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Lipid Transfer Between Vesicles: Effect of High Vesicle Concentration
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ABSTRACT The problem of the desorption of a lipid molecule from a lipid vesicle (donor) and its incorporation into another
vesicle (acceptor) at high acceptor concentrations, which has been investigated experimentally (Jones, J. D. and Thompson,
T. E., 1990. Biochemistry, 29:1593-1600), is analyzed here from a theoretical point of view, formulated in terms of the diffusion
equation with appropriate boundary conditions. The goal is to determine whether or not the observed acceleration of the
off-rate from a donor is caused by interaction with an acceptor vesicle at short range, or is simply the result of statistical
effects due the proximity of the acceptor and its influence on the probability of the test lipid returning to the donor. We
establish a correspondence between the theoretical parameters and the experimental, thermodynamic and dynamic variables
entering the problem. The solution shows that, because of the extremely high Gibbs activation energy for desorption of a
phospholipid, the process would always be first-order, even at very high vesicle concentrations. This means that acceleration
of the off-rate must be due to donor-acceptor interactions at short distances, as proposed in the experimental work.

INTRODUCTION

Biological problems are usually complex, by their nature,1989; Jones and Thompson, 1990), which is to say that it
because of the number and interdependence of the variablesecomes faster as the concentration of acceptor vesicles is
involved. Consequently, the space of possible configuraincreased. It was proposed that this second-order compo-
tions is very large, and their analysis and modeling oftement results from the interaction of two vesicles, a donor and
require the use of computer simulations. However, if thean acceptor, at short range, giving rise to an acceleration of
problems can be somehow simplified and rendered amenahe intrinsic off-rate from the donor (Jones and Thompson,
ble to treatment with analytical mathematical methods, theL990). However, one possibility mentioned by those authors
information obtained is often more precise and can be cadiut not quantitatively addressed is that this acceleration
in simpler terms. The present article is an attempt atould result simply from a statistical effect: at low concen-
presenting such a solution for a simplified problem intrations of vesicles the most probable fate of the lipid
biochemistry. molecule that comes off the donor is to go back into it
The problem we wish to consider is the desorption of abefore finding an acceptor vesicle, but at very high acceptor
lipid molecule from a lipid vesicle (donor) and its incorpo- concentrations this probability is altered because now there
ration into another vesicle (acceptor), which has been inis usually an acceptor vesicle in the vicinity. If this alterna-
vestigated experimentally by following the time dependenceive explanation were correct, then perhaps there would be
of a population of fluorescent (Roseman and Thompsonpo need to invoke donor-acceptor vesicle interactions to
1980) and, more recently, radioactively labeled phospholipexplain the increased off-rate from the donors at large
ids initially located in the donor vesicles (McLean and acceptor concentrations. Here, we analyze this problem to
Phillips, 1981). This requires that the donor and acceptofietermine whether or not statistical effects could be respon-
vesicles be separated for analysis of radio-label contentiple for the acceleration of the intrinsic off-rate, and con-
which is normally achieved by using donor and acceptorcjude that they could not—but the qualitative answer de-
vesicles with a different Charge (MCLean and PhIIIIpS, 1981)pends on the magnitude of the variables entering the
or size (Wimley and Thompson, 1991). It was found that atproblem in a decisive way.
small vesicle concentrations, the decay of radio-label in the \ve first define a simplified representation of the ex-
donors is first-order, that is, independent of the concentraperimental situation considered and formulate the math-
tion of acceptor (Roseman and Thompson, 1980; McLeaRmatical problem in terms of the diffusion equation with
and Phillips, 1981), but dependent only on the off-rate fromappropriate boundary conditions. We then establish a
the donor vesicle. At high vesicle concentrations the procesgorrespondence between the parameters in the mathematical
also has a second-order component (Jones and Thompsgfgdel and the experimental, thermodynamic, and dynamic
variables from a comparative analysis of the low acceptor
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and
r=L, ulL,t) =0, (4)

whereH is the coefficient of surface transfer at the vesicle/
water interface. Because the set of acceptor vesicles func-
tions as a sink of infinite capacity we can use a perfectly
absorbing (Dirichlet) boundary condition at= L. The
second boundary condition, mat= a (Eq. 3), deserves some
comment. Essentially it is a modified version of the radia-
tion boundary condition type (Carslaw and Jaeger, 1959).
Its meaning is easiest to see if we consider what happens in
a solution containing only donor vesicles. When equilib-
rium is reachedt(— =), there is no net transfer of lipid from
the vesicle to the solution. In this case the concentration in
solution {,) is the equilibrium concentration of lipid, that

is, the monomer solubility in water. In equilibrium, the net
flux across the vesicle surface is zedag(a, «)/or = 0, and

we obtain

Y

FIGURE 1 Schematics of the model.
Up(a, ) = quy(a, ).

Thereforeg is seen to be the equilibrium constant, that is,
micelle. For the present calculation, however, this is correcthe partition coefficient of the lipid between vesicle and
because the flip-flop movement of the phospholipids is verywater,
slow and does not enter the experimental problem either,
because only initial rates are measured in the experiments _ [Uoleq
discussed here. Including the two leaflets of the membrane [Ur]eq.”
in the mathematical model would require introducing an- ) o
other concentric sphere, and would complicate the solutiofphich has an approximate value qf = 10 (Tanford,

enormously and unnecessarily. In a typical experiment, the-980)- Aqolthefr way of '9°|k'”% atitis to think af as the
acceptor concentration is much larger than the donor corgXponential of a potentia difference between water and

centration. Therefore, the probability that another donor-veSiCIe (high.er' in water), cprresponding to the higher free
type vesicle will be the recipient of the desorbing, test ”pidenergy. o'f'a lipid mplecule in water.

molecule (radio-labeled) is practically zero. The set of ac- The initial conditions are

ceptor vesicles thus behaves as a sink of infinite capacity. r<a, uyr0) =", (5)

THEORY a<r<L, u(,0=0 (6)

The mathematical model consists of two concentric spheres FOF our present purposes, we do not need the full solution
of radii a andL (Fig. 1). Inside the small sphere € a) the ~ ©f this problem but only the time-dependence of the lipid
concentration isu, and the diffusion coefficient iD,, ~ concentration in the donor vesicle, that is, in the regien
Outside & < r < L), the concentration is;, and the & Which is given by
diffusion coefficient isD;. R

In each region (subscripts 0 and 1 are used as appropriate) () = 47TJ u(r, Hr2dr(dmadl3). @)

we must solve the diffusion equation
0

aug{ v DVAu(r, 1), (1) Let us define:
with the boundary conditions Y= \m
r=0, uy0,t)#o (2) b=L/a,
duga t) auy(a, t) and
r=a ;uo(aa,rt) o € = Ha/D,.
ar = ~HDdW@ Y ~qu(@ v In the Appendix we derive the solution of this problem

(3)  with the Laplace transform method (Carslaw and Jaeger,
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1959) and show that the expression tg(r, t) in Eq. 7is  which we see that the off-rate constant is

Kot = piDo/a? (9)

— — u2Dot/a?
Uo(r, ) = o %R”(C))e : ®) The expression for the rate constant in the activated state
"~ theory (Eyring, 1935) for a process of the type considered is

whereR (0)e *DJ%" are the residues at tieh singulari-  Of the form

ties of the solution in Laplace space and, in the summation,

the residue afu, = O is excluded. This completes the

solution. (see for example Hill, 1960), which has a simple and intu-
itive meaning:a®/Dy, is the time it would take for Brownian
diffusion to bring a lipid out of the membrane over the

RESULTS AND DISCUSSION distancea, considering only frictional interaction with wa-

. i . . . - . .
Let us first consider the constants entering our problem anffl; @1dAG™ is the Gibbs activation energy barrier, which
their numerical values. The parametgis the equilibrium contains the difference in interactions of the lipid with water

partition coefficient of the phospholipid between vesicle 2nd the membrane, including lipid-lipid interactions and the

and waterq = [Uglea/[Us]eq. It can be obtained from the hydrophobic effect. The activated state for this process
solubility of the Iip?gl' in water. which iss, ~ 10 10\ corresponds to a situation in which the desorbing lipid is

(Tanford, 1980), corresponding to a valuegpE 10%° after almost entirely out of the bilayer (Nichols, 1985). With the
conversion to units of molecules/@m values forD,, a, and the off-rate constant for POPC (1-

D, is the diffusion coefficient of a lipid molecule in water P&lmitoyl-2-oleoyl-phosphatidylcholine) o,y = 2.5 X

and is typically of the order of 5 10 ® cm?/s (Jones and 10 ® s, corresponding to a relaxation time of about 100
Thompson, 1990)D, is not so easy to estimate. Lateral N0Urs (Jones and Thompson, 1990) at 300 K, we can cal-

: ot +_
diffusion along the plane of the membrane in the donorculate a.G|bbs activation energy afs™ = 19 kcal/mol.
vesicle has little relevance to this process because we are (Note: Jones and Thompson (1990), following Nichols

interested here in movement that brings the lipid to thel1985), used a model due to Aniansson et al. (1976) that is

surface, leading to desorption. Moreover, what are meabased on a derivation by Kramers (1940), and calculated the
ibbs activation energy to be 23 kcal/mol. That model,

sured experimentally are initial rates of desorption: thus thLQ ’ Y - | !
flip-flop movement is not relevant eitheb, could then which obtains the off-rate using a formalism alternative to

correspond essentially to the wobbling of a lipid molecule inth€ activated state method, leads to an expression that is
and out of its cage in the lipid bilayer, as if this were a smallformally identical to that used here in Eq. 10. The difference
volume in the gas phase (interactions of the lipid tails will 'S thgti%rg%acte_rlstlc distané@ppears instead at ko =
hamper this movement, but we include this effecten Do/d°€ "~ ' & is the width of the free energy barrier
below). If we treat the situation as if the lipid would jump @POUtKT units belgw the maximum, which is of the order of
with a rate given by the corresponding velocity in the gast A: 8 ~ akTIAGY, a = 20 A being the length of the lipid
phase under identical conditions, for a lipid with a mass of M€ty in the bilayer. From an operational point of view,
M,, ~ 600 daltonsih ~ 102! g), a temperature of about over a temperature range that is not too broad, the two

300 K, and a characteristic distaree= 20 A (the length of formulas are equivalent: use of their expression simply
the lipid molecule), we would geb, ~ (a/2)(KT/m)¥2 ~ results in a slightly larger activation barrier (4 kcal/mol

. -y 2 _
103 c?/s. This is of course only an upper bound, becausd0ré) and in an additional factor af/5* = O(10°) that,
interaction of the lipid with water, as it comes out of the (09€ther, give a factor that has the same value as that
bilayer, will render the process slower than if it were in the Obtained using 19 kcal/mol for the activation barrier, as we

gas phase. The lower bound is the lipid diffusion coefficientd® here. We prefer to use the activated state formalism
in water, about 5x 10 ® cn?/s. Jones and Thompson because it leads to a simpler expression and the interpreta-
(1990) used this value and we shall do that as well. tion of the results becomes clearer.) _

Consider now the expression for the label concentration '€ meaning of the parameteris interesting and de-
given by Egs. 7 and 8. If the value @f, is much smaller ~SE€rves some discussion. From the 3rd boundary condition in
than all othery,, the corresponding rate will dominate the Ed- 3, We see that = Ha/D, is a dimensionless parameter,
entire process. Experimentally we know that, at low accepProportional to the coefficient of surface transfely, at the
tor concentrations, the desorption process is described by!3terface between vesicle and water. Thess essentially
single exponential law, exp(k.qt), controlled only by the the probab!llty of crgiﬂgg the activation parrl_er of width
off-rate constantk,;. We show in the Appendix that, in [OF desorptione ~ e == Actually, anticipating a result
fact, p, << m, for all n > 1, but let us for the moment derived in the Appendix, let us take
follow the consequences of this condition because they lead € = 1/3e AGHKT
to a better understanding of the physical meaning of the
terms in the solution. In this case, then, 2the total labeWwhich, with AG* = 19 kcal/mol, has the value = 6.66 X
concentration in the donors (t) = f,e *P¥% from 10715

koff — Dolaze—AGi/kT (10)
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We can now obtain the solution of our problem for the APPENDIX
case of low acceptor concentration, using these parameter. - S .
values:q _ 1010, 72 _ DO/Dl —1,b= 100 (dilute regime, With the substitutioru = v/r, the diffusion equation (Eqg. 1) becomes
b = L/a>> 1), ande = 6.66 X 10~ *°. We find that, using ov(r, t) oAv(r, t)

Eq. 8, u; < u, for all n > 1 (Appendix). Therefore, ot D a2 - (A1)
indeed, the smallest rate completely dominates the process
and all we need to take into account is this first polggat ~ APPlYing the Laplace transform,
The time dependence of the total lipid concentration in the

V(r,s) = J

©

donor vesicle is v(r, t)e Sdt (A2)

U(t) = foe 00 (11) °

) . ) . we obtain the subsidiary equation:
and the process is a single exponential decay, consistent

with the experimental observation in the dilute regime (Y _ Vi (A3)
(Jones and Thompson, 1990), with a rate constant for de- ar? o
sorption k. = u?Dy/a’. Also, as shown in the Appendix, , , ,
P«i = 3¢, giving P«i _ e—Aei/kT_ The solution for the region < a is

Now, for the case of very high acceptor vesicle concen- Vo(r, 9) = AcostAgr) + Bosinh(Ayr) + rfy/s,
tration we let the parametdr = L/a become small, corre- (A4)

sponding to a small average intervesicle distdndeseping
all other parameters fixed. But we find that,lif= 10 or
evenb = 1, we still obtainu, << u, foralln > 1, andu? =

3e, given any reasonable choice for the experimental con- . coshAqr) sinh(Aqr) o

stants. This means thaf is independent of. The answer Uo(r, s) = Ag r +Bo r + s° (AS)
to our problem is therefore clear: with the experimental

values for the constants entering the problem, the off-rate i§PP!ying the boundary condition (Eq. 2) requires thgt= 0, so we have

where), = VD, Now reverting back to the-notation, withV, = Uy,
we obtain

independent of vesicle concentration. In principle this R sinh(Aor)  fo
would not have to be so, judging only from the functional Uo(r,s) = Bof S (AB)
dependence of the solution bnBut the very small value of
€, which arises from the very large activation barrier for For the regioma < r < L the solution is
desorption, has that consequence. This conclusion is quali- :
. . : . . cosh{A;r) sinh(A,r)
tatively independent of the particular values assigned to the O,(r, ) = A + B, _ (A7)
parameters in the model. Even if the other parameters, r r
namelyDy, Dl'.andq' We_re somewhat off, the V_alue efis Using the boundary condition at= L (Eq. 4) this gives
so small that it determines the result. In particular By .
(the parameter that probably has the largest uncertainty), use 0. — By(sinh(A;r) — tanh(A;L)costAqr)) (A8)
1~ ]

of a different value would lead to a different, though still r

very small,e. Notice also thaDyu, appears as a product in ..

E yg ndeth nnot b Voﬁldpigd nd nE[)l while r wherer;, = VgD, andU, = V,/r. Now we use the boAundary conditions
q'_ ) a l..IS ca O e vare . ependently € Ier = a (Eq. 3); the first oneP,, (d/dr) U, = D, (d/r) U,, gives forB;,:

maining consistent with the experimental values of the

off-rate constants at low acceptor concentration. B _ —DoBy(costrs@)Aea — sinh(Aqa))
We conclude that a statistical effect arising from changes 1 D,(sinh(A;a) — tanh(A,L)coshA,a)
in probabilities of return to the donor vesicle caused by a — Macoshiha) + Matanh(dL)sinh(A,a))

shorter average acceptor-donor distance (high vesicle con-

centrations) cannot explain the acceleration of the off-rate ifySid the second BC at=
those conditions. If this were the only effect, the process a0, H(U, — qUy)
would always be first-order, as indicated by the present o - Do
calculation. Another explanation is therefore needed, such 0
as that presented by Jones and Thompson (1990), according obtain forB,,
to which a nearby acceptor induces a perturbation of the _ )
donor vesicle, resulting in an acceleration of the normal Bo = —Ha'foD,

desorption process. (sinh(\;a) — tanh(A;L)coshA,@) — A,a coshr,a)

a (Eq. 3),

+ MatanhAL)sinh(Aja))/
| thank Dr. Jeff Jones for his comments on the manuscript and Dr. Frits
Wiegel for many discussions. This work was supported in part by grants (s(coshAg@) A gaDyD;sinh(A,a)
PRAXIS/PCUA/P/B10/73/96 from FCT and FMRX-CT96-0004 from the
TMR program of the EU. — coshAga)AgaDyDjtanh(A,L)coshA,a)
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— cosh{Ag@)\ga?DyD;A;,cOSHA,a)

+ cosh{Aga)\ga?DyD A tant(A L) sinh(A,a)
— sinh(Aya2)DyD;sinh(A,a)

+ sinh(Aqa)DyD tanh(A;L)coshA;a)

+ sinh(A,a)DyD;A;a coshA,a)

— sinh(A,a)DyD;A;a tanh(A,L)sinh(A,a)
+ Ha sinh(A,a)D;sinh(A;a)

— Ha sinh(Aya)D,tanh(A;L)coshA,a)

— Ha?sinh(A;a)D;A,cosH()\ ;)

+ Hasinh(Aga)D A tanh(A;L)sinh(A,a)
+ HaqD,coshAga)Asinh(A,a)

— Ha’qD,coshAga)Astanh(A,L)coshA,a)
— HaqD,sinh(Aqa)sinh(A,a)

+ HaqDgsinh(Aqa)tanh(A;L)coshA,a))),

which, upon some rearrangement, and defining

y = \DyDy,
b= L/a,
Z= Agd,
and
€ = Ha/D,,
gives
foa

BO:

< zcoshz) — (1 — e)sinh(z) (A9)

v?0(z cosh{z) — sinh(2))
1 — yzcoth(z(1 — b)) )

What we need is the time-dependence of the amount of material inside

the sphere of radiug, that is,

477J up(r, t)rdr. (A10)
0
Thus, all we require is the inverse transforml,
= 1| oy, 9ed
Uo(r, t) = o Uq(r, s)e’ds (A11)
c

where C represents an appropriate contour of integration in the complex
plane (Carslaw and Jaeger, 1959). The solution in Laplace space (Eq. A6)
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is thus

ae sinh(zr/a)

Uo(r, s) = fo % - (A12)

rs(z coshlz) — (1 — e)sinh(2)

ey’q(z cosh(z) — sinh(2)]
1 — yzcoth(z(1 — b)) )

There are terms of the form sint@) (note thatz = \/s/Dga) both in the
numerator and in denominator of the fraction in Eq. A12, but, as long as
Vs represents the same branch in both, the fraction is a single-valued
function of s.

In order to use the residue theorem, we need the zeros of the denomi-
nator of the second term in the right-hand side of Eq. A12. There is a
first-order pole as = 0 (z = 0), which cancels out with that coming from
the initial condition. (It appears that there is another factoz @f this
denominator ag — 0, but the numeratoge sinhr/a), also contains this
factor asz — 0.) We are then left with the task of finding the valueszpf
other thanz = 0, such that:

ey’q(z cosh{z) — sinh(2)]
1 — yzcoth(z(1 — b))

—0. (A13)

zcoshz) — (1 — e)sinh(z) +

Eqg. A13 has no real roots. We follow the standard procedure (Carslaw and
Jaeger, 1959) and write

Z=ip
p=rla
and Eq. A12 becomes:

1 € Sin(pp,)] (A19)

Uo(r, S) = f0|:S - W

where

G(n) = pwcodu) — (1 — e)sin(u)

ey’q(n cosw) — sin(u))
1-yucot(u(l—D) -

(A15)

The solution is

1.
Uo(r, t) = ZmJ U(r, s)eslds
C

_ fo 1 esin(pp)
= 2 j s 56w |08
C

=fo|1— 2 R(D)],

n=0

(A16)

whereR,(t) is the residue at theth singularity. The residue at= 0 (n =

0) is 1 and cancels out the term coming from the initial condition, as
already noted following Eq. A12, so we shall not need to consider this
residue again. The expression

esinlpp)
spG(w)
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has real and simple poles at the zeros (all real and simplé)of. Using

w? = —s&lD, and definingr = Dgt/a?, the residue at each pole is given
by
Ry(7) = Ry(0)e™#, (A17)
where
2e sin(puy)
R/(0) = :
[BG(/U«)]
Pln| —
I K= pin
The expression for our solution is then
Uo(p, 7) = fo 2 Ry(0)e™, (A18)

n=1

where, in the summation, we already exclude the residye=a0 (s = 0),
as noted above. Carrying out the differentiation yields

IG(w)

Tow cogp) — psin(m) — (1 — e)cogp)

_ eYgusin(p)
1— ypu cot(u(1 — b))

€y’q(u cog(w) — sin(w))(—y cot(u(1 — b))
— yu(—1 = cof(u(1 — b)(1 — b))
(1 — yu cot(u(1 — b)))?

The residues are then given by

—2€ Sin(ppa)e 7/(p un(CO ) — BoSIN(its)
EyqunSin(Mn)
1= ypnCot(py(1 — b))

€Y 0(1rCO ) — SiN(pn))(—y COU (1 — b))
— Yin(—1 = cof(pn(1 = b)))(1 - b))

(1 - 'YIJanOt(IJ«n(l - b)))z

The concentration of lipid in the vesicle as a function of time is

— (1 — e)cosp,) —

U(7) =4 j Uo(p, T)p?dpl(4/3)

0

=32€@f&©ﬁ® (A19)

n=1 0

Experimentally (Jones and Thompson, 1990), in the dilute regime, theﬂe_%l 0

process is a single exponential decay with an off-rate conkfant 2.5 X
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FIGURE 2 Location of the zeros @(w) (poles).

account is this first polep,, and the time-dependence of the total lipid
concentration in the donor vesicle is

U(7) = foe . (A20)
This is consistent with the experimental observation of a single exponential
decay in the dilute regime. Notice thagDy/a® = k.

The effect of vesicle concentration, that is, the average distance to the
next vesicle, is represented by the parameterL/a in our model. It could
affect the mathematical problem in two ways: through the effebtaf the
relative location of the zergs,, of G(w) and through the effect df on the
values ofp, that contribute most of the decay. It turns out that, with the
values ofqg, y, ande given, the functionG(w) is independent ob (a plot
with b = 1.1 looks exactly the same as that in Fig. 2). The lack of
dependence oft, on b can be understood from the following consider-
ations. Some rearrangement®fw) = O leads to:

1, 1 yucotu(l—b)
”W*ulerwmwwfm+4'mm

where = ey?q. Now, let

1 - ypcot(u(l - b))

10 s ' at 300 K (a relaxation time of about 100 hours). In this regime
(b >> 1, sayb = 100), usingD, andD, = 5 X 107 ° cn?/s (y = Dy/D,
=1),a=20A,q=10% ande = 6.66 X 105 we can plot the function
G(w)/ . (Division by u takes out theu-factor in the numerator of Eq. Al4;
cf.comment preceding Eq. A13.) The plot (Fig. 2) shows that the first zero,
wy = 1.41x 1077, is much smaller than any other. A magnification of the
initial portion shows the location of the smallest zero (Fig. 3). Moreover,
for the first pole, afu = u,, the value of 3f3R,(0) pdp (essentially= 1)

is much larger than that for any other pole. Thus, all we need to take into

FIGURE 3 Location of the smallest zero.

=1 ucotua-oy +p #%2
then
. B (b—1+7) _
im fw) = o1+ +pb-D 1
n—0+
1 T T T
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0.6 _
04 - _
0.2 _
—0.2 o
—-0.4 + _
—~0.6 ]
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_1 1 Il |
0 0.05 0.1 0.15 0.2
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