and interfacial attraction), sup-
and tilt angle,0(r). This will enable us to expresSsF as a  plemented by chain packing and translational entropy con-
functional ofb(r) and 6(r), as described next. siderations, provides a simple and useful scheme for pre-
dicting the optimal aggregation geometry (e.g., planar
bilayer versus cylindrical micelle) of a particular amphi-
phile. The additional repulsive interaction embodiedfin
The average free energy per molecule in a self-assemblgulays a decisive role in our present molecular model, as
lipid bilayer, f = F/N, can be expressed as a sum of threeoutlined next.
terms:f = f,, + f; + f.. The chain conformational energy has previously been

The first contribution is generally repulsive, resulting determined using a statistical-thermodynamic mean-field
from electrostatic and/or steric interactions between theheory of chain packing in various amphiphilic aggregates
lipid polar heads. This term favors large areas per head®Ben-Shaul, 1995). Here we opt for a much simpler scaling
group and will be modeled here by the familiar simple formexpression forf.. Treating the hydrocarbon tails in the
f, = Bla, (Israelachvili, 1992). In this expressiay is the  (orientationally ordered, melt-like environment of the hy-
average area per headgroup, measured in the plane whedepphobic core as a Gaussian chain, the conformational free
on average, headgroup repulsion is at maximum. The meenergy scales with the effective chain lengthfass b?
lecular constantB, which measures the strength of the (deGennes, 1979; Gelbart and Ben-Shaul, 1987). We have
repulsion, depends on the molecular characteristics of thpreviously shown that this scaling behavior, although

Molecular free energy
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strictly appropriate only in the long chain limit, provides terms of elastic moduli defined via continuum theories. In
good agreement with membrane elastic properties calcuhe next section we establish the relationships between these
lated by the more elaborate molecular theory mentionegghenomenological elastic constants and the molecular con-
above, as well as with available experimental findings (Maystants appearing in Eq. 1.

and Ben-Shaul, 1995). Adopting this scaling form fiomwe

arrive at the molecular free energy expression
Elastic monolayer properties and

B
f=ya + a + 02 ) molecular constants

The quantitiesB, 7, andl, are not directly accessible by
wherer measures the energetic cost associated with chai@xperiment. Rather, amphiphilic layers are generally char-
stretching. acterized in terms of the equilibrium area per molecajg,

In the planar bilayer geomety = a, = aandb = v/a,  the spontaneous curvatum, the bending rigidityk, and
wherev is the volume of the hydrophobic tail. Let, and ~ the area compressibility modulus, as defined by the
b, = V/a, denote, respectively, the equilibrium values of thefamiliar Helfrich elastic free energy (Helfrich, 1973). To
area per headgroup and chain length in the planar menieading order in the deviations from the equilibrium area,

brane. Using these quantities, it is convenient to define th& — ay, and cylindrical curvatures — ¢, the elastic energy
reduced (dimensionless) constants associated with such deformations is given by

BB, T=BW. h=lb @ 1 h o oy A(:o _ 1>2

The equilibrium thickness of the protein-free planar
monolayer,b,, is determined by the minimum df with a
respect td. Equation 1 does not yield a general closed-form + x(c - Co)<a{J - 1) ©)
expression forb,. Yet, a simple and useful relationship
betweenB and 7, involving b, can be obtained by consid- wheref, = f(a,, ¢p) is the free energy per molecule in the
ering a small uniform stretching (or compression) deforma-monolayer equilibrium configuration. Recall that, by sym-
tion of the monolayer, whereby its thickness changes froninetry, the spontaneous curvature of a symmeilayer is
b, to b. Expandingf around its minimumf, = f(b,), in the  identically zero, and the elastic moduk, A, and x, are
planar configurationg = a, = v/b), we find that to first twice the monolayer values.
order in thickness variations, The areasa, a,, and curvaturesg, ¢, in Eq. 5 are
measured with respect to an arbitrary (“dividing”) surface
bo _ bo n b — by 3) within (or even outside) the monolayer, for example, the
woWw by

surface located at a distanddrom the hydrocarbon-water
. - _ interface, as illustrated in Fig. 4. All of th tants in Eq.
with (by/y)fo = 1 + B + 7. Clearly, the requirement fdu, nieriace, as rustraled In Fig o' the constan's i =4
to be the equilibrium thickness is

(B+2r—1)

5, (k c,, etc.) depend on the choice of this surface and hence
on 4. Although sometimes implicitly, experimentally re-
1-B ported values of the elastic constants refer generally to one
T=—f5— (4) particular dividing surface, known as tmeutral surface.
2 By definition, area and curvature deformations measured

which, upon substituting® and 7 as defined in Eq. 2, With respect to the neutral surface are fully decoupled, i.e.,
constitutes an equation fdy, This equation implies that EQ. 5 does not contain the cross tern co)(a/ap — 1). In

0 = B = 1. In the limitB — 1, corresponding tG — O, other words, the position of the neutral surface and, conse-
chain-chain repulsion is negligible compared to head-head
repulsion, resulting iyv = 1/a, = (y/B)“2 In the oppo-

site limit, 7 = ¥, the equilibrium thickness id, =
(wi27)*3,

Equation 1, considered so far only for a pure and planar
lipid monolayer, is our basic expression for the local mo-
lecular free energy in both the, andH,, phases, with and
without embedded inclusions. The presence of inclusions in
these phases introduces local variations in the thickness and
interfacial curvatures of their constituent monolayers, im-
plying thatb, a, anda,, are no longer constant. The extent
of these variations, as well as the conditions favoring the

" . FIGURE 4 A segment of a cylindrically bent monolayer containing one
La - H“ transition, depends on the elastic response of th?nolecule. The monolayer curvatuce= 1/R and area per molecukeare

membrane to the presence of inclusions. The elastic propneasured at an arbitrary surface, at distaifrem the hydrocarbon-water
erties of membranes are usually expressed and measurediiterface.
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quently, the “decoupled” elastic constants are determinedlsing this result in the expressions derived K@andc,, we

by the conditiony = 0. obtain their forms in the neutral surface:

Our goal now is to relate the molecular constants appear- L _ _ _
ing in our molecular free energy expression, Eq. 1, with the K= Bboy[2(6 — 5B)I; + (1 — B)(5 + 141})]
elastic constants defined by Eq. 5. To this enda;, andb 2(3-B)
of Eq. 1 should first be expressed in terms of the area and (10)
curvature of one particular surface. After Eq. 1 is expanded (3-B)(BA+2l)—1)

as a power series in these variables, the elastic constants can Co= Bb2(6 — 5B)T? + (1 — B)(5 + 141,)]

be evaluated by comparing the appropriate coefficients with ° n n

those in Eq. 5. It must be noted, however, that unlike Eq. 5, Although somewhat cumbersome, these results are useful
the molecular expression in Eq. 1 is not restricted to smalfor deriving numerical estimates f@& and7, using experi-
elastic deformations. In particular, we shall use Eq. 1 formentally determined elastic constants (see the Results).
both the planar bilayerL(,) state wherec = 0 and the Qualitatively, we expect that when interlipid repulsion is
inverse hexagonaH,,) phase where the monolayer curva- dominated by headgroup interactions (i.B.,— 1), the
ture is large and (by definition) negative:= ¢, ~ —1/R, neutral surface will be located between the hydrocarbon-
whereRis the radius of the water tubes (see Fig. 1). Clearlywater interface and the headgroup surface; ides< O.

the Helfrich expression, Eq. 5, is strictly valid either aroundSimilarly, 6 > 0 is expected when chain-chain interactions
the planar geometry (for, ~ 0) or around the hexagonal dominate the repulsion. Indeed, Bsand/orl,, decreases, a
state (wherc, =~ —1/R), but not both. Nevertheless, as our cross-over from negative to positiv@ occurs atB(1 +

goal here is just to provide an approximate correlation2l,/3) = 1. The spontaneous curvature behaves similarly but
between the molecular and elastic constants, we shall aghanges sign at a somewhat different poft, + 2I,) = 1.
sume (as is often done) that Eq. 5 applies to all relevan{The sign changes df andc, need not be simultaneous.)
curvatures. Technically, this implies, for example, that Area and (mean) curvature variations are not the only
vib, can be derived usingf/oa) = O evaluated at = 0  “normal modes” of membrane elasticity. For instance, in the
rather than atc = ¢, Similarly, in this approximation, discussion above we have totally ignored the Gaussian

kco = —(9(flag)lac),, c—o andkay = (azf/acz)%,czo. curvature associated with saddle-splay deformations (Hel-
Simple geometry relates, and g to the area per mole- frich, 1973), because they are irrelevant for the present
cule at the neutral surface; analysis. On the other hand, changes in the chain tilt angle,
0 (see Fig. 3), play a major role in our model, through the

a=all+dc), a,=all+ (8+1y)c) (6) last term in Eq. 1. On average, in an unperturbed lipid

monolayer, the equilibrium value of this anglefig= 0. In
where, again,c is the curvature at the neutral surface.the phenomenological theory of membrane elasticity, tilt
Moreover, b, the chain length in the bent monolayer, is deformations can be accounted for by adding, on the right-
simply related to the chain lengtiia in the planar config- hand side of Eq. 5, a term of the form (Hamm and Kozlov,
uration, namely, 1998)

via C2 ftilt B K
b= (v/a)[l + c((z) - 8) +5 ((vla)? — 3(vla)s + 28%) % 2 6 (11)
7 wherek denotes theilt modulus.Again, using our molec-

In deriving this relationship we have assumed that the chairl1Jlar free energy expression, Eq. 1, and Egs. 2 and 4, we find

volumev does not change in the course of bending and have W _

ignored terms of order higher thas. k=2mh=1 (1-B) (12)
Following the procedure outlined above, we obtain a °

number of useful relationships. The equation governing thdhus the tilt modulus is determined exclusively by the

equilibrium area per moleculeg = Vv/b,, is found to ber = resistances, of the alkyl chains to changes in their length.
(1 — B)/2, as in Eq. 4. For the area compressibility modulusindeed, changing at constana = a, is entirely equivalent
we get to chain stretching.

A=v3-B) ®)  Inclusion-induced membrane

" . " deformation energies
From the conditiory = 0 we find the position of the neutral 9

surface, Using the molecular free energy, Eq. 1, we now turn to the
calculation of the elastic deformation energy associated
31-B)- Bl with the incorporation of inclusions into a lipid membrane.
2 h - - .
_ Recall our assumption that the lipid perturbation zone pre-
8 =Dy = 9) . o ke e
3—B scribed by a cylindrically symmetrical inclusion is circular,
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extending fromr, to rg; ra denotes the radius of the a,(r) = a,(r; b, ) can be expressed in the fora(r) = v
inclusion at the bilayer midplane andg2the average dis- dA(r, b, 6)/dV(r, b, 6) and a,(r) = v dA(r, b + |, 6)/
tance between inclusions. Later on, when discussing thdV(r, b, ). In writing these expressions, we have used the
peptide-containing,, phase, we shall need to consider lipid assumption that the uniform (liquid-like) chain segment
perturbation profiles corresponding t@rfe-dimensiondl  density within the lipid regions of the hydrophobic core is
inclusions, i.e., inclusions whose surface appears to thaot affected by the presence of inclusions; this implies the
boundary lipids as an infinite, membrane-spanning wallequalitiess; = dA/dn = v dA/dV anda, = dA/dn = v
(either parallel or slanted with respect to the membranelA,/dV.

normal). ThesdD systemsan be treated as special cases of In analogy tog,(r; b, 6) defined above, we define a
the corresponding cylindrically symmetric2D inclusions,  “radial surface function,g,(r; b, 6) through d\(r; b, 0) =

in the limit rg — ry << ra. Let us first discuss the 2D g,(r; b, 6)r dr dir. Explicit expressions fog,(r; b, 6) and

systems, i.e., cylindrical inclusions in planar bilayers. ga(r; b, 6) are derived in Appendix A (see Eq. 28).
The elastic perturbation free energy of the bilayer, per We turn now to the “1D inclusion model.” To realize its
inclusion, is given by structure, consider a lipid bilayer containing a periodic array

of infinite hydrophobic walls, aligned parallel to the mem-
FB — Zf AF(r, 9)dn (13) braney axis. The width of each wall, at the bilayer mid-
el ' plane, is X,, and the distance between walls ig;2their
height along the membrane normal directi@hi¢ d.. We
am [ o shall keep using the terms “vase-like,” “cylinder-like,” and
:J Af(r)gy(r)r dr = 47-,3,J frdr “barrel-like” inclusions to describe 1D inclusions whose
v cross sections appear (in the z plane) as in Fig. 2.
Choosing a Cartesian coordinate system originating at
whereAf = f — f; is the local perturbation free energy, per (some point on) the center line of one inclusior, marks
molecule, relative to the equilibrium state in the peptide-freghe inclusion boundary and; half the distance to the next
planar monolayer, i.efg/yao = 1 + B + 7see (Eq. 3). The \yaj|. A membrane region of sizd 2x xg will be defined as
integration in the first equality extends over all of the lipid g «ynit cell” of the 1D modeli_ denotes the length of a wall
molecules belonging to one of the two monolayers (hencgegment along theaxis. One possible application of the 1D
the factor of 2) within the “unit cell” corresponding to one mgdel involves the calculation of the lipid-mediated inter-
inclusion. Specifically, d = dV/v denotes the number of gction between a pair of nearby large inclusions, corre-
lipid molecules whose chain ends are located within the aregponding tag — I << r, in the 2D model. In this limit the
elementr dr dy, centered around poimt ¢y of the bilayer  ragial symmetry assumption of the 2D model is no longer
midplane. We use\dto denote the (3D) volume occupied yalid, whereas the 1D picture is most appropriate. However,
by these d chains within the hydrophobic core and expressoyr main use of the 1D model concerns the calculation of
it in the form oV = g,(r) r dr di, wheregy(r) can be tne elastic free energy of the peptide-rieh phase. This
interpreted as the radial distribution function of chain e”dsapplication requires a slight but straightforward modifica-
in the bilayer midplane. Because of the cylindrical symme-jon of the definition of the unit cell, as described in the next
try of the inclusion,g, is independent of the azimuthal ggction.
angley,, explaining the passage to the second equality. Note, The elastic deformation free energy of the lipid bilayer,

ends, whereas\land hencey,, (r) depend also on the length

b(r) and tilt angled(r) of these chains (Fig. 3). These as yet 4L e X8
unknown functions dictate the shape of the monolayer inF.° = 4 J Af(x)dn = — J Af(X)gy(x)dx = 4yL j f(x)dx
terfacial profile. The dimensionless functif(n), defined by v A A

the last equality in Eq. 13, can be interpreted as a local (15)
deformation energy of the monolayer per unit (midplane-

projected) area. Finally, the total number of lipid molecules With the ch integration involving all of the lipids in one-
per inclusion, is quarter of the unit cell, i.e., in a monolayer of areax

(Xg — Xa). The number of lipids in the unit cell is

a fa

g AT "
n"=- gv(r)r dr (14)

ra

L [
nt = 4VJ' gv(x)dx (16)

XA

In addition to the volume differential\dr; b, 0) defined
above, we define Ar; b, 6) as the differential area in the  The functionsg,,(x) andf(x) are the 1D analogs of the
hydrocarbon-water interface, corresponding to the area ektorresponding quantities in Eq. 13. Similarly, the local
ementr dr dis of the bilayer midplane. With these defini- interfacial areas(x), a,(X) are defined in analogy te(r),
tions the local molecular areas at the hydrocarbon-watea,(r), with dV = L dx g,(X) and dA\ = L dx g,(X). Explicit
interface a(r) = a(r; b, 6) and the headgroup surface expressions fog,, (X) andg,(X) are obtained frong,,(r) and
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ga(r) (Appendix A) upon taking the limik = r — o, and the tilt angle profile, and, usinfgr; b(r), 6(r)) in Eq. 13, the
noting thatd = 6(x), b = b(x). (This follows from the fact membrane deformation free energy. The boundary condi-
that asr, — o, all of the lipids within the perturbation tions reflect the shape of the inclusion envelope as well as
region,r, = r = rg, interact with an essentially straight the symmetry of the system in question. In detail, the
inclusion wall.) boundary conditions at the inclusion surface @) = 6,
Another useful characteristic of the perturbed lipid layerands(r,) = s,. The first boundary condition dictates the tilt
is the angle¢, between the local chain director (averageangle of the lipids touching the inclusions. The second
end-to-end vector) and the local normal to the monolayeensures perfect hydrophobic matching between the bound-
interface (see Fig. 3). In terms bfand 6 and their deriva- ary lipids and the inclusion. The boundary conditions for a
tives (primed), this angle is given by bilayer membrane at; are dictated by symmetrg,(rg) =
0 andf(rg) = 0. Replacing 4, rg With X,, Xg, We obtain the
) (17) boundary conditions for 1D inclusions embedded in planar
lipid bilayers.

Recall that the peptide-inducdd, — H,, transition re-
o§ults in a peptide-rich hexagonal phase (Killian et al., 1996;
Morein et al., 1997; Killian, 1992). The most likely arrange-
ment of the peptides in this phase is as shown in Fig. 1, with
the densely packed peptides forming a hydrophobic strip
b’ =sino (18) bridging adjacent water tubes. To a good approximation,
these strips can be treated as one-peptide-wide 1D walls, as
Shown in Fig. 5 kgft). The figure on the right shows (one-
half of) the “unit cell” corresponding to this structure. Along
the x axis the lipid (chain end) positions vary between
andxg = AM/2V/3, where\ denotes the lattice constant of the

o ) b’ cosf — bo' sin6
b= arctan 1 b sin6 — b’ coso

In the special case whete = 0, the chains point normal to
the hydrocarbon-water interface, and the two degrees
freedom,b and 0, are no longer independent of each other.
From Eq. 17 we find forp = 0O,

We are now ready to evaluate the elastic deformation fre
energyFs, (Eq. 13). Lets(r) = b(r)/b, — 1 and6(r) denote,
respectively, the local deviations in the lipid chain length
and tilt angle, from their equilibrium values in the unper-
turbed monolayer. Assuming that the membrane deform
tions are small, we express the free energy denkitys a
second-order power series 8tr), s'(r), 6(r), and 6'(r),
obtaining

of a peptide-freeH,, phase simply corresponds xQ = O.

The boundary conditions on lipid packing in this 1D
model of theH,, phase are as follows. Ay, in the peptide-
rich system, we have the usual chain length and tilt angle
matching conditionss(x,) = S, and6(x,) = 0,. In the pure
+ agf? + ag,00’ + a0’? (19) H, phase the boundary conditions %t are dictated by
symmetry, i.e.s'(X,) = 0 and6(x,) = 0. At xg the bound-

f = b30 + b40’ + aMSZ + a13$0 + al450’ + a228'2 + a23S’6

whereb, = b, (B(1 + 2I}) — 1)/2,by = byir, ay :2(3 ~  ary conditions are the same for both cases:

B)/2, a4 = bo(B(1 + 2lp) — 7), 13 = a1, 8, = (1 —

B)/2, a,3 = by(B — 1), ag3 = (1 — B)/2 + Bb3(1 + d(xg) =0 6(xg) = 76 (21)
21)%/(4r?), ag, = b3(1 + 2BI?)/(2r), anda,, = Bb3(1 +

2732/2_ ) B ol /(2 4 ol where ¢ is the angle defined in Eq. 17. The boundary

condition ¢(xg) = O expresses the fact that the chains
pointing toward “interstitial axes” within the hydrophobic
region of theH,, phase must not be tilted, thus guaranteeing

The Euler-Lagrange equations corresponding to the min
imization of [ fr dr are given by

. (@ a0 +r10)  an s’ a smooth hydrocarbon-water surface. Using Eq. 18, the
§'= 28, + a—zzs T conditiond(xg) = 0 can be rewritten as (xg) = 1/2b,. The
only difference between the unit cell defined here for the 1D
g - Q3 — Qg g A3 o fi' model of theH,, phase and the 1D model defined earlier for
28y, au r the bilayer phase is in the boundary conditionggfthat is,

Substituting the explicit expressions above for the various
expansion coefficients and using Eq. 4 fiowe find

B-3 1 1+ B +4l)/0 .
§=o———s——S+————— |+ ¢ (20) 7 n
bB—-1" 2by(1—B) \r
1+ B(1+ 4 1 1-B 0’ S %
”— _M l+ 7 22_7_ 0_ 0 : )‘.H
boB(1 + 2I,)? r b3B(1 + 2I,)? r

By solving Eq. 20 numerically, subject to the appropriate A
boundary conditions, we can determine the stationary solu-
tions for the interfacial profile of the perturbed monolayer, FIGURE 5 The 1D model of the inclusion-ridh, phase.
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0(xg) = /6 versusO(xg) = 0 ands'(xg) = 1/2b, versus addition to the elastic deformation energy,

S'(xg) = 0).
The local perturbation free energy and the Euler-La- F8(n®) = Fa(n®) + Fri(n®) (24)

grange equations for the 1D model are obtained from EqSagsming ideal mixing (Guggenheim, 1949), we can write
19 and 20, respectively, in the— o limit. (Note that in this FB. /ksT = In p& + n® In pB, where pB and pE are,

limit bs = a,5 = as, = 0.) Solving the Euler-Lagrange |egpectively, the area fractions of inclusions and lipids in the
equa}tlons _Sl?bleCt .to the bound.ary condltlops gbove, Wfa phase. In terms ai®, the mixing free energy (in units of
obtain the lipid chain length and tilt angle profiles in tHg ksT) is given by

phase. The elastic deformation free energy and the number
of lipids per unit cell can then be evaluated from Eqgs. 15 and
16, respectively.

Two “technical” comments: 1) To relate the number of
lipids in a unit cell of lengtH_ with the number of lipids per Wherea = a,/(2ay,); ay anda,, denote the cross-sectional
inclusion, n", we setL = 2x, and determinex, by the areas of the lipid and peptide molecules, respectively. The
requirement that the cross-sectional areas of the inclusion ifactor of 2 in the expression fox arises because each
the 1D and 2D models are equal, i.er2 = (2x,)?, and  inclusion contributes to two monolayers.
henceL = 2x, = V7r,. 2) Fig. 5 illustrates the 14, Following our assumption that the inclusions in tHg
model for simple straight-cylinder inclusions; the extensionPhase are densely packed and fixed in their lattice positions,

of the model to inclusions with nonvanishing tilt angle (e.g.,We setFiy, = 0 and henc&" (n") = Fg(n").
barrel-like) is straightforward. Numerical results foF™ and F® and the corresponding

solutions of the coexistence conditions (Eq. 23) will be

reported in the next section. These calculations show that, in
L,-H, phase coexistence general F™ exhibits a deep minimum at some given lipid-

inclusion concentration ratio” = A", whereF™ = F* =

Let N andM" denote, respectively, the number of lipids FH (#F). Under these conditions Eq. 23 reduces to a single
and inclusions in the inverse hexagonal phasg; M® equation,
denote the corresponding quantities in the bilayer phase. As
argued in previous sections, the inclusions in the peptide- FH — FB(n®) = (A" — n®)(aF®/on®) (26)
rich H,, phase are assumed to be aggregated along the i _
hexagonal tubules, spanning the hydrophobic region beWh'Ch determmeg the qulllbrlum.value_ of. It turns out
tween neighboring water tubes. Thus each tubule involved'at, in generaln® = 1, |E;e.,Bthe |pé:lu5|ons are far from
six densely packed one-dimensional inclusion arrays (Fig?gc_h other, implying thafg(n”) — F= = constantwhere
5). On the other hand, we shall assume that the peptides afe 'S the elastic free energy associated with an isolated
randomly dispersed in the peptide-poor bilayer phase. ThedB¢lusion. The coexistence equation (Eq. 26) is then given
assumptions will later be corroborated by our numericalPy
results. FH_FB _ B (B ~H B B B

The total free energy of a solution containing lamellar F7 = P2 = F() + (07 = n)(0Fmdon®) - (27)
and hexagonal aggregates in equilibrium with each other ishe physical meaning of this equation is simple: the loss in
given by mixing entropy associated with the transfer of one inclusion

o rHeHn SeB B from the dilute bilayer phase to the orderkl phase is
F = MF(n%) + MPFE(n) (22)  palanced by the gain in elastic deformation energy (which is

lower) in the ordered hexagonal phase. A particularly sim-
the free energy, per inclusion. in the bilayer, etc. (Treatin le and familiar form _of this equation is obta_ined i_n the I.imit
the bilayer an,d hexagonal 7aggregates 6715 rﬁacroscopl B> 1., corresponding to a very low density of |ncIu§|ons
phases, we ignore their translational entropy.) i the bilayer. NamerFH i P>+ In(.llanB), expressing

Minirr,1ization of % with respect toN® = N 7 N and the _u_sugl cond|t|.o_n (gquallty of chemical potent!als) fqr the
ME — M — MH yields the phase equilibrium conditions, i.e., equilibrium partitioning of solutes (here the inclusions)

. i o . ) between a “solid” (here thél,)) and a dilute “liquid” ¢,
equality of the peptide and lipid chemical potentials in the hase; (14nP) is tEle concelrl1)tration of inclus?ons iqr_l zhis
coexisting phases. These conditions lead to the usual “ComD '

B

(25)

Fo (M) = 1Pl
miX(n)_nl+anB nnl+anB

wheren® = N®/M® andF® denotes the number of lipids and

mon tangent” equations, phase.
FAr) = F(n" = f(@F"an’) — n(aF*/om) RESULTS AND DISCUSSION
(9F"an") = (9F/an®) (23)  In this section we report numerical calculations for several

model systems. After a short introduction explaining the
Because the concentration of peptides in the bilayer phaseghoice of the molecular parameters and model systems
is small,F® should include a mixing entropy terrf,,;,, i considered, we present the results in two parts. The first part
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describes our calculations for lipid-mediated interactions In our model the shape of the inclusion enters only
between inclusions in planar bilayers. The second part fothrough the boundary conditions for the Euler-Lagrange
cuses on the peptide-mediategd— H,, transition. We shall equations (Eq. 20). Two boundary conditions specify, re-
also discuss the, — H,, transition in pure lipid systems. spectively, the tilt anglef,, and chain lengthb,, at the
surface of the inclusion. Barrel-like, cylinder-like, and vase-
like inclusions correspond to positive, zero, and negative
0,, respectively. The chain length boundary condition reads
All of the calculations reported below are based on théby = d/cos6,, where 21, is the hydrophobic thickness of
molecular free energy expression (Eq. 1). The choice of théhe inclusion (Fig. 2). Théaydrophobic mismatcts gener-
molecular constants appearing in this expressibandr,  ally defined as the difference & — by). As a reduced
was guided by general experimental information concerningneasure of the hydrophobic mismatch, we shall use the
more familiar membrane characteristics, such as the monglimensionless quantitg, = (do/b, — 1). For a straight-
layer bending rigidity,k, spontaneous curvature,, and  cylinder inclusion ¢, = 0), S, > 0 (“positive mismatch”)
average membrane thicknebg, Structural information was implies chain stretching around the inclusion, &d< 0
used for choosing other relevant parameters suetaasl,.  (‘negative mismatch”) imposes chain compression. More

In all of our calculations we have used= 2 x 459 A3, generally, the chain length deformation at the inclusion
corresponding to lipids with hydrophobic tails consisting of boundary,s, = ba/b, — 1, is related to the hydrophobic
two saturated C-16= —(CH,),;s —CHj chains. The tail mismatch by
volume is calculated using.,, = 27 A° for the effective
volume of a CH segment and/cy,, ~ 2vqy,, (Tanford,
1980). For the distance of the headgroup repulsion surface Finally, in all examples we shall consider inclusions of
from the hydrocarbon-water interface we have ukge-  radiusi, = 4 A, as measured at their thinnest region (e.g.,
1.74 A, and for the tail repulsion coefficient= 0.004T/  the waist of the vase-like peptide). Thus the inclusion radius
AZ The headgroup repulsion constaBt, will serve as a  at the position of the bilayer midplane is given by = T4
control parameter allowing variations ky c,, andhby,. for 0, = 0 andr, = T, + b, sin 6, for 6, > 0.

Using the above values of I, andr, we show in Table
1 how the relevant elastic constants vary withWe note
that asB decreases, 1) the area per molecalg= v/ib,,  Inclusions in bilayers

decreases (weaker lipid-lipid repulsion), 2) the bendingye begin with a simple example: a symmetrical planar
rigidity increases (because chain repulsion is strongepas pjjayer, containing a small number of well-separated cylin-
decreases; recakl ~ bg; Eq. 10), and 3) the spontaneous grical inclusions. Under these conditions the membrane
curvature becomes increasingly negative, i.e., the monQserturbation energy is a sum of single-inclusion contribu-
layer tends to bend more toward the water phase (becauggns. As a typical case we show in Fig. 6 the lipid pertur-
the torque associated with headgroup repulsion becomgsytion profile corresponding to a system characterized by
less efficient in balancing the torque of chain repulsion). Itg — 41%,T A? (hencec, = 0), 0, = 0,15 = 30 A (15 >
should be noted that negative spontaneous curvature is NPt = 4 A ensures that the inclusions are far from each
a sufficient condition for thermodynamic preference of theother), ands, =

! = —0.2, i.e., negative mismatch. We see that
hexagonal over the bilayer phase (see below). although the inclusion is a straight cylinder, the membrane

The explicit inclusion of the chain-tilt degree of freedom perturbation involves not only a change in the lipid chain

in our model enables us to study systems where lipid tilt I§engths b, but also in the tilt angley. The gradual variation
either inevitable or likely to occur. For example, the pres-

ence of bulky amino acid side chains aroundcahelical
backbone may result in a hydrophobic envelope different

Molecular and elastic constants

Sy =(Sy +1)cosO, — 1

from a simple straight cylinder. Thiearrel-like and vase- 15
like inclusions depicted in Fig. 2 represent two prototypes of 12
such structures. 9
6
3
TABLE 1 Monolayer equilibrium chain length, b,, bending 0

rigidity, k, and spontaneous curvature, c,, as a function of the
headgroup interaction constant B, for /, = 1.74 A

Blkg TA? by/A kiksT YA
213 14.0 6.0 o FIGURE 6_ The mon_olayer perturpation profile resulting frgm the pres-
350 148 74 _1a1 ence of an isolated cylindrical inclusiof(= 0, rg =_3_0 A). Inthis _syst_em
320 15.3 8.1 97 Co = 0. B = 41X T A'Z), apd the only cause for lipid 'per.turbatlon is the
285 159 91 72 (negative) hydrophc_)blc mismatcB, = —0._2. The solid line marks th_e
200 175 117 a1 hydrocarbon-water interface. The dashed lines drawn at several (arbitrary)

positions represent the local chain director.
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in 0 alleviates the free energy penalty inflicted by theinclusion-free bilayer is still lower than that of the inclu-
changes in lipid chain length. This coupling between thesion-free inverse hexagonal phase, as shown below (see
two lipid degrees of freedom allows for rapid relaxation of Fig. 9).
the perturbation profile. This prediction of the model agrees The most apparent qualitative conclusion from Fig. 7 is
with previous, more detailed (yet much more difficult and that the lipid-mediated interaction between inclusions de-
limited) calculations, revealing that under similar mismatchpends strongly, both qualitatively and quantitatively, on
conditions the range of perturbation around an isolatedheir size and shape. Changing the monolayer spontaneous
inclusion involves just a few lipid layers (Fattal and Ben- curvature fromc, = 0 to ¢, ~ —0.01 A™* influences the
Shaul, 1993). magnitude of the elastic deformation energies, but not their
gualitative behavior, as a function of (However, later on
we will see that the value of, plays a crucial role in
determining whether the, — H,, transition does or does
The range and extent of chain length and tilt angle varianot take place.)
tions in Fig. 6 are quite moderate. Considerably more pro- For perfectly cylindrical inclusions the model predicts
nounced variations appear when the inclusions are ndhat the absolute minimum @5 corresponds, always, to
straight cylinders, when the hydrophobic mismatch isclose contact between inclusions, ir.,= r,. Because the
larger, and when the spontaneous monolayer curvature Rinimum is severakgT's deep, it also predicts that these
nonzero. More interesting, however, are the perturbatiokinds of inclusions already tend to aggregate at room tem-
free energies corresponding to all of these cases. Fig. Perature. We note, however, that the free energy curves
summarizes a series of calculations, showing the lipidcorresponding to cylindrical inclusions exhibit a barrier at
mediated interaction energies between several types of irsome finite distancerg > r,. Interestingly, any deviation
clusions, embedded in two types of lipid bilayers. Thefrom the straight-cylinder shape shifts the minimum in the
figure shows how the elastic membrane energy per incluinteraction potential taz > r,. Typically, long-range re-
sion, FS, varies with the 2D density of inclusions, as mea-pulsions characterize the interaction between large vase-like
sured by the average half-distance between neighboringclusions and between small barrel-like inclusions. On the
inclusions, rgz. The asymptotic r; — ) values of FE  other hand, when the inclusions are small and vase-like or
correspond to the perturbation free energies of isolatetrge and barrel-like, the minimum R, appears to be just
inclusions. The differenc&®, (rg) — FE() may be inter-  a few A away fromr .
preted as the lipid-mediated interaction between inclusions.

In the left diagram of Fig. 7 we show the results for Tilt angle relaxation
systems characterized by negative hydrophobic mismatch
(S5a = —0.2); the diagram on the right corresponds toOne important respect distinguishing our model from pre-
positive mismatch¥, = 0.2). In each of the two diagrams vious models of lipid-protein interaction is the explicit
we show free energy curves corresponding to the threenclusion of the tilt degree of freedom. That is, our free
prototypes (vase, cylinder, barrel) of inclusiofg & —0.2,  energy densityf (Eq. 19), is a function of two local vari-
0, 0.2). Furthermore, because the membrane response ables: the chain length, and the tilt angleg, both allowing
perturbations depends on its (monolayer) spontaneous cufer membrane relaxation in response to the presence of a
vature, the calculations were performed for two kinds ofrigid inclusion. A direct test of the relative importance of
membranes. One correspondscio= 0 (B = 413%K,T A?), chain tilt relaxation is provided by comparing the interac-
and the other t@y ~ —0.01 A%, (B = 32T A?) (see tion free energy between inclusions with and without allow-
Table 1). In the latter case, the elastic free energy of thance for tilt relaxation. In the latter case a specific assump-

Effects of inclusion size and shape

FIGURE 7 Membrane perturbation free
energies, per inclusiorFE), as a function

of the half-distance between inclusions 4
(rg). The left and right diagrams are for
inclusions corresponding to negativg & 3k '
—0.2) and positiveg, = 0.2) hydrophobic FB
mismatch, respectively. Curves and d Eff
represent the results for cylinder-like inclu- 2
sions @, = 0). b and e are for vase-like

inclusions @, = —0.2).c andf are for 1+
barrel-like inclusionsf{, = 0.2). The solid
curves correspond 1B = 41%;T A2 (¢, =
0), and dashed curves correspondBte= 00
320k T A2 (co = —0.01 A7Y).
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tion must be made concerning the functional dependence dfe less pronounced. Clearly, however, the lipids’ tilt degree
6 on the distance between the interacting inclusions. Thef freedom plays an important role in determining the shape
most natural choice is to assume that the local chain directaand magnitude of the elastic interaction between bilayer
is always perpendicular to the hydrocarbon-water surfacenclusions.
i.e., & = 0in Fig. 3, implying sind = b’ (see Eq. 18).

To simplify the analysis we shall compare the predictions
of the 1D model, i.e., we consider the lipid-mediated inter-The L, — H,, transition

action between two infinite and parallel inclusions, with The most stable agareaation aeometry of a given lipid in
Xg — X5 denoting (half) the distance between them, at the gareg 9 y 9 P

bilayer midplane. Substituting~ sin @ = b’ in Eq. 19, the aqueous solution is dictated by an interplay between mo-

= . . lecular force constants; in our model these Bye, andy.
free energy densityf, becomes a function ob and its ; . L
derivatives- In the phenomenological elastic theory of lipid layers, the

relevant parameters are the elastic constants, suktaad
f=bybos’ + ayS + aybess + aybis’?, A, and the (monolayer) spontaneous curvategeFor ex-
~ ample, wherc, =~ 0, the planar bilayer is the predominant
with the coefficients as given after Eq. 19. Using thi;!  phase because it involves the least (monolayer) frustration
the variational minimization of the total deformation en- energy. On the other hand, when the lipid monolayer tends
ergy,FaP in Eq. 15, we obtain the Euler-Lagrange equationto curve “negatively,” i.e., toward the water phase, the

a;ss + boas’ + bgay,s” = 0. The relevant boundary inverse hexagonal phase may be the predominant one (Sed-
conditions ares(x,) = Sa, S'(Xa) = 0a/bo, S'(Xg) = 0, and  don, 1990). By varying the external conditions (e.g., tem-
s"(xg) = 0. perature, ionic strength), phase transitions can be induced

As a special case demonstrating the role of the tilt anglepetween the bilayer and hexagonal phases, quite often
we have chosen a system with the following molecularthrough cubic mesophases that we shall not discuss here.
characteristicsB = 320z TA? 5, = —0.2,andd, = —0.1.  Adding foreign molecules to the lipid matrix changes its
The elastic deformation energies are shown in Fig. 8, wherelastic properties, resulting in changes in the phase transi-
curves a and b refer to bilayers where tilt relaxation istion characteristics. Hydrophobic peptides constitute a spe-
allowed and arrested, respectively. cial, but important, class of foreign inclusions. In this sec-

The difference between the two lipid-mediated interac-tion we will focus on the peptide-mediateld, — H,,
tion potentials is quite striking. First, as expected, the magtransition in lipid systems, which, in the absence of pep-
nitude of the elastic deformation energy is significantly tides, form stable bilayers. Thus we shall first consider the
smaller when tilt relaxation is allowed to take place. Sec+reference” peptide-free system.
ond, the shapes of the interaction potentials are qualitatively
different. The oscillations characterizing the system where
tilt relaxation is arrested are totally damped in the relaxedPure-lipid systems

system. The origin of this difference lies partly in the shape , ) o
of the inclusion. Without allowing for tilt relaxation, the TheH, phase is often depicted as an aggregate of cylindri-

lipid monolayers between the two vase-like inclusions musfally bent monolayers, with the lipid headgroups facing the
first bend toward the bilayer midplane, resulting in exces-"€xagonally arranged water tubes. However, this picture is
sive compression of the already compressed lipid chain@PProximate because the hexagonal symmetry oftfe
(because of the negative mismatch). For some systems, e_g_f}ase frustrates” the cylindrical symmetry of the lipid tails

straight-cylinder inclusions, the effect of tilt relaxation may Surrounding the water tubes. That is, whereas the lipid
chains bridging between neighboring water tubes are some-

what compressed, those lipid tails that point toward the
triangular regions of the hydrophobic core are necessarily

0.18 stretched out. This nonuniform distribution of lipid chain

0.15 - lengths around the monolayer circumference is the origin of

012 (b the elastic “frustration energy” in inverted lipid phases
FIP/kgT 0.09 (Seddon, 1990). We shall see later that partial hexagonal

0.06 - (a) faceting of the lipid-water interface can greatly relieve this

0.03 - unfavorable energy.

0.00, 2|0 4|0 610 810 00 Ignoring for a moment the frustration energy, the propen-

sity of lipids in water to self-assemble into the hexagonal
zp/A rather than the bilayer phase may be assessed by comparing
the elastic energies of the monolayers constituting these

: U ) ) structures. Assuming that the area per molecule is the same

allel inclusions in a bilayer, witha) and without ¢ = 0) (b) allowance for in both ph . Z the two structures differ onlv in

tilt relaxation. The calculations correspond to a system Bitls 320kgT In _O phases, 1.eq B g, the two sfruc l‘; es eronly

A%'s, = —0.2,xa = 4 A, and6, = —0.1. EP = FLP/2L is the elastic their curvature elastic energf/ < (c — Co) (see Eq. 5). In

energy corresponding to one-half of a unit cell of lengtk= 1 A.). the bilayerc = 0, whereas in the hexagonal phase c, <

FIGURE 8 The lipid-mediated interaction between two infinite and par-
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0, where typicallyc,, ~ —1/30 A. Thus, for the hexagonal N\ T
. . N\
phase to be preferred over the bilayer, it is necessary that SN
(cy — Co)? < c2 This, in turn, implies that, must be RN Coe
negative and that,| > |cy)/2; in other words, the mono- —== =—— 624
layer spontaneous curvature should be “closec;tthan to //’////// \\\\ <
cg = 0. For typicalH,, lipid phases this mearjs,| > 1/60 /////////m\\\\\\\\\\
A. If the above considerations were exact, then, based on the 20NN

data in Table 1, we could conclude that once the headgroup

force constantB, falls below~250kgT A2 the C-16 lipid FIGURE 10 Two-dimensional projection of one “cylindrical” unit (wa-

system will prefer the hexagonal over the bilayer phaset.er tube surrounded by lipid monolayer) of tivg, phase. The pattern

Detailed lculati f th lastic f . in th shown was calculated usinB = 200kgT A2 and corresponds to the
€talled calculations o € elasuc iree energies In es%quilibrium value of the hexagonal lattice parameters 62 A (x; = 18

phases are shown in Fig. 9, revealing that the critical valug). The solid line marks the surface of headgroup interaction, and the
of Bis ~285kg T A?. Thus theH,, phase becomes dominant dashed lines drawn at several (arbitrary) positions represent the local chain
at values ofc, that are less negative than those implied bydirector.
simple curvature considerations.
The quantity shown in Fig. 9 is the elastic free energy
difference per lipid molecule between the (pure-lipidi, ~ headgroup repulsion constait,= 20T A% The equi-
andL, phases, librium value of the lattice parameter ls= 2V/3xg = 62
R A, (xs = 18 A). Qualitatively, the origin of monolayer

Afg~H = Fint — 5 faceting or, more generally, the noncircular profile of the

monolayer interface, is not difficult to explain. On the one

The first term on the right-hand side of this equation, "e"hand, the monolayer tends to bend (negatively and uni-

the average elastic energy per lipid in g phase, depends formly) so as to minimizéc,, — co| and hence the curvature

on the hexagonal lattice paramegr(see Fig. 5). It should elastic energy. This, in principle, can be achieved without

be noted that because the lipid t.a” length can_not. exceed t.hc ain tilting (i.e.,¢ = 0), but at the cost of extensive chain
length of the fully extended chain, a substantial increase in . » I . :

0 . : stretching (“frustration”) toward the hexagonal interstices.
xg implies a substantial faceting of the hexagonal water,

- X . Because chain stretching is highly unfavorable, the mono-
tubes, as shown in Fig. 10. Thusxgsincreases, an increas- 9 gny

. . L layer attempts to achieve = b, for as many chains as
ing fraction of the lipids in the hexagonal phase are actually Y P B 0 y

acked in a bilaver-like environment.  exolaining wh possible, including those that stretch toward the hexagonal
gf B~H _, 0 as 1k yé 0 (Fig. 9) ' P 9 Y interstices. This can only be achieved by extensive faceting
el B ' .

. . N and concomitant chain tiltingg( # 0), resulting in hexag-
Regarding s as the “order parameter” of tg, — H, onally shaped water regions, as in Fig. 10 (Seddon, 1990).

t_ransmon, one may Int(_arpret our model as predlctlng_ %Based on these considerations, we expect that the extent of
first-order transition. (This behavior can be correlated Wlthfaceting will decrease a8 increases relative ta. It should

the fact that the monolayer-mediated “interaction potential be mentioned that another theoretical model has recently

between the two hexagonal corners is that of a strongl)been proposed for thl, phase, taking into account only

damped oscillation.) It should be noted, however, that i he tilt degree of freedom (Hamm and Kozlov, 1998).

practice, the transition may involve intermediate structures Experimental support for the above conclusions is pro-

(Siegel :_;md Epanq, 1997) and thus d!ff(_arent order para metera.ded by recent x-ray-based reconstitution studies otthe
A typical faceting pattern of the lipid monolayer in the

H, phase is portrayed in Fig. 10. This particular pattern wa$hase (Tumer and Gruner, 1992). These experiments, per-

; aining to theH, phase of dioleoylphosphatidylethano-

calculated for a system with a strong preference for th . e -
- amine (forA > 75 A), reveal a significant deviation of the
hexagonal structure, as indicated by the small value of the ' .
monolayer profile from the circular symmetry.

The inclusion-induced L, — H,, transition
0.4
In this section we consider lipid systems which, in the

absence of inclusions, form stable bilayers, but upon the
addition of inclusions prefer the formation of &, phase.
More specifically, we shall consider lipids whose spontane-
0.2 1 | ous curvature is negative, yet not negative enough to stabi-
000 002 004 008 lize an inclusion-freeH,, phase. Thus the calculations re-

Ao ported bgllow are foB > 320kgT Az, implying |c)| <

(1/200) A~*. We shall consider several inclusion shapes, all

FIGURE 9 The elastic free energy per molecule inkhephase, relative Corresppndlng to negative hydrOphObIC mlsma_tCh’ as our
to the bilayer state. Curves—d correspond tB = 413, 350, 285 and ~ calculations show that long inclusions do not induce the
20k T A2, respectively. L, — H, transition.

. 0.2
AfFH" kT

0.0 pe=——===T__
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In Fig. 7 we see that, in some cases, the lipid-mediated In Fig. 11 we show, for two system&" and F® as
interaction between inclusions exhibits a distinct minimumfunctions ofn, and the common tangent construction for
at a certain, typically very small, inter-inclusion separation;determining the coexistence valuesmf and ng (see Eq.
e.g., for perfectly cylindrical inclusions a pronounced min-23). For both system& = 32kgT A? implying ¢, ~
imum appears at close contact. In these systems lateral1/100 A, (Table 1). Recall that for this value of, the
phase separation is expected to take place once the 28able form of the inclusion-free system is the lipid bilayer.
concentration of inclusions exceeds a certain (temperaturd=or both cases shown in Fig. 11, the hydrophobic mismatch
dependent) threshold value. This in-plane transition will beis strongly negatives, = —0.35 for the perfectly cylindri-
preempted by thé , — H, or any other phase transition calinclusions§, = 0, left diagran) ands, = —0.30 for the
involving a lower threshold concentration. In the following slightly barrel-like inclusions §, = 0.1, right diagram).
analysis we shall assume that this is indeed the case withhe free energy of the hexagonal phase was calculated
respect to thd., — H,, transition, or, in other words, we using the 1D scheme, based on the structural model de-
shall disregard the possibility that a 2D transition will scribed in Fig. 5. We have used = (V#/2)r,, where
compete with the lamellar-hexagonal transition. There ig, = 4 A denotes the radius of the inclusion. In geneféal,
another reason for not considering here the 2D transitiomndF® can be expressed as functions of either the distance
that is related to our model for calculatirief. In these between inclusionsx(, or rg) or the number of lipids per
calculations we have assumed that every inclusion interacigclusion g™ or n®). Note, however, that the number of
with a radially symmetric distribution of its neighbors. lipids per inclusion, e.g.n", depends not only om,, but
Furthermore, a continuum theory was used to represent theso on the interfacial profile, which, in turn, depends on the
free energy densityf. Both the radial symmetry assump- size and shape of the inclusion (as specifiedxay S,
tion and the continuum theory are valid at low peptideand6,).
concentrations, i.e., at relatively large separations between The solutions of the coexistence equations reveal that
inclusions. In Fig. 7 we see that the minimaFg generally  n® >> n", i.e., the transition takes place between a peptide-
appear at very short distancesr@( r,) = 20 A) corre-  dilute L, and a peptide-rickd,, phase. Moreover, from the
sponding to no more than about two lipid layers betweertwo cases shown in Fig. 11, as well as calculations per-
inclusions. Because the applicability of our calculations informed for several other systems (see below), it follows that
this range is questionable, we shall limit the useFffto  whenever a transition takes place, the number of lipids per
those regions where the concentration of inclusions is smalinclusion in theH,, phasen', is quite insensitive to varia-
sayng = 20. It turns out that this is the relevant concen-tions in either the inclusion or the lipid characteristics. This
tration regime for the., — H,, transition. Experimentally, behavior is a direct consequence of the fact that whefBas
2D protein aggregation within a planar bilayer is morevaries only moderately with® (at the relevant rangef"
abundant than the, — H,, transition (Marsh, 1995; Ryba exhibits a pronounced minimum a' = A". Thus the
and Marsh, 1992). The fact that in some systems the trarcommon tangent construction implies tifét will also be
sition to an inverted hexagonal phase preempts the 2Ehe lipid content of the hexagonal phase at coexistence.
transition may partly be related to their inability to form Furthermorei™ is mainly dictated by geometric packing
extended 2D aggregates. Indeed, it has been suggested tleanstraints in théd,, phase. To better understand this argu-
in the systems studied by Killian et al. (1996), repulsivement, recall that in the inclusion-fré#, phase, some of the
interactions between the interfacially anchored tryptophansipid chains are inevitably “frustrated.” If the chains bridg-
prevent 2D peptide aggregation. ing water tubes are relaxedb = by), the ones pointing

To find out whether thé., — H,, transition indeed takes toward the interstitial axes are strongly stretched, whereas if
place and, in case it does, to evaluate the lipid-inclusiorthe latter are relaxed, the former are overcompressed (see
concentration ratios in the two phases, one needs to solvégs. 5 and 10). Neither long nor short (two-ended) inclu-
the common tangent equations described in the Theorgions can amend the former situation. On the other hand,
section. short hydrophobic inclusions (with two hydrophilic anchor-

FIGURE 11 The free energy per inclusion in

the hexagonal phas& = FY, and the bilayer

phase,F® = FE + FB,,, as a function of the

number of lipids per inclusiom. Also shown is

the elastic contribution to the bilayer free energy, F/ksT
FE. The dotted lines describe the “common tan-

gent” construction, and the coexistence values of

n® andn", as obtained by numerical solution of

Eq. 23. The results shown correspond to a lipid

system withB = 320ksT A2, containing inclu- I, | L A
sions characterized t8, = —0.35,0, = 0 (left), 0 20 40 60 80 100
ands, = —0.30,60, = 0.1 (ight). nf n nB nH

~~~~~

F/kgT
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ing ends) can remedy the latter case by replacing the over-

compressed chains. This also implies that just a small and Lt

geometrically well-defined number of chairfé'(per inclu- 045 :

sion), all withb ~ by, are required to fill up the rest of the 0.40 1\ & (d)}

hydrophobic domain. Depending on the details of the inclu- B AR (©) :

sion shape, we find" ~ 5-10. The experimentally mea- T84 035 N0

sured value, for sho-helical peptides, is"™ ~ 6 (Killian 1

et al., 1996). The extent to which and the direction in which 0.30 _N

(barrel-like or vase-like) these peptides deviate from the 0.95

straight-cylindrical shape are not entirely obvious. ' N | | ; |
The moderate variation d¥(n®) in the inclusion-dilute 0.00 0.05 0.0 0.15 020 0.25

(large n®) regime is mainly due to the mixing tern,,;, 1/n

(n®). The elastic free energy;5(n®), is nearly constant

there and given, approximately, by thAe elastic deformatiornFIGURE 13 The number of inclusions per lipicn®/and 1™, at coex-
energy of an isolated inclusiotg, = FE. In the Theory istence, for different values of the mismatsh The two solid curves
section we have used this approximation, along With= show 1h® (left) and 1A (right) for B = 320k T A2 and6, = 0. Changing

FH _ pH aH . the inclusion shape, we obtain cunies$or a barrel-like inclusion €, =
F F™ (A7), to replace the two (exact) coexistence 0.1) and curves for a vase-like inclusionf, = —0.1). Increasing the

conditions (Eq. 23) with the single condition (Eq. 27). TO peadgroup parameter Br= 413, T A2 (¢, = 0) at6, = 0 leads to curves
test this approximation, we have used Eq. 27 to derive tha. Solid lines refer to the solution of Eq. 27. For caseb, andd we also
coexistence characteristics of the same system alreadjow the solution of the full “common tangent” equations, Eq.@8Ken
shown in Fig. 11. The results are shown in Fig. 12, revealingnes-
that the approximation is quite reasonable. More impor-
tantly, they confirm our interpretation that the, — H,
transition is driven by the interplay between the mixingcal (5, = 0), barrel-like 5 = 0.1), and vase-likef(, =
entropy of inclusions in the lamellar phase and the elastic-0.1) inclusions, all for lipids wittB = 320ksT A? (¢, ~
energy difference between the two phases. —(1/100)A™%). In case d the inclusions are cylindrical and
In Fig. 13 we collect the results of a systematic analysisthe lipid spontaneous curvatureds= 0 (B = 41T A?).
demonstrating the role of inclusion geometry and lipid One qualitative conclusion from the results in Fig. 13 is
elasticity in promoting theL, — H,, transition. As the that a large negative hydrophobic mismatch is a necessary
“control parameter” we use the hydrophobic mismagh, condition for the appearance of the bilayer—inverse-hexag-
Four types of systems are considered, corresponding tonal phase transition. (The bottom ends of the curves mark
different choices of inclusion shape and lipid spontaneoushe smallest value o0&, allowing the common tangent
curvature. For each of these systems a pair of (either solidonstruction.) Quantitatively, the coexistence characteristics
or dashed) curves shows hown?/(left) and 1A (right), are also affected by the lipid spontaneous curvature and the
the inclusion/lipid mole fraction ratio in the two coexisting inclusion shape. Large negative spontaneous curvatures and
phases, vary witB,. The solid curves were calculated using barrel-shaped inclusions facilitate the formation of the hex-
the simplified coexistence condition (Eq. 27). The dashedagonal phase. The difference between vase-like and cylin-
curves, shown for three of the four cases considered, werérical inclusions is very small.
calculated using the full common tangent construction (Eq. Earlier in this section it was noted that the morphological
23). Cases a, b, and c correspond, respectively, to cylindriransformation from the bilayer to the inverse-hexagonal
structure is driven by the gain in elastic deformation energy,
which is lower in the inclusion-containing hexagonal phase.
This driving force is opposed by the loss of inclusion-lipid

g_ mixing entropy, which, according to our model, was as-
4 _"I}]??':"FZ; """"""" sumed to be ideal (hence at maximum) in the bilayer phase
3L ¢ o and zero in the (ordered) hexagonal phase. Consequently,
F/ksT 2 F our estimates of 1P, the saturation inclusion content in the
TR bilayer phase, may be regarded as an upper bound to the real
s : FE value of this quantity. Another, rather extreme but theoret-
~15 %5610 60 80 100 ically interesting limit corresponds to the case where the
I inclusions are immobile not only in the hexagonal phase,

but also in the bilayer. In this case one expectdihe>H,,
FIGURE 12 Free energy per inclusion in the hexagonal pieeand  transition to appear at lower valuesmf. Furthermore, the
in the bilayer pha_seE., as a function of th_e numberof Ilpldsper inclusion, minimum values Oﬂ§A| necessary to induce the transition
n. Here, the elastic bilayer free enerdig, is approximated b¥E, (broken . .
line). The values oh® andn* at coexistence are derived using Eq. 27. The should b_e smaller than our previous eStlmaFeS' Both of these
system is the same as in the left diagram of Fig. B:(320ksT A2, 5, = expectations were corroborated by detailed calculations

—0.35, andg, = 0). (based on “freezing” the bilayer inclusions in ordered ar-
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rays). We found, for example, that for a system of perfectyAPPENDIX A: MONOLAYER AREA AND

cylindrical inclusions embedded in lipid bilayers with= VOLUME ELEMENTS

32T A? the threshold value of the hydrophobic mis- , o o .
Consider a symmetrical lipid bilayer. Its symmetry implies that its mid-

match is lowered from;A = —0.32 (See Fig. 13) 8, ~ plane is perfectly flat. We describe the hydrocarbon-water surface of, say,

—0.20. the external monolayer by the local chain lendfr), and tilt angle,o(r).
Both functions are assumed to depend only on the distandegm the
inclusion midaxis. Our aim is to determine the functiangr) andg,(r)
CONCLUDING REMARKS appearing, respectively, in our expressions for the interfacial area and

. . . . hydrophobic volume, A = di dr rga(r) and &/ = dy dr rg,(r), as
We had two major goals in this paper. One quite general'lntroduced after Egs. 13 and 14. Note thatahd d are determined by

goal was to present a new model for lipid-protein interac-y(), o(r), br + dr), andé(r + dr) as schematically shown in Fig. 14.
tion, based on a molecular-level representation of the prin- Defining b, = b(r) cosé(r), r, = r — b(r) sin 6(r), b, = b(r + dr)
cipal forces governing lipid self-assembly, namely, head-cos6(r + dr), andr, =r + dr — b(r + dr) sin6(r + dr), we can write
group repulsion, tail repulsion, and the hydrocarbon-water _ 1

surface energy. This molecular scheme, although approxi- dV'= dVe(ry, fz, by) +3 dVelry, 12, b, = by
mate, can account for many important characteristics of
lipid organization, including detailed structural information,
such as the extent of faceting in the inverse hexagonal
phase. One S|g'n|'f|c.;ant fgature of our r.no.lecular model in- dA = \/(bz — b2+ (ry— 1,2
volves the explicit inclusion of two variational degrees of

freedom: the chain length and the chain tilt angle. This hag ere the function

enabled us to evaluate the elastic deformation energy asso-
ciated with the presence of differently shaped hydrophobic
inclusions, in both the bilayer and inverse-hexagonal
phases. The molecular constants appearing in the basic

eyaluates the volume of a rectangle of width— r, and heighth that

expression for the molecular free energy can be eStlmater@/tates around the small angl¢.dExpanding & and dA to first order in @

by using known structural information or on the basis 0f eaqds to
more detailed theoretical calculations. More significantly,

+ %dVC(rZI r+ dr! bZ) - %dvc(rlv r, bl)

r,+r,
2 d¢

h 2 .2
dVe(ry, 1y, h) = 2 (r; — rpde

these molecular constants are intimately related to the elaa-v(r) — bcosf — EZ 0 + : sin 0(1 _ } sin26>
tic characteristics of the lipid layer. 2 2r 2
After presenting the molecular model and describing how b ,
to use it for calculating the lipid-mediated interaction be- — _sino cose(l — —sin 9>
tween inclusions, the model has been employed to calculate 2r 2
the inclusion-induced deformation energies of the bilayer
and inverse-hexagonal phases. It was then straightforwarg, (r) = (1 — sin 0)

to apply the model to the study of the inclusion-induced

L, — H, transition. This has been the second major goal of 1+b2+b2%67— 20/ sinf + bo’ cosh) (28)

this paper. Our analysis was motivated by systematic ex- v

perimental studies demonstrating the ability of some synwhere the prime denotes the derivative with respect fthe 1D versions

thetic helical peptides and gramicidin A proteins to promote‘?f t_hese functionsg,, (X) andga(X), are obtained from Eq. 28 by taking the

this transition in systems which, in the absence of thesd™® " =X~ >

inclusions, form stable bilayers (Killian et al., 1996; Morein

etal., 1997). In agreement with these experiments, we founde are pleased to thank J. Antoinette Killian for helpful suggestions and

that only short (“negative mismatch”) peptides can drive thefor preprints of her work. We thank Daniel Harries for helpful discussions

L, — H, transition. Consistent with experiment, we also 2" comments.

found that, at coexistence, the peptide content in the hex‘[his work v_vas_support_ed by the Isrgel Science Foundati_on and py the

agonal phase is much larger than in the lamellar phase. US-Israel Binational Science Foundation. SM thanks the Minerva Stiftung
Some predictions of the model still await experimental

verification. For example, our conclusion that the degree of

hydrophobic mismatch necessary to induce lthe— H,,

transition may be reduced by choosing lipids of large neg-

ative spontaneous curvature. Similarly, it remains to be seen

whether barrel-like proteins are, indeed, more effective pro-

moters of the transition than vase-like or cylinder-like pro-

teins. Finally, it should be mentioned that we have not

considered here the possibility that the — H,, transition FIGURE 14 The local packing properties of the monolayer are charac-

will b? pregmpted by other phase transitions, primarilyterized by the chain lengtt, and tilt angle.6, at the positions andr +
two-dimensional phase separation phenomena. dr. They determine the interfacial area,dand hydrophobic volume\d
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