Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Apr;76(4):1939–1950. doi: 10.1016/S0006-3495(99)77353-4

Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport.

S W Chiu 1, S Subramaniam 1, E Jakobsson 1
PMCID: PMC1300170  PMID: 10096892

Abstract

A gramicidin channel in a fluid phase DMPC bilayer with excess lipid and water has been simulated. By use of the formal correspondence between diffusion and random walk, a permeability for water through the channel was calculated, and was found to agree closely with the experimental results of Rosenberg and Finkelstein (Rosenberg, P.A., and A. Finkelstein. 1978. J. Gen. Physiol. 72:327-340; 341-350) for permeation of water through gramicidin in a phospholipid membrane. By using fluctuation analysis, components of resistance to permeation were computed for movement through the channel interior, for the transition step at the channel mouth where the water molecule solvation environment changes, and for the process of diffusion up to the channel mouth. The majority of the resistance to permeation appears to occur in the transition step at the channel mouth. A significant amount is also due to structurally based free energy barriers within the channel. Only small amounts are due to local friction within the channel or to diffusive resistance for approaching the channel mouth.

Full Text

The Full Text of this article is available as a PDF (274.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng A., van Hoek A. N., Yeager M., Verkman A. S., Mitra A. K. Three-dimensional organization of a human water channel. Nature. 1997 Jun 5;387(6633):627–630. doi: 10.1038/42517. [DOI] [PubMed] [Google Scholar]
  2. Chiu S. W., Clark M., Balaji V., Subramaniam S., Scott H. L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J. 1995 Oct;69(4):1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chiu S. W., Jakobsson E., Subramaniam S., McCammon J. A. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys J. 1991 Jul;60(1):273–285. doi: 10.1016/S0006-3495(91)82049-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiu S. W., Novotny J. A., Jakobsson E. The nature of ion and water barrier crossings in a simulated ion channel. Biophys J. 1993 Jan;64(1):98–109. doi: 10.1016/S0006-3495(93)81344-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiu S. W., Subramaniam S., Jakobsson E., McCammon J. A. Water and polypeptide conformations in the gramicidin channel. A molecular dynamics study. Biophys J. 1989 Aug;56(2):253–261. doi: 10.1016/S0006-3495(89)82671-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dani J. A., Levitt D. G. Water transport and ion-water interaction in the gramicidin channel. Biophys J. 1981 Aug;35(2):501–508. doi: 10.1016/S0006-3495(81)84805-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
  9. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  10. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li H., Lee S., Jap B. K. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nat Struct Biol. 1997 Apr;4(4):263–265. doi: 10.1038/nsb0497-263. [DOI] [PubMed] [Google Scholar]
  12. MacDonald R. C., Simon S. A. Lipid monolayer states and their relationships to bilayers. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4089–4093. doi: 10.1073/pnas.84.12.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Park J. H., Saier M. H., Jr Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol. 1996 Oct;153(3):171–180. doi: 10.1007/s002329900120. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg P. A., Finkelstein A. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):327–340. doi: 10.1085/jgp.72.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenberg P. A., Finkelstein A. Water permeability of gramicidin A-treated lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):341–350. doi: 10.1085/jgp.72.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schumaker M. F. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel. Biophys J. 1992 Oct;63(4):1032–1044. doi: 10.1016/S0006-3495(92)81668-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Singh C., Sankararamakrishnan R., Subramaniam S., Jakobsson E. Solvation, water permeation, and ionic selectivity of a putative model for the pore region of the voltage-gated sodium channel. Biophys J. 1996 Nov;71(5):2276–2288. doi: 10.1016/S0006-3495(96)79438-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES