
Significance of Na/Ca Exchange for Ca21 Buffering and Electrical Activity
in Mouse Pancreatic b-Cells

David Gall,* Jesper Gromada,# Isabella Susa,§ Patrik Rorsman,¶ André Herchuelz,* and Krister Bokvist#
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ABSTRACT We have combined the patch-clamp technique with microfluorimetry of the cytoplasmic Ca21 concentration
([Ca21]i) to characterize Na/Ca exchange in mouse b-cells and to determine its importance for [Ca21]i buffering and shaping
of glucose-induced electrical activity. The exchanger contributes to Ca21 removal at [Ca21]i above 1 mM, where it accounts
for .35% of the total removal rate. At lower [Ca21]i, thapsigargin-sensitive Ca21-ATPases constitute a major (70% at 0.8 mM
[Ca21]i) mechanism for Ca21 removal. The b-cell Na/Ca exchanger is electrogenic and has a stoichiometry of three Na1 for
one Ca21. The current arising from its operation reverses at ;220 mV (current inward at more negative voltages), has a
conductance of 53 pS/pF (14 mM [Ca21]i), and is abolished by removal of external Na1 or by intracellularly applied XIP
(exchange inhibitory peptide). Inhibition of the exchanger results in shortening (50%) of the bursts of action potentials of
glucose-stimulated b-cells in intact islets and a slight (5 mV) hyperpolarization. Mathematical simulations suggest that the
stimulatory action of glucose on b-cell electrical activity may be accounted for in part by glucose-induced reduction of the
cytoplasmic Na1 concentration with resultant activation of the exchanger.

INTRODUCTION

In the presence of insulin-releasing glucose concentrations,
the pancreaticb-cell generates a characteristic pattern of
electrical activity that consists of oscillations between a
depolarized plateau potential, on which action potentials are
superimposed (5 bursts), and repolarized electrically silent
intervals (for review see Henquin and Meissner, 1984). The
bursts of action potentials in theb-cell have been postulated
to represent a long-lasting action potential with properties
reminiscent of the cardiac action potential (Cook et al.,
1980). Indeed, when the voltage-gated K1 channels are
blocked with tetraethylammonium, electrical activity in the
b-cell consists of long-lasting action potentials strikingly
similar to those encountered in the heart (Atwater et al.,
1979; Santos and Rojas, 1989; Rorsman et al., 1992). In the
cardiac myocyte, Na/Ca exchange is the major mechanism
of Ca21 extrusion, restoring basal Ca21 levels between
heartbeats (Bers, 1991). The cardiac Na/Ca exchange is
electrogenic, with a stoichiometry of three Na1 for one
Ca21 (Eisner and Lederer, 1985; Kimura et al., 1987; Ehara
et al., 1989). The operation of the exchange thereby gives
rise to an inward (depolarizing) current, which prolongs the
depolarized plateau phase of the myocyte action potential
(Egan et al., 1989; Noble et al., 1991). The Na/Ca exchanger
was recently cloned from heart (Nicoll et al., 1990). Three
genes coding for three different exchangers (NCX1, NCX2,

and NCX3) have been identified (Nicoll et al., 1990, 1996;
Li et al., 1994). Further variability results from alternative
splicing of NCX1, and tissue-specific variants have been
identified and called NaCa1, NaCa2, . . . ,NaCan (Kofuji et
al., 1994; Lee et al., 1994). Pancreatic islets, purified
b-cells, and RINm5F cells all express the isoforms NaCa3
and NaCa7, whereas the heart expresses NaCa1 (Kofuji et
al., 1994; Lee et al., 1994; Van Eylen et al., 1997). (A new
terminology has been proposed to designate NCX1 isoforms
as NCX1 followed by a number to indicate the splicing
isoform. Hence NaCa1, NaCa3, and NaCa7 are referred to
as NCX1.1, NCX1.3, and NCX1.7, respectively (Quednau
et al., 1997).) The heart and theb-cell isoforms of the
exchanger show 94% and 96% identity, respectively.

Here we have used the combined whole-cell configura-
tion of the patch-clamp technique and microfluorimetry to
investigate whether the Na/Ca exchange is activated during
b-cell electrical activity, to estimate its contribution to
[Ca21]i-removal, and to determine the extent to which elec-
trical activity may be shaped by the operation of the ex-
changer.

MATERIALS AND METHODS

Cell preparation

Mouse pancreatic islets were isolated from NMRI mice (Alab, Sollentuna,
Sweden; Bomholtgård, Ry, Denmark; or IFFA CREDO, Brussels, Bel-
gium). The mice were stunned by a blow against the head and killed by
cervical dislocation, and the pancreas was quickly removed and cut into
small pieces. Pancreatic islets were then isolated by collagenase digestion.
Single cells were prepared by shaking in Ca21-free medium essentially as
previously described (Rorsman and Trube, 1986). Isolated cells were then
plated on glass coverslips (for microfluorimetry) or Petri dishes and kept in
tissue culture for up to 2 days in RPMI 1640 culture medium supplemented
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with 5 mM glucose, fetal calf serum (Sigma, St. Louis, MO; 10% by
volume), 100mg/ml streptomycin, and 100 IU/ml penicillin. Experiments
on glucose-stimulatedb-cell electrical activity were carried out on freshly
isolated intact pancreatic islets as previously described (Renstro¨m et al.,
1996).

Electrophysiology

Whole-cell Ca21 currents were recorded in the perforated patch whole-cell
configuration (Horn and Marty, 1988) of the patch-clamp technique (Ha-
mill et al., 1981). Na/Ca-exchange current-voltage (I-V) relationships were
recorded in the conventional whole-cell configuration. All experiments
were made using an EPC-7 patch-clamp amplifier (Heka Electronics,
Lambrecht, Germany), except the recordings of Fig. 6A, which were made
using an EPC9 patch clamp (Heka Electronics, Pfalz). The current signal
was filtered at 0.5–2 kHz and digitized at 1–4 kHz, using the programs
pClamp (versions 5.5 and 6.0; Axon Instruments, Burlingame, CA) or
pulse (version 7.89; Heka Electronics) in conjunction with a Labmaster
(Axon Instruments) or ITC-16 AD/DA converters (Instrutech, New York,
NY), respectively, and stored in a computer pending later analysis. Cur-
rent-clamp recordings were made using the perforated patch whole-cell
configuration, and the voltage signal was filtered at 500 Hz and sampled at
1 kHz.

Fluorescence measurements

Cytosolic Ca21 was measured by dual-wavelength fluorimetry, using
fura-2 (Molecular Probes, Eugene, OR), and recorded at video rate (25
samples/s) with an IonOptix imaging system (IonOptix Corp., Milton, MA)
as described elsewhere (Bokvist et al., 1995). Excitation was set at 340/380
nm, and emission was recorded at 510 nm. Before the experiments, the
cells were loaded with 0.2mM fura-2 AM for 20 min. The fluorescence
signal was calibrated by dialyzing cells with various Ca21/EGTA buffers
with known [Ca21]i values. TheKd value was then obtained by fitting these
data to the equation of Grynkiewicz et al. (1985).

Solutions

The standard extracellular solution was composed of (in mM) 138 NaCl,
5.6 KCl, 2.6 CaCl2, 1.2 MgCl2, 5 glucose, and 5 HEPES (pH 7.40 with
NaOH). In the Na1-free solutions NaCl was replaced by either 138 mM
choline-Cl or 237.4 mM sucrose. The replacement of NaCl with sucrose
resulted in the development of a positive liquid junction potential of;20
mV (i.e., the voltage was250 mV when the amplifier reported270 mV).
All voltages quoted in this paper have been corrected for this shift. To
block voltage-gated Ca21 currents, the extracellular medium was supple-
mented with 20mM nifedipine in the experiments determining theI-V
properties of the exchanger. In the latter experiments, the pipette solution
consisted of (in mM) 95 CsCl, 30 NaCl, 1 MgCl2, 5 HEPES (pH 7.35 with
CsOH), 3 MgATP, 10 EGTA, and 9.75 or 10 CaCl2. The intracellular pH
was adjusted to 7.35 to increase the activity of the exchanger (see Plasman
and Herchuelz, 1992). The free Ca21 resulting from these Ca21/EGTA
mixtures was determined as 3.5mM and 14mM by direct measurements in
3-ml aliquots of the pipette solution, using the Ca21-indicator BTC (Mo-
lecular Probes) and a spectrophotometer (LS-50B; Perkin-Elmer, Bucking-
hamshire, England). In some experiments, the pipette also contained XIP
(exchange inhibitory peptide) (Li et al., 1991), synthesized as previously
described (Van Eylen et al., 1994).

To estimate the net current attributable to the operation of the Na/Ca
exchanger (Figs. 3 and 4), the current responses evoked by voltage ramps
in the complete absence of extra- and intracellular Na1 (to eliminate both
the forward and reverse mode operations) were subtracted from those
recorded under the control conditions.

In the perforated patch experiments the pipette solution consisted of (in
mM) 81 Cs2SO4, 10 KCl, 1 MgCl2, and 5 HEPES-KOH; 0.24mg/ml
amphotericin B (Sigma) was included in the pipette solution to establish

electrical contact with the cell interior. The extracellular medium used for
the recordings of electrical activity from intact islets consisted of (in mM)
140 NaCl, 3.6 KCl, 0.5 NaH2PO4, 2 NaHCO3, 2.5 CaCl2, 5 HEPES, and
11 glucose (pH set at 7.4 with NaOH). Sodium was replaced by equimolar
amounts of choline chloride where indicated. Similar data were observed in
the absence or the presence of atropine (10mM) to avoid any potential
cholinergic effects of choline. The contribution of endoplasmic reticulum
Ca21-ATPase (SERCA) to the overall Ca21 buffering was assessed by
inhibiting its operation by pretreatment with 0.5mM thapsigargin
(Alomone, Jerusalem, Israel) for 20 min.

Mathematical model

For the modeling ofb-cell electrical activity we have used the determin-
istic model for b-cell bursting by Sherman et al. (1988). This model
contains three ionic currents: delayed rectifying K1 channels (IKDr), volt-
age-dependent Ca21 channels (ICa), and Ca21-activated high-conductance
K1 channels (IKCa). We have inserted the necessary parameters describing
the Na/Ca exchange current (INa/Ca) into this model. Thus, using Kirchoff’s
laws, the membrane potential (Vm) satisfies the equation

Cm z
dVm

dt
5 2IKDr 2 ICa 2 IKCa 2 INa/Ca (1)

where

INa/Ca5 Cm z g#Na/Caz S ~@Ca21#i!
n

~@Ca21#i!
n 1 K1/2

n D z ~Vm 2 VNa/Ca! (2)

and

VNa/Ca5
R z T

F
z S3 z ln

@Na1#o

@Na1#i
2 ln

@Ca21#o

@Ca21#i
D (3)

The Ca21 affinity constant (K1/2), the Hill coefficient (n), and the normal-
ized whole-cell Na/Ca exchange conductance (g#Na/Ca) in Eq. 2 were set at
1.5 mM, 5, and 44 pS/pF. These values produced the best fit to our
experimental data. Ideally, the parameters in Eq. 2 should reflect the
biophysical properties of the Na/Ca exchange in theb-cell. However, steep
[Ca21]i gradients develop in theb-cell during Ca21 entry through the
voltage-gated Ca21 channels, and the fura-2 measurements report only the
average of the entire cell (cf. Bokvist et al., 1995). The submembrane Ca21

concentration sensed by the Na/Ca exchange is accordingly likely to be
severalfold higher than that indicated by the [Ca21]i recordings. As a
consequence, when fitting Na/Ca exchange activity to the average [Ca21]i

levels detected with fluorometry, the resulting Ca21 affinity (K1/2) and
cooperativity coefficient (n) will also reflect the diffusion gradients in the
cell. TheK1/2 value of 1.5mM should therefore be understood as reflecting
a much higher affinity constant of the exchange protein. However, it should
be kept in mind that the mathematical models we have used operate with
average [Ca21]i. To provide the best possible coupling between model
parameters and experimental data, we have chosen to correlate exchanger
activity with average [Ca21]i, i.e., the data underlying Fig. 1. The Na/Ca
exchange permeability (g#Na/Ca) was estimated from the data in Fig. 3,
yielding a value of 44 pS/pF.

Considering that the Na/Ca exchanger is a Ca21 transport protein, the
exchange current also has to be included in the equation describing the
Ca21 balance in the cytoplasm:

d@Ca21#i

dt
5 f z ~2a z ~ICa 2 2 z INa/Ca! 2 kCa z @Ca21#i! (4)

where f is the fraction of free Ca21 in the cytoplasm,a is a factor for
converting current to change in cytosolic concentration per time unit, and
kCa is a parameter that describes theb-cell Ca21 removal. When modified
as noted above, the set of equations of Sherman et al. (1988) was used for
our simulations. Furthermore, the (fixed) parameters were set at the values
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used by Sherman et al. (1988), with the exception of the parameters
pertaining to the Na/Ca exchange. The equations of our model were solved
numerically, using a variant of the Runge-Kutta method implemented in
the NAG library (Numerical Algorithms Group, Downers Grove, IL).
Computations were performed on an SGI R10000 workstation (Silicon
Graphics, Mountain View, CA).

Data analysis

Exponential functions were fitted to the data points by the least-squares
method ([Ca21]i) or a Levenberg-Marquardt algorithm (tail currents). The
[Ca21]i removal rates in Figs. 1B and 5 were determined as the linear slope
within 60.2–0.4-mM intervals of [Ca21]i. To compensate for variations in
cell size, current amplitudes have been normalized against cell capacitance.
Data are presented as mean values6 SEM. Statistical significances were
evaluated using Student’st-test for paired (Figs. 1, 2, and 6) or unpaired
(Figs. 3–5) data.

RESULTS

Na1 dependence of Ca21 removal

Fig. 1 A shows the [Ca21]i transients induced by 2-s depo-
larizations from280 mV to 0 mV in the presence (left) and
absence (right) of external Na1. Removal of Na1 decreased
the rate of Ca21 removal (d[Ca21]i/dt). The removal rates at
different [Ca21]i were estimated from the linear slope of the
falling phase of the [Ca21]i transient around each [Ca21]i

level of interest. This procedure could not be applied to
[Ca21]i levels above 1.6mM, and to estimate the removal
rate at higher [Ca21]i, a single exponential was fitted to the
decay phase of the [Ca21]i transient. This procedure yielded
time constants of 2.06 0.2 s and 2.66 0.2 s in the presence
and absence of extracellular Na1 (p , 0.01,n 5 6), respec-

tively. These mean values for the time constants correspond
to initial removal rates (at the peak of the [Ca21]i transient
estimated from d[Ca21]i/dt at t 5 0) of 2200 and 1400
nM/s; the higher value is the removal rate in the presence of
Na1. This difference cannot be attributed to the peak
[Ca21]i being different, because removal of Na1 had no
statistically significant effect on the amplitude of the
[Ca21]i transients (4.36 1.9 mM and 3.86 1.0 mM in the
absence and presence of Na1, respectively;n 5 6). Indeed,
the removal rates were lower in the absence than in the
presence of Na1 at all [Ca21]i $ 1 mM (Fig. 1 B). The
removal of Na1 had no statistically significant effect on
basal [Ca21]i (0.19 6 0.03 and 0.256 0.05 mM in the
presence and absence of Na1, respectively).

Slow Na1-dependent tail currents reflect the
operation of the Na-Ca exchanger

In heart cells, the Na/Ca exchanger has been reported to be
electrogenic, with a stoichiometry of three Na1 for one
Ca21 (Kimura et al., 1987; Ehara et al., 1989). When the
exchanger operates in the forward mode, each cycle will
consequently be associated with the net uptake of one
positive charge and thereby gives rise to an inward current
(INa/Ca). Inward tail currents, attributable to the operation of
the exchanger, have been observed in smooth muscle and
cardiac cells after a depolarization (Beuckelmann and Wier,
1989; Zhou and Lipsius, 1993; McCarron et al., 1994). Fig.
2 illustrates the tail current observed after a 2-s depolariza-
tion from280 to 0 mV in a singleb-cell. In the presence of
external Na1, there is both a rapid and a slow component of

FIGURE 1 Removal of extracellular sodium reduces the rate of Ca21 removal. (A) Calcium transients resulting from a 2-s depolarization from a holding
potential of280 to 0 mV in the presence (left) and the absence (right) of extracellular Na1 (replacement by sucrose). To facilitate comparison, the time
course of the [Ca21]i transient in the presence of Na1 is shown as a dotted line and superimposed on the [Ca21]i transient observed in the absence of Na1.
Peak [Ca21]i, the time constant for the recovery of [Ca21]i, and basal [Ca21]i in this experiment were 2.7mM, 2.3 s, and 0.16mM versus 2.5mM, 2.8 s,
and 0.19mM in the presence and absence of extracellular Na1, respectively. (Inset) Recovery of the Ca21 transient shown in an expanded time scale. (B)
[Ca21]i recovery rates, d[Ca21]i/dt, at various [Ca21]i levels in the presence (filled circles) and absence (replacement by sucrose;empty circles) of
extracellular Na1. Data are mean values6 SEM for five different experiments. **p , 0.01.
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the tail current. Removal of external Na1 selectively abol-
ished the slow component, whereas the rapid part (presum-
ably reflecting the rapid closure of the L-type Ca21 chan-
nels) was unaffected. In this cell, the slow Na1-dependent
tail current component had an amplitude of 4 pA. The slow
tail current reappeared upon reintroduction of Na1 into the
extracellular medium (not shown). Interestingly, the time
course of this Na1-dependent tail current component paral-
leled the recovery of the [Ca21]i increase elicited by the
voltage-clamp depolarization. Fig. 2B shows the average of
the [Ca21]i traces and the corresponding Na1-dependent tail
currents from the six experiments in which external Na1

had been replaced by sucrose. Similar observations were
made when Na1 was replaced by choline (not shown). The
integrated tail current amounted to 1.56 0.2 pC/pF in the
presence of Na1 and fell to 0.76 0.1 pC/pF when extra-
cellular Na1 was replaced by sucrose or choline (p , 0.001;
n 5 18). We attribute the difference, 0.86 0.2 pC/pF, to the
net charge carried by the exchanger.

Voltage-dependent operation of the
Na/Ca exchanger

The current-voltage relationship of the Na/Ca exchange
current is investigated in Fig. 3. For this series of experi-
ments, [Ca21]i was buffered at 14mM to activate the
exchanger. Experiments were conducted using Cs1-filled
electrodes, and nifedipine was included in the bath solution
to suppress voltage-dependent K1- and L-type Ca21 cur-
rents. TheI-V relationships were obtained by ramping the
membrane potential between270 mV and130 mV. The
ramps were applied under control conditions (black) and
after the replacement of Na1 with choline or sucrose

(dashed tracesin Fig. 3,A andB). It is clear that, regardless
of whether Na1 was replaced by choline or sucrose, theI-V
relationship is flatter in the absence than in the presence of
Na1. The same effect was obtained when the exchange
inhibitory peptide (XIP) (Li et al., 1991) was dialyzed into
the cell interior at a final concentration of 10mM (Fig. 3 C).
These data are summarized in Fig. 3D, where the net
Na1-dependent or XIP-sensitive currents for the different
experimental conditions are displayed. TheI-V relationships
are essentially linear and reverse at;220 mV.

The amplitude of the currents, measured at a membrane
voltage of270 mV, were 3.96 0.3 pA/pF under control
conditions (n 5 21), 2.06 0.2 pA/pF after replacement of
Na1 with sucrose (p , 0.001 versus control;n 5 16), 1.56
0.2 pA/pF when choline was substituted for Na1 (p ,
0.001;n 5 13), and 1.76 0.1 pA/pF when the operation of
the exchanger was inhibited by 10mM XIP (p , 0.001;n 5
16). Thus the Na1-dependent component accounts for 1.9–
2.4 pA/pF. The observed dependence on external Na1,
taken together with the action of XIP, constitutes good
evidence for voltage-dependent operation of the exchanger
in pancreaticb-cells.

Effects of extra- and intracellular Ca21 on INa/Ca

Assuming that theb-cell Na/Ca exchanger operates with a
stoichiometry of 3Na:1Ca, as in myocytes (Kimura et al.,
1987; Ehara et al., 1989), the reversal potential (ENa/Ca) of
the exchanger is given by the equation

ENa/Ca5 3 z ENa 2 2 z ECa (5)

whereECaandENa denote the Nernst potentials of Ca21 and
Na1, respectively. Fig. 4A shows theI-V relationships of

FIGURE 2 Whole-cell currents resulting from Ca21 extrusion. (A) Whole-cell Ca21 currents recorded in the perforated patch configuration in response
to 2-s stimulations to 0 mV from a holding potential of280 mV. Shown are the currents in the presence and absence of extracellular Na1 (replacement
by sucrose). Note the slow tail current (amplitude 3–4 pA) after the depolarization in the presence of Na1. (B) Time course of [Ca21]i recovery and the
Na1-dependent tail current. Traces represent the average data of six experiments in which Na1 had been replaced by sucrose.
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the Na/Ca exchanger recorded in the presence of 1, 1.6, 2.6,
and 5 mM extracellular Ca21. The cytoplasmic Ca21 con-
centration was buffered at 14mM to (maximally) activate
Na/Ca exchange. The observed reversal potentials at these
different extracellular Ca21 concentrations ([Ca21]o) were
1, 29, 222, and238 mV. The shift inENa/Ca of 39 mV
observed when [Ca21]o was increased from 1 to 5 mM
agrees favorably with that expected theoretically (41 mV).

Fig. 4B illustrates the influence of the intracellular Ca21

concentration on theI-V relationship of the Na/Ca ex-
changer. Reducing [Ca21]i from 14 to 3.5mM changed
ENa/Cafrom 222 to253 mV. Again, this change of 31 mV
is close to that predicted theoretically (36 mV) for a fourfold
change in [Ca21]i. Changing [Ca21]i also influenced the
slope of theI-V relationship, and the normalized conduc-
tance fell from 53 to 12 pS/pF when [Ca21]i was lowered
from 14 to 3.5mM. This is consistent with the notion that
[Ca21]i determines the activity of the Na/Ca exchanger in
the pancreaticb-cell, as suggested by analogy to the situa-
tion in cardiac myocytes (Bridge, 1995).

Effects of the Ca21-ATPase inhibitor thapsigargin
on [Ca21]i handling

Fig. 5 A shows the [Ca21]i transients induced by 2-s depo-
larizations from280 mV to 0 mV under control conditions
(gray) and after pretreatment (20 min) with 0.5mM thap-
sigargin (black trace), an inhibitor of SERCA (Thastrup et
al., 1990). Exposure of theb-cell to thapsigargin had pro-
nounced effects on the rate of Ca21 removal. The time
constants for the recovery of [Ca21]i were 4.66 0.7 s and
1.8 6 0.25 s in the presence and absence of thapsigargin
(p , 0.01, n 5 5, in each group), respectively. Fig. 5B
shows the Ca21 removal rate at different [Ca21]i. In contrast

to the component of Ca21 removal dependent on external
Na1, thapsigargin pretreatment had marked effects, even at
[Ca21]i below 1mM. Thapsigargin had only a slight effect
on the amplitude of the [Ca21]i transient, and peak [Ca21]i

increased from 0.96 0.1 mM under control conditions to
1.2 6 0.1 mM after inhibition of the Ca21-ATPase (values
not statistically different).

b-Cell electrical activity

The effects of lowering (replacement by choline) extracel-
lular Na1 ([Na1]o) from 138 to 30 mM on glucose-induced
electrical activity of ab-cell in an intact pancreatic islet are
presented in Fig. 6. Reduction of the external Na1 concen-
tration had several effects on electrical activity, including
membrane repolarization (affecting both the plateau and
interburst voltage) and a shortening of both burst duration
and the burst interval (Fig. 6A). Expanded details of the
electrical activity are shown in Fig. 6B. The action on
membrane potential is consistent with the Na/Ca exchanger
giving rise to an inward current. Inhibition of the exchanger
will remove this depolarizing influence, thus causing mem-
brane repolarization. In a series of five experiments, the
most negative membrane potential recorded in the interburst
interval fell from2556 4 to2606 3 mV (p , 0.025), and
the plateau potential hyperpolarized from239 6 4 to
244 6 4 mV (p , 0.01) upon removal of Na1. In addition,
the spike amplitude increased from 266 3 mV in the
presence of Na1 to 396 3 mV in its absence (p , 0.025),
and the burst duration was reduced from 166 4 to 96 2 s
(p , 0.05). In addition, the interval between two successive
bursts was reduced from 346 4 s under control conditions
to 12 6 2 s (p , 0.025) in the absence of Na1. The same
results were obtained when Na1 was replaced by choline in

FIGURE 3 The Na/Ca exchangerI-V re-
lationships. (A) Whole-cell currents re-
corded in the presence (solid trace) and ab-
sence (dashed trace) of extracellular Na1 in
response to a voltage ramp going from270
to 130 mV. Na1 was replaced by choline.
(B) As in A, but Na1 was replaced by su-
crose. (C) As in A, but instead of removing
external Na1, we blocked the Na/Ca ex-
change by intracellular application of 10
mM XIP. (D) Net contribution of the Na/Ca
exchanger obtained by subtracting the aver-
ageI-V relationship obtained after inhibition
of the exchanger (by replacement of extra-
cellular Na1 with choline1 or sucrose or by
inclusion of XIP in the pipette solution).
Note the similarity of theI-V relationships.
The curves shown represent the average of
21 (control), 16 (Na1 replaced by sucrose),
13 (Na1 replaced by choline1), and 16
(XIP) cells.
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the presence of atropine (10mM). We can accordingly
discard the possibility that the effects of substituting cho-
line1 for Na1 are mediated by muscarinic receptors (cf.
Hermans et al., 1987). Thus removal of external Na1 in the
presence of atropine reduced the burst duration from 126
4 to 96 3 s (p , 0.05;n 5 4) and increased the interburst
membrane potential potential (260 6 5 mV versus254 6
6 mV in control). A comparison of a burst in the presence
of 140 Na1 and a burst where [Na1]o was lowered to 30
mM by replacement of Na1 with choline in the presence of
10 mM atropine is shown in Fig. 6C.

DISCUSSION

We have combined whole-cell configuration of the patch-
clamp technique with microfluorimetry to characterize the
biophysical properties ofINa/Ca in the insulin-secreting

b-cell, its overall significance for the regulation of [Ca21]i,
and how it may influence glucose-induced electrical activity
in pancreatic islets. Here we consider a few particularly
interesting aspects of this work.

The Na/Ca exchanger participates in the
regulation of [Ca21]i

This study provides direct evidence for Na1-dependent and
electrogenic extrusion of Ca21 in voltage-clamped mouse
pancreaticb-cells. This component of Ca21 removal be-
comes significant when [Ca21]i rises above 1mM. The
observation that the contribution of the Na1-dependent
component of Ca21 removal is not detectable at [Ca21]i

below 1 mM argues that the Na/Ca exchanger does not
participate in the maintenance of basal [Ca21]i. This notion
is in keeping with the reported low affinity of the exchanger
for Ca21 (Barcenas-Ruiz et al., 1987; Hilgemann et al.,
1992). Furthermore, even at the end of a 2-s voltage-clamp

FIGURE 4 The influence of external and internal Ca21 levels on the
operation of the Na/Ca exchanger. (A) Net wholeI-V relationships recorded
at 1, 1.6, 2.6, and 5.0 mM extracellular Ca21. The traces shown are
averages of 7 (1 mM), 7 (1.6 mM), 13 (2.6 mM), and 7 (5 mM Ca21) cells.
Extracellular Na1 was replaced with choline1 to block the exchange
current. (B) I-V curves recorded at 3.5mM or 14 mM [Ca21]i with an
external Ca21 concentration of 2.6 mM. The curves represent the averages
of 13 (14mM) and 8 (3.5mM Ca21) different cells.

FIGURE 5 Effects of thapsigargin on [Ca21]i buffering. (A) Calcium
transients resulting from a 2-s depolarization from a holding potential of
280 to 0 mV under control conditions and after pretreatment of theb-cell
for 20 min with 0.5mM thapsigargin. To facilitate comparison, the [Ca21]i

transient under control conditions is shown superimposed on the [Ca21]i

transient observed in the presence of the ATPase inhibitor. Peak [Ca21]i

and the time constant for the recovery of [Ca21]i in this experiment were
1.1mM and 7.2 s versus 0.92mM and 1.7 s in the presence and absence of
thapsigargin, respectively. (B) [Ca21]i recovery rates, d[Ca21]i/dt, at var-
ious [Ca21]i levels in the presence of thapsigargin (�) and under control
conditions (Œ). Data are mean values6 SEM for five different experi-
ments in each group. *p , 0.05; **p , 0.025.
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depolarization, when [Ca21]i exceeds 4mM, the Na/Ca
exchanger does not account for more than 36% of the Ca21

removal rate. These considerations indicate that although
the exchanger clearly participates in the restoration of
[Ca21]i, additional Ca21-buffering mechanisms with higher
affinity for Ca21 and capacity must also be operational (see
below). In fact, it is even possible that our value for the
contribution of the Na/Ca exchanger to the overall Ca21

buffering represents an upper estimate. This would be the
case if the exchanger were to start operating in the reverse
mode after removal of extracellular Na1 and mediating the
uptake of Ca21 into the cell rather than the extrusion. It
seems, however, that we can discard this possibility. This is
suggested by the following two observations: First, no con-
sistent increase in [Ca21]i was observed upon replacing
Na1 with sucrose. Second, no significant changes in the
amplitude of the depolarization-evoked [Ca21]i transients
resulted from variations in the extracellular Na1 concentra-
tion. These findings argue that reverse mode operation of
the exchanger contributes negligibly to [Ca21]i, even after
removal of external Na1. In contrast, on isolated mouse
islets, Nadal et al. (1994) observed both increased basal
[Ca21]i and larger [Ca21]i responses to K1 depolarizations

in low extracellular Na1 compared to normal Na1 levels.
However, in this study Li1 was used as a replacement for
Na1, which causes a depolarization of the islet by 15–20
mV (cf. de Miguel et al., 1988). Consequently, these earlier
observations may therefore reflect an increased Ca21 influx
through voltage-dependent Ca21 channels due to the depo-
larization induced by replacing Na1 with Li1.

Relative contribution of Na1- and ATP-driven
Ca21 uptake and extrusion mechanisms

Although the Na/Ca exchanger contributes to Ca21 buffer-
ing, particularly at high [Ca21]i, it is clear that additional
Ca21-lowering mechanisms must be operational in the
b-cell. This study reinforces previous observations that in-
tracellular Ca21-ATPases are important in this context.
Contrary to what appears to be the case with the Na/Ca
exchanger, the effects of inhibiting the endoplasmic reticu-
lum Ca21-ATPase by using thapsigargin were already evi-
dent at submicromolar [Ca21]i. At 0.6 and 0.8mM [Ca21]i,
Ca21-ATPase accounted for 57% and 73% of the Ca21

removal rate, respectively. It seems likely that the remainder

FIGURE 6 Effects of lowering extracellu-
lar Na1 on glucose-induced electrical activ-
ity. (A) Current-clamp recording of electrical
activity seen in the presence of 11 mM glu-
cose before and after [Na1]o is reduced from
140 to 30 mM (substitution by choline). The
membrane potential recordings were taken
from freshly (same day) isolated mouse islets
of Langerhans. (B) Details of the voltage
records marked inA. The thin horizontal
lines denote the lowest interburst potential,
the plateau potential during the burst, and the
peak action potential under control condi-
tions (Na1 present). (C) Comparison of
bursts of action potentials recorded from an-
other islet at normal and reduced extracellu-
lar Na1, where 10mM atropine was added
together with choline to inhibit any musca-
rinic responses elicited by choline.
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reflects the contribution of the Ca21-ATPase of the plasma
membrane or, possibly, the mitochondria (Park et al., 1996).
However, we emphasize that the relative contribution of the
exchanger and SERCA may be more significant inb-cells
from other species. This is suggested by the interspecies
variation in other tissues. For example, whereas the ex-
changer accounts for 7% of the total Ca21 removal rate in
rat myocytes, the corresponding values in the rabbit, ferret,
and guinea pig range between 25% and 30% (Bers, 1991).
In fact, we recently observed that Na/Ca exchange activity,
measured as intracellular Na1-dependent extracellular
45Ca21 uptake, and mRNA levels are 50% lower in mouse
compared to rat pancreatic islets (Van Eylen et al., 1998).

The Na/Ca exchanger is electrogenic

A Na1-dependent mode of Ca21 extrusion has previously
been described in voltage-clamped pancreaticb-cells, but
the voltage dependence of its operation was not apparent
(Rorsman et al., 1992). The present study reveals that the
Na/Ca exchanger is influenced by the membrane potential
and that it may operate in both the forward and reverse
modes. The changes in reversal potential obtained upon
variations of the extra- and intracellular Ca21 concentra-
tions are perfectly consistent with a 3Na1:1Ca21 stoichi-
ometry, as has previously been documented for the ex-
changer in heart cells (Reeves and Hale, 1984; Kimura et
al., 1987; Ehara et al., 1989). Moreover, theb-cell Na/Ca
exchanger is inhibited by XIP at concentrations comparable
to those that are effective in the heart cells (Chin et al.,
1993). These biophysical and biochemical similarities be-
tween theb-cell and cardiac Na/Ca exchangers are not
surprising, given that the isoforms present in theb-cell
(NaCa3 and NaCa7) and in the heart (Na/Ca1) are the
products of the same NCX1 gene (Kofuji et al., 1994; Lee
et al., 1994, Van Eylen et al., 1997).

The Na/Ca exchanger shapes b-cell
electrical activity

The glucose-induced electrical activity of the pancreatic
b-cell is the result of a complex interplay between a number
of voltage-dependent and voltage-independent membrane
currents (review: Ashcroft and Rorsman, 1989; Henquin
and Meissner, 1984). An understanding of how this electri-
cal activity is generated is essential, given that it is tightly
coupled to insulin secretion (Martin et al., 1997). The
present observations that the operation of the Na/Ca ex-
changer is electrogenic and generates an inward current at
membrane potentials more negative than250 mV when
[Ca21]i is elevated to high concentrations (.3.5mM; Fig. 4
B) suggest that it may influence the electrical activity of the
b-cell. At the more depolarized peak potentials of the
spikes, the exchange is capable of running in the reverse
mode, allowing Ca21 to enter the cell. It should be pointed
out that although the exchanger may thus mediate Ca21

uptake, available data are conflicting as to whether this
actually takes place (compare Nadal et al., 1994, and Gar-
cia-Barrado et al., 1996).

It is worth pointing out that the current resulting from the
activity of the exchanger is very small, even under condi-
tions that can be expected to produce maximum activation
(14 mM intracellular [Ca21]i); the whole-cell conductance
(normalized against cell capacitance) attributable to the
operation of the exchanger is;0.05 nS/pF (Fig. 3D). This
is little more than 1% of the whole-cell KATP conductance
(4 nS/pF; Rorsman and Trube, 1985) and only;15% of the
voltage-gated Ca21 conductance (0.3 nS/pF; estimated from
a peak Ca21 current at 0 mV of 100 pA, a reversal potential
at 160 mV, and a cell capacitance of 5 pF; Rorsman and
Trube, 1986). However, it is a dangerous practice to extrap-
olate the functional significance of a conductance from the
size of the current, and small currents may have great effects
on the membrane potential, because the input resistance of
theb-cell in the presence of glucose is very high ($1 GV).
The elucidation of its effects onb-cell electrical activity is
further complicated by the lack of a selective pharmacolog-
ical inhibitor of the exchanger. The traditional approach to
the influence of the Na/Ca exchanger on electrical activity is
to omit extracellular Na1 from the medium (cf. Ribalet and
Beigelman, 1982). However, this protocol is fraught with
many problems. For example, other Na1-dependent con-
ductances will also be suppressed, and this is likely to affect
the membrane potential of the cell, which in turn will
influence the gating of voltage-gated currents. A further
complication is that the reversal potential ofINa/Ca is not
constant, and the direction of current flow (inward or out-
ward) at a given membrane potential will vary with [Ca21]i

(Fig. 4 B). However, theI-V properties of the Na/Ca ex-
changer and the effects of omitting extracellular Na1 sug-
gest that the current generated by the exchanger does not
participate in the termination of the burst. In contrast, at the
plateau potential when [Ca21]i is high, it will produce an
inward depolarizing current that rather tends to prolong the
burst of action potentials. This behavior is obviously remi-
niscent of the situation prevailing during the cardiac action
potential (Egan et al., 1989; Noble et al., 1991).

Mathematical modeling suggests glucose may
increase electrical activity by increasing INa/Ca

To analyze the role(s) of the Na/Ca exchanger in the gen-
eration ofb-cell electrical activity in greater detail, we have
incorporated the biophysical properties of the exchanger
into the deterministic model forb-cell bursting developed
by Sherman et al. (1988). Details of the modification made
to their model are outlined further in Materials and Meth-
ods. Similar results were obtained when the model of Keizer
and Magnus (1989) was used. Here we focus on the results
obtained with the former model. Examples of simulated
b-cell electrical activity are shown in Fig. 7A. The math-
ematical model correctly predicts the changes in electrical
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activity induced by lowering extracellular Na1 that are
observed experimentally. However, the interburst duration
experimentally is reduced by;50%, whereas only a 5%
change is expected from the model. This discrepancy should
be considered against the fact that 1–2 s after the termina-
tion of a burst (cf. Figs. 1 and 2), [Ca21]i will drop below
the concentration required for activation of the Na/Ca ex-
changer. Most of the consequences of Na1 removal for the
interburst interval are therefore likely to involve effects
other than inhibition of the exchanger. For example, the
reduction of [Na1]i that is likely to follow upon omission of
extracellular Na1 leads to a decreased activity of the Na1/
K1-ATPase, which, via an increased ATP/ADP ratio (Grap-
engiesser et al., 1993), translates into closure of the KATP

channels and membrane depolarization. Indeed, long expo-
sures of the cells to low [Na1]o lead to a gradual increase in
the membrane potential and ultimately continuous electrical
activity (data not shown, but see Ribalet and Beigelman,
1982). Here we have kept the duration of Na1 removal to a

minimum to avoid, as much as is possible, the influence of
Na1/K1 pump inhibition on our data.

Both the model by Sherman et al. (1988) and that of
Keizer and Magnus (1989) postulate a [Ca21]i-dependent
termination of the burst, either by activation of the large-
conductance Ca21-activated K1 channel (Sherman et al.,
1988) or by [Ca21]i-dependent modulation of the ATP-
regulated K1 channel (Keizer and Magnus, 1989). As a
consequence, it is important to examine the effects of Na1

removal on [Ca21]i in the model. In the presence of 30 mM
Na1, [Ca21]i is lower than at 140 mM external Na1 (Fig. 7
B). Consequently, the shortening of the bursts predicted by
the models cannot simply be attributed to an increased
activity of Ca21-dependent K1 currents. It may seem par-
adoxical that the reversal of the exchange (i.e., removing a
Ca21 extrusion mechanism) leads to reduced [Ca21]i levels.
However, it should be kept in mind that whereas the ex-
changer gives rise to an inward current at normal Na1, the
current flow is outward at low Na1, thus repolarizing the
b-cell (cf. Fig. 7C). At the more negative interburst poten-
tial resulting from the changed exchanger activity, the volt-
age-dependent Ca21 influx through L-type Ca21 channels
in the model of Sherman et al. will be reduced, which in turn
leads to lower basal [Ca21]i. In addition, the shorter burst
duration in 30 mM Na1 (resulting from the premature
termination of spiking due to the operation of the ex-
changer) will lead to a lower total Ca21 influx compared to
what occurs at 140 mM Na1 and, consequently, a smaller
Ca21 build-up during the burst.

The effects of Na1 removal on burst duration and the
interburst potential are easiest to understand if the ex-
changer normally produces an inward current that depolar-
izes theb-cell and extends the duration of the plateau phase.
As already pointed out, this makes it unlikely that the
exchanger is involved in the termination of the bursts, but
this does not exclude the possibility that it modulates its
duration. For example, an experimental condition resulting
in an elevation of the intracellular Na1 concentration
([Na1]i), such as that occurring in response to stimulation of
the b-cell with acetylcholine (Gilon and Henquin, 1993;
Miura et al., 1996), can be expected to result in a shortening
of the burst (Fig. 8). Conversely, a reduction of [Na1]i can

FIGURE 7 Computer simulations of electrical activity. (A) Influence of
lowering extracellular Na1 ([Na1]o) from 140 to 30 mM on simulated
glucose-stimulated electrical activity. The model burst duration is reduced
by 40% as a consequence of the changed [Na1]o level. (B) Variations in
model [Ca21]i levels in the presence of normal (left) and low extracellular
Na1 (right). (C) Corresponding currents carried by the Na/Ca exchange
(INa/Ca) in the model cell. Observe thatINa/Caduring the burst changed from
an inward depolarizing current in normal [Na1]o to an outward current in
low [Na1]o.

FIGURE 8 Computer simulations of the impact of changes in the intra-
cellular Na1 level ([Na1]i) on theb-cell bursting pattern. Bursts of action
potentials in the presence of normal extracellular Na1 and [Na1]i were set
to 17 mM (left). The reduction of intracellular Na1 from 17 to 11 mM
(right) led to a 60% increase in burst duration.
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be expected to produce the opposite effect and prolong the
burst. In this context it is pertinent that glucose has been
reported to lower [Na1]i in pancreaticb-cells (Saha and
Grapengiesser, 1995). It is therefore tempting to speculate
that this translates, via an increased activity of the ex-
changer, into prolonged bursts of action potentials. Thus the
concentration-dependent glucose-induced stimulation of
electrical activity may reflect the combined effects of the
sugar on KATP-channel activity and the Na/Ca exchanger.
Furthermore, the activity of the exchanger in squid axons,
guinea pig myocytes, and ratb-cells is dependent on access
to intracellular ATP (DiPolo and Beauge´, 1991; DiPolo and
Beauge´, 1994; Hilgemann, 1990; Hilgemann et al., 1991;
Haworth and Goknur, 1996; Plasman and Herchuelz, 1992).
The cytoplasmic ATP/ADP ratio increases dramatically af-
ter glucose stimulation (Detimary et al., 1996), and there is
evidence that these changes are particularly pronounced in
the submembrane space, i.e., the milieu to which the Na/Ca
exchanger is exposed (Niki et al., 1989). These changes, by
increasing the current attributable to the exchanger, can be
expected to promote electrical activity, thus ensuring an
additional connection between the metabolic state of the
b-cell and its membrane conductance(s).
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