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ABSTRACT We present an analytical calculation of the electrostatic interaction in a plectonemic supercoil within the
Poisson-Boltzmann approximation. Undulations of the supercoil strands arising from thermal motion couple nonlinearly with
the electrostatic interaction, giving rise to a strong enhancement of the bare interaction. In the limit of fairly tight winding, the
free energy of a plectonemic supercoil may be split into an elastic contribution containing the bending and torsional energies
and an electrostatic-undulatory free energy. The total free energy of the supercoil is minimized according to an iterative
scheme, which utilizes the special symmetry inherent in the usual elastic free energy of the plectoneme. The superhelical
radius, opening angle, and undulation amplitudes in the radius and pitch are obtained as a function of the specific linking
difference and the concentration of monovalent salt. Our results compare favorably with the experimental values for these
parameters of Boles et al. (1990. J. Mol. Biol. 213:931–951). In particular, we confirm the experimental observation that the
writhe is a virtually constant fraction of the excess linking number over a wide range of superhelical densities. Another
important prediction is the ionic strength dependence of the plectonemic parameters, which is in reasonable agreement with
the results from computer simulations.

GLOSSARY

a DNA hard-core radius
A Hamaker constant, scaled bykBT
b coupling parameter of harmonic potential
c concentration of monovalent salt
cr coefficient of confinement free energy,

confinement inr
cp coefficient of confinement free energy,

confinement inp
dp root mean square undulation inp
dr root mean square undulation inr
f perturbation per unit length of strand

^ total free energy of plectoneme per unit length
of strand

^conf confinement free energy per unit length of
strand

^el undulation-enhanced electrostatic free energy
per unit length of strand

^el,0 electrostatic free energy of the nonfluctuating
configuration per unit length of strand

^VdW van der Waals free energy per unit length of
strand

g generalized bending constant
Gp Gaussian distribution of undulations inp
Gr Gaussian distribution of undulations inr
h helical repeat DNA relaxed state

*c elastic Hamiltonian
kB Boltzmann’s constant
Lk linking number

Lk0 linking number relaxed state
DLk excess linking number

m1, m2 fitting coefficients of the approximation of the
electrostatic potential

ns number concentration monovalent salt
p pitch/2p of plectonemic superhelix

Pb DNA bending persistence length
Pt DNA torsional persistence length
q elementary charge

QB Bjerrum length5 q2/(ekBT)
r radius of plectonemic superhelix

Rc radius of curvature in plectonemic
configuration

s contour distance
T absolute temperature

Tw twisting number
u angle of plectonemic rotation
ur amplitude of undulation inr
up amplitude of undulation inp
w dimensionless parameter5 2kr

DTw excess twisting number
Wr writhing number
0r writhe per unit length of strand of the

plectonemic helix
Z function defined by Eq. 19

Greek symbols

a plectonemic opening angle;b [ 2a
G gamma function
e dielectric permittivity of solvent
h constant in the undulatory entropy accounting for

non-Gaussianity
k21 Debye length
kc curvature classical plectonemic configuration
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l deflection length
m dimensionless parameter5 p2/4r2

neff effective linear charge density of DNA
j Poisson-Boltzmann charge parameter
r distance between two points on the superhelical

contour
s specific linking difference
t inverse plectonemic parameter5 h0/(4prusu)
f dimensionless distance5 r/2r
c electrostatic potential, scaled by2q/kBT

c1 electrostatic potential, scaled by2q/kBT
C renormalized potential, scaled by2q/kBT
v0 twist rate relaxed DNA
V excess twist

INTRODUCTION

Both the global conformation and the local structure of the
DNA double helix depend subtly on applied forces. En-
tropy, interactions, topological constraints, and external
forces are nonlinearly intermingled to various degrees, giv-
ing rise to the remarkable structural and functional versa-
tility of the DNA molecule (Bloomfield et al., 1974; Sinden,
1994).

When put under sufficient torsional stress, a closed dou-
ble-helical chain of DNA will respond by forming super-
helical structures that are more or less regular and inter-
wound. In the plectonemic helix (Fig. 1), two strands of the
double helix are intertwined, each superhelical strand dis-
placed with respect to the other by half the superhelical
pitch. At least two end loops are present, but there may be
more loops if branching defects occur.

In the supercoiling of DNA, topology and twist are inti-
mately related. The topology of a complex molecule like
DNA, however, gives rise to multifarious phenomena,
whose relevance extends well beyond supercoiling alone
(Wasserman and Cozzarelli, 1986; Cozzarelli and Wang,
1990; Bates and Maxwell, 1993; Stasiak, 1996). It may bear
on both isolated molecules and those in congested states, on
the formation of knots (Liu et al., 1981), and on the cate-
nation of rings (Martin and Wang, 1970). Topological con-
straints may be permanent or may manifest themselves only
transiently when obstructions or entanglements diffuse
away.

Our understanding of the biological implications of su-
percoiling is still incomplete, although many qualitative
arguments and models supporting either passive or active
roles of supercoiling have been advanced (Sinden, 1987;
Cozzarelli and Wang, 1990; Stasiak, 1996). At present it is
thought that supercoiling may be functional with respect to
the compaction of DNA, in this way enhancing the rate of
certain recombination reactions by bringing together distant
segments of DNA (Wasserman and Cozzarelli, 1986; Gel-
lert and Nash, 1987) and the regulation of DNA-specific
enzymatic activity by a partial unwinding of the double
helix, which facilitates a local unstacking of base pairs
(Drew et al., 1985).

In other cases, however, supercoiling or the formation of
supercoiled domains within a very long DNA molecule may
potentially interfere with the proper functioning of the cell.
For instance, if the cell were not able to relax excess
supercoiling density, both DNA transcription (Liu and
Wang, 1987) and the wrapping of DNA into nucleosome
core particles (Wolffe, 1992) would be hampered by the
accumulation of positive supercoils in the remaining free
loops.

In dealing with the myriad topological impediments that
occur during normal cell operation, with or without associ-
ated elastic stresses, the living cell has at its disposal a
complex enzymatic machine, of which the topoisomerases
form the center (Wang, 1971, 1991, 1996; Gellert, 1981).
Various members of this class of enzymes are able to
manipulate the torsional state of the double helix either
actively, by introducing twist into the double helix at the
expense of the consumption of ATP, or passively, by relax-
ing the excess twist in the circular DNA. In the latter case
the release of excess twist may be the sole driving force of
the topological reaction.

The supercoiling of DNA was revealed by electron mi-
croscopy after hints of its anomalous behavior in sedimen-
tation experiments (Vinograd et al., 1965). The topology
and physical structure of supercoiled DNA have since been
studied by a wide variety of techniques, including dynamic
light scattering (Langowski et al., 1990), x-ray diffraction
(Brady et al., 1987), site-specific recombination and trans-
position (Boles et al., 1990), microcalorimetry (Seidl and
Hinz, 1984), gel electrophoresis (Keller and Wendel, 1974;
Keller, 1975; Depew and Wang, 1975; Pulleyblank et al.,
1975), dialysis studies of intercalating agents (Bauer and
Vinograd, 1970; Hsieh and Wang, 1975), ring closure prob-
abilities (Shore et al., 1981; Shore and Baldwin, 1983), and
single-molecule stretching experiments (Strick et al., 1996).
Many of these experiments were directed mainly at the
elucidation of the topological state itself. Unfortunately,
most of the common physical chemical techniques do not
allow a precise and unambiguous assignment of supercoil
structure because the resolution in the experiments is too
weak.

In recent years, however, modern (cryo-) electron micro-
scopic techniques have been applied, aiming at a deeper
reassessment of supercoil structure (Boles et al., 1990;

FIGURE 1 A configuration of the plectonemic helix.r is the radius and
2pp the pitch of the plectoneme, anda is its opening angle.
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Adrian et al., 1990; Bednar et al., 1994). The supercoil
parameters are thus becoming better known, and with
greater accuracy. Of course, microscopy remains a tech-
nique that is never without some ambiguity.

The correct topological relations governing closed DNA
were determined merely a few years after the experimental
discovery of DNA supercoiling (White, 1969; Fuller, 1971,
1978; Bauer et al., 1978). The conformations of DNA rings
and coils under torsion have been studied primarily within
the elastic limit (Fuller, 1971; Camerini-Otero and Felsen-
feld, 1978; LeBret, 1979, 1984; Benham, 1979, 1983;
Tanaka and Takahashi, 1985; Wadati and Tsuru, 1986;
Tsuru and Wadati, 1986; Hao and Olson, 1989; Hunt and
Hearst, 1991; Shi and Hearst, 1994; Westcott et al., 1997).
An analytical study that goes some way in explaining plec-
tonemic structure is the elastic theory by Hunt and Hearst
(1991). They calculated the bulk plectonemic parameters as
a function of the excluded-volume radius of the DNA.

The thermally averaged properties of supercoiled DNA
have been probed extensively by computer simulations (Vo-
logodskii et al., 1979, 1992; Klenin et al., 1991; Olson and
Zhang, 1991; Chirico et al., 1993; Rybenkov et al., 1997;
Delrow et al., 1997). The simulations differ widely in their
degree of sophistication, but the results are, in general,
mutually consistent, and the agreement with experiment is
satisfactory in most cases.

The analytical development of the statistical mechanics
of supercoiling is hampered considerably by the topological
constraints (Shimada and Yamakawa, 1984, 1985; Tanaka
and Takahashi, 1985; Benham, 1990; Hearst and Hunt,
1991; Guitter and Leibler, 1992; Marko and Siggia, 1994,
1995; Odijk, 1996). Quantitative understanding was first
achieved in the consideration of the ring closure probabili-
ties of short stiff chains with torsion (Shimada and Ya-
makawa, 1984, 1985). The similarity between a superhelical
strand undulating within a supercoil and a wormlike chain
confined within a harmonic potential was noted by Marko
and Siggia (1994), who advanced a simple scaling picture of
supercoil structure in the limit of fairly large fluctuations.

Even for tight bending, it has been argued that the entropy
and bending of a wormlike chain are superposable to a good
approximation (Marko and Siggia, 1995; Odijk, 1996). This
introduces a major shortcut to theoretical work. In fact, a
semiclassical treatment of supercoil structure may be put
forward. Exploiting the special symmetry inherent in the
classical elastic Hamiltonian of the plectoneme, we have
recently shown that some of the peculiarities of plectonemic
DNA observed both in experiment and in computer simu-
lation may be understood in fairly simple terms (Odijk and
Ubbink, 1998).

Besides topology, bending, and entropy, there is a fourth
problem that needs to be analyzed, namely the interaction of
superhelical DNA with itself. Under physiological condi-
tions, the behavior of DNA is strongly influenced by the
screened Coulomb forces exerted by its negative phosphate
charges. The electrostatic interaction in supercoiled DNA
immersed in a monovalent salt solution has been taken into

account via the use of an effective diameter, both in simu-
lations (Vologodskii et al., 1992) and in analytical theory
(Marko and Siggia, 1994). The effective diameter depends
on the ionic strength of the solution (Onsager, 1949; Stigter,
1977), but it was introduced as a statistical concept pertain-
ing to the isotropic interaction between two straight charged
rods. The statistical averaging and Boltzmann weighting
are, in principle, entirely different in a theory of supercoils.
In recent work the use of an effective diameter was circum-
vented. A soft, exponentially decaying electrostatic poten-
tial was taken into account in computer simulations (Fenley
et al., 1994; Vologodskii and Cozzarelli, 1995) and, albeit
within a bare, unrenormalized approximation, in analytical
theory (Marko and Siggia, 1995). In positionally ordered
systems, however, we recall that the bare electrostatic in-
teraction is strongly enhanced by even small undulations of
the chains around their equilibrium conformation (Odijk,
1993a). Entropy and electrostatics conspire to give rise to an
electrostatic-undulatory interaction.

Here we would like to go beyond previous theoretical
work in the following ways: 1) The electrostatics is dealt
with by summing all interactions in a far-field Poisson-
Boltzmann approximation. Closed analytical approxima-
tions for the electrostatic potential at all values of the
plectonemic parameters are given, which may also be useful
outside the context of this paper. 2) The potentially power-
ful enhancement of the potential by thermal undulations is
computed within a Gaussian ansatz for the undulatory con-
finement. 3) The pitch and radius are two scales determining
a plectonemic supercoil. It will turn out that they cannot be
treated on the same footing at all. 4) Analytical procedures
are employed to handle the total free energy of the plec-
toneme (i.e., the sum of electrostatics, entropy, bending, and
twisting), so that we attain a tractable theory for supercoil-
ing that is of practical use and yields physical insight at the
same time.

The outline of the paper is as follows. First, we recapit-
ulate the main topological relations governing covalently
closed circular DNA. We calculate, both numerically and
asymptotically, the electrostatic potential exerted by the
plectonemic configuration to evaluate the free energy of
electrostatic interaction. We next discuss the entropic mech-
anism by which small undulations of the strands within the
supercoil couple nonlinearly with the electrostatic potential
and present an approximate calculation of this effect. Then
the total free energy of the supercoil is cast in the scheme
previously proposed by us (Odijk and Ubbink, 1998). We
concentrate on the limit of tight supercoiling, for it is then
possible to postulate the existence of semiclassical config-
urations, in which the undulations are small. The free en-
ergy consists of an elastic contribution and a perturbative
term, the electrostatic-undulatory interaction. We self-con-
sistently minimize the total plectonemic free energy with
the help of the iterative procedure derived by us earlier
(Odijk and Ubbink, 1998). Our results are compared with
the available quantitative data. Finally, in the Appendices,
we give a detailed analysis of an entropic coefficient and
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briefly consider the effect of attractive interactions on plec-
tonemic structure.

TOPOLOGY

Even when we disregard the probability of knot formation
in the double helix itself, the closure of a double-stranded
molecule like DNA can take place in many topologically
distinct ways. Either strand closes on itself because the two
strands run in opposite directions along the double helix,
and the ends of the sugar-phosphate backbones are of a
different chemical nature. The number of turns of the
strands of the double helix around one another characterizes
a specific topological state. For a covalently closed DNA
molecule, the appropriate topological invariant is the link-
ing numberLk (Fuller, 1971). Normal B-DNA in the re-
laxed state forms a right-handed helix characterized by a
helical repeath of ;3.5 nm (or, equivalently, 10.5 bp)
(Bates and Maxwell, 1993), so to measure the degree of
supercoiling, which may manifest itself in either under- or
overwinding of the double helix, it is convenient to intro-
duce the linking number in the relaxed stateLk0. This
number is defined in such way that for B-DNA it is positive
(Bauer et al., 1978; Cozzarelli et al., 1990; Bates and
Maxwell, 1993).

In 1969 White derived a relation between the linking
number and two configurational quantities, one bearing on
the local twist of the chain and the other reflecting the
global shape of the molecule (White, 1969):

Lk 5 Tw1 Wr (1)

whereTw is the twisting number, defined by

Tw5
1

2p
rds@v0 1 V# (2)

The integration is performed along the contour of the axis of
the double helix,v0 is the intrinsic rate of twist of the
relaxed double helix, andV is the excess twist. The second
quantity introduced in Eq. 1 is the writhing numberWr,
which, for an arbitrary space curve, is given by the Gauss
integral (White, 1969; Ca˘lugăreanu, 1959). The writhe is a
functional of the configuration of the axis of the double
helix only. The energy of a supercoil depends on the twist
that can be eliminated via Eq. 1 in favor of the writhe. In
this way, the energy conveniently becomes a functional of
the configuration vector.

Analytical evaluation of the writhing number is generally
cumbersome; simple analytical approximations have been
derived in several cases, including that of the regular inter-
wound configuration (Fuller, 1971; White and Bauer,
1986). We will need the writhe per unit length of strand of
a plectonemic superhelix,

0r 5 6
p

2p@p2 1 r2#
(3)

In Eq. 3 it is assumed that end loops may be neglected. The
plus and minus signs hold for left- and right-handed plec-
tonemic helices, respectively.r is the radius, and 2pp is the
pitch of the superhelix (see Fig. 1); the two variables are
assumed to be uniform. The plectonemic opening anglea is
defined by tana 5 p/r.

Deviations from the relaxed state are measured by the
excess linking numberDLk 5 Lk 2 Lk0 and the excess
twisting numberDTw 5 Tw 2 Lk0. The writhe is taken to
be zero in the relaxed state. Furthermore,Lk0 5 2pv0l/h,
wherel is the DNA contour length, so we can write

DLk 5 DTw1 Wr (4)

Both excess quantities may be positive or negative, pertain-
ing either to over- or underwinding of the double helix.

By dividing the excess linking numberDLk by Lk0, we
obtain the specific linking differences:

s 5
DLk

Lk0
(5)

For a homogeneously supercoiled molecule, the degree of
supercoiling is determined completely by the intensive
quantitys.

ELECTROSTATIC POTENTIAL OF
PLECTONEMIC DNA

We view the double-stranded DNA molecule as a closed
circular curve of cylindrical cross section. Its body is a
uniform dielectric with a permittivity much lower than that
of water, and its surface is assumed to bear a uniform charge
density. In aqueous solution, the electrostatic potential of
the supercoil is often screened by excess 1:1 salt, so we
address its electrostatics within the nonlinear Poisson-Boltz-
mann approximation. This has been established to be quite
accurate (Fixman, 1979).

The difficult problem of solving the Poisson-Boltzmann
equation for the charged plectoneme may be replaced by a
much simpler one, however. Because the distances between
adjacent winds in the plectonemic helix are typically much
larger than about twice the sum of the DNA hard-core
radius a and the Debye screening lengthk21 (owing to
Boltzmann weighting), we are interested in the far-field
asymptotic solution to the Poisson-Boltzmann equation
only. This solution is essentially a linear superposition of
effective Debye-Hu¨ckel potentials arising from all of the
phosphate charges on the DNA supercoil. In the case of a
straight polyion, the charged cylinder may be replaced by a
line charge coinciding with the axis of the cylinder (Brenner
and Parsegian, 1974). The nonlinear screening in the inner
double layers of the charged cylinder is taken into account
by adjusting the effective charge densityneff (i.e., the num-
ber of charges per unit length along the helical axis) in such
a way that the outer double layers of the respective poten-
tials coincide (Stroobants et al., 1986).
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Here we consider the potential exerted by a polyion of
plectonemic shape, which is again characterized by a radius
r and a pitch 2pp (Fig. 1). Corrections to the effective
charge densityneff due to the superhelical curvature of the
polyions may be neglected, for they are of order (kRc)

22

(Fixman, 1982) when the characteristic radius of curvature
Rc ' (p2 1 r2)/r of the plectoneme is much larger than the
Debye length.

Next, we superpose Debye-Hu¨ckel potentials exerted by
the uniformly charged superhelix, whose charge density
along the helical axis isneff. We choose a Cartesian coor-
dinate system (x, y, z) in such a way that thezaxis coincides
with the central axis of the plectonemic helix (Fig. 2).M: (r,
0, 0) is a point on one strand of the plectonemic helix, and
N: (2r cosu, 6r sinu, pu) is a point on the opposing strand;
the plus and minus signs hold for left- and right-handed
superhelices, respectively.u is the parameterization along
the plectonemic axis. The distancer betweenM andN may
be written as

r~u! 5 @2r2@1 1 cosu# 1 p2u2#1/2 (6)

The total Debye-Hu¨ckel potential exerted by the opposing
strand on pointM of the test strand is then given by

c~p, r! 5 2j E
0

`

ds
exp@2kr#

r

5 2j@p2 1 r2#1/2E
0

`

du
exp@2kr#

r
(7)

where s is the arclength from (2r, 0, 0) to N along the
opposing strand, ds 5 [(p2 1 r2)1/2/p]dz. j [ QBneff is an
effective charge parameter that may be calculated within the
Poisson-Boltzmann approximation (Stroobants et al., 1986;
Philip and Wooding, 1970),k21 is the Debye length defined
by k2 [ 8pQBns, QB [ q2/ekBT is the Bjerrum length,q is
the elementary charge, andns is the number concentration
of monovalent salt.e is the permittivity of the solvent,kB is
Boltzmann’s constant, andT is absolute temperature. In the
integrand of Eq. 7 one recognizes the Debye-Hu¨ckel poten-
tial exerted by an element of arclength, i.e., a Coulomb
potential screened by a decaying exponential. The potential
has been multiplied by the elementary charge and divided
by kBT to render it dimensionless, for convenience. The
electrostatic self-energy of the DNA helix itself will be
assumed to be constant.

The potential may be usefully expressed as a function of
the two dimensionless variablesw [ 2kr andm [ p2/4r2, so
that Eq. 7 is transformed into

c~w, m! 5 j@1 1 4m#1/2E
0

`

du
exp@2wf~u!#

f~u!
(8)

with

f~u! 5 F12 @1 1 cosu# 1 mu2G1/2

(9)

To investigate the physical behavior of the potential, we
here anticipate thatw $ 1 and 4mw2 $ 1, for the inner
double layers of the strands are unlikely to interpenetrate.
We also do not expect twisting forces within the DNA helix
to compete with electrostatic forces in the event they be-
come unduly high (.. kBT/nm) upon such interpenetration.

It is seen from the behavior nearu 5 0 of the integrand
in Eq. 8 that the construction of asymptotic expansions for
largew that are uniformly valid for allm . 0 is not standard.
Bleistein’s method (Olver, 1974) could be used in this case,
but the presence of cosu in f(u) proves to be awkward.
Therefore, we have opted for the usual Laplace method
(Olver, 1974; Bender and Orszag, 1978), albeit as it is
applied in various regimes, for it does not yield a uniformly
valid approximation for integrals of the type in Eq. 8.

For w .. 1, the integrand in Eq. 8 decays exponentially
fast away from some minimumu 5 um of the functionf(u).
A major contribution to the integral comes from the neigh-
borhood ofum, so we expandf(u) aroundum:

f~u! 5 f~um! 1
1

k!
~u 2 um!kf~k!~um! 1 · · · (10)

Here we retain only the first nonvanishing term, which is
positive. The leading asymptotic contribution to Eq. 8 is
then given by (Olver, 1974; Bender and Orszag, 1978)

c~w, m! ,
c1j@1 1 4m#1/2G~1/k!~k!!1/k

kf~um!@wf~k!~um!#1/k exp@2wf~um!#

(11)FIGURE 2 The plectonemic coordinate system.
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wherec1 5 1 if the minimum is atum 5 u0 5 0 andc1 5
2 if um . 0 (m 5 1, 2, . . .).

The case 1/4w2 < m < 0.2

We have to distinguish among a number of cases, depending
on the value ofm. If m , 1/4, we have either one or a
multiple of local minima, which are to be determined from
sinum/um 5 4m. In view of our lower boundm . 1/4w2, the
minima beyond the first may be neglected: this is easily
proved by noting that the first minimumu1 , p andum .
2p (m 5 2, 3, . . .) andwf(um) $ um/2. If we approximate
sin u1 by the polynomial2(4/p2)u1

2 1 (4/p)u1 (which is
reasonable form , 0.2), we determine the first minimum to
be u1 ' p 2 p2m. The lead term for the potential is then
approximately given by

c~w, m! , 2jF 2p

wf~u1!
G1/2F 1 1 4m

2cosu1 1 4mG
1/2

exp@2wf~u1!#

(12)

If we now letm become very small by increasing the radius
r while keeping the pitch 2pp constant (u1 3 p), we
ultimately obtain the limiting form for the potential, which
is independent ofr:

c~w, m ,, 1! < 2jF 2

kpG
1/2

exp@2pkp# (13)

This is interpreted as the potential at the test strand due to
two neighboring line charges, each at a distance of half the
superhelical pitch. The line charges are effectively straight
on the scale ofp.

The case m 5 1/4

For m larger than;0.2,u1 starts to approach zero, and this
causes problems. In fact, asm increases to 1/4, Laplace’s
method fails because the second-order derivative at the
minimum becomes small compared to the value of the next
nonvanishing derivative, which is of fourth-order. Form $
1/4,f(u) attains only one minimum atu0 5 0. The casem 5
1/4 is peculiar, for the first nonvanishing derivative atu0 5
0 is fourth-order. Upon using Eq. 11, we may write for the

potential

c~w, 1/4! <
241/4G~1/4!j

2w1/4 exp@2w# < 4.012jw21/4exp@2w#

(14)

The case m > 1/4

For m . 1/4, the second-order derivative again comes into
play and dominates the contribution from the fourth-order
derivative for large enoughm (the third-order derivative
vanishes atu 5 0 for anym). For m somewhat larger than
unity, we may again use the Laplace method so as to obtain

c~w, m! , jF2p

w G1/2F4m 1 1

4m 2 1G
1/2

exp@2w# (15)

If we let m3 ` by increasing the pitch 2pp while keeping
the radiusr constant, Eq. 15 reduces to a limiting form
independent ofp:

c~w, m .. 1! < jFp

krG
1/2

exp@22kr# (16)

This is interpreted as the potential at a test strand exerted by
a straight line charge at a distance 2r. Note the formal
equivalence of Eqs. 13 and 16.

We have derived the asymptotic forms of the potential in
several regimes to gain physical insight into its dependence
on the superhelical pitch angle. Interacting charged rods
exert an electric torque on each other, forcing them toward
a perpendicular orientation, an effect with measurable im-
pact on various phenomena (Stroobants et al., 1986). In the
present analysis (Eqs. 12–16), the influence of twist might
appear to be less severe. The simplest uniform approxima-
tion—a superposition of the two limiting forms given by
Eqs. 13 and 16—seems not such a bad zeroth-order expres-
sion at first sight:

c0 < 2jF 2

kpG
1/2

exp@2pkp# 1 jFp

krG
1/2

exp@22kr#

(17)

This was already proposed by Marko and Siggia (1995). See
Table 1 for the accuracy of this simple form. Equation 17
becomes fairly poor wheneverw $ 4 and 0.1# m # 1,

TABLE 1 Electrostatic potential: accuracy of the simple superposition approximation (Eq. 17)

m

w

2 6 10

0.01 3.614 4.077 0.557 0.583 0.122 0.130
0.1 0.728 0.830 7.830z 1023 2.0332z 1022 1.131 z 1024 5.807 z 1024

0.3 0.326 0.431 2.588z 1023 5.574 z 1023 3.603 z 1025 8.581 z 1025

1 0.244 0.287 2.537z 1023 3.183 z 1023 3.599 z 1025 4.566 z 1025

3 0.240 0.247 2.537z 1023 2.703 z 1023 3.599 z 1025 3.864 z 1025

10 0.240 0.234 2.537z 1023 2.551 z 1023 3.599 z 1025 3.646 z 1025

First number of each entry: Eq. 17. Second number: numerical solution of Eq. 8.j 5 1; w 5 2kr; m 5 p2/4r2.
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whereas the asymptotic formulas Eqs. 12, 14, and 15 fare
much better.

However, the magnitude of the plectonemic potential is,
in itself, not such a serious issue. The two major problems
with Eq. 17 are, in fact, as follows: 1) We ultimately need
to minimize the total free energy of the supercoil, so deriv-
atives are important; the derivative ofc0 with respect top is
often a vast underestimate of the actual derivative (see
Table 1). 2) Undulation enhancement (as we explain below)
of any weak exponential-like term one would inadvertently
introduce could lead to a huge (fictive) contribution to the
undulatory electrostatic energy. We are therefore forced to
devise a bare plectonemic energy considerably more accu-
rate than Eq. 17.

Now it so happens that in practice the superhelical pitch
angle is rarely smaller than 45°, i.e.,a $ 45° or p $ r or
m $ 1/4. Accordingly, we focus only on regime c as defined
above, and the asymptotic form (Eq. 15) suggests an ap-
proximation that does not have the unphysical divergence at
m 5 1/4:

c1 < jF2p

w G1/2

exp@2w#Z (18)

Z ; 1 1
m1

m
1

m2

m2 ~m $ 1/4! (19)

We have adjusted the coefficientsm1 5 0.207 andm2 5
0.054 to letc1 agree closely with the numerical evaluation
cnum of Eq. 8 (see Table 2). Clearly, the functionc1 is
accurate enough to circumvent both major difficulties
quoted above. Moreover, Eqs. 18 and 19 show that the pitch
and radius are definitely not independent variables, as in the
superposition formula (Eq. 17). Thus there is a twisting
torque of electrostatic origin.

UNDULATION ENHANCEMENT OF THE
ELECTROSTATIC INTERACTION

If we were to neglect undulations of the strands, the elec-
trostatic free energy per unit length of strand in the plec-
tonemic supercoil would be calculated by multiplying the
effective linear charge densityneff [ j/QB of the test strand

by the electrostatic potential exerted by its neighbor:

^el,0

kBT
5

1

2
neffc1~2kr, p2/4r2! (20)

The factor 1/2 has been introduced to avoid double counting.
However, as is already discernible in electron micro-

graphs, the plectonemic helix is definitely perturbed by
thermal undulations, which in some cases may be so wild
that it becomes impossible to speak of a regular interwound
state. Here we restrict ourselves to plectonemic supercoiling
at moderate to high values of the specific linking difference
so that the superhelix may be viewed as tightly wound. In
this limit, the strands in the plectonemic helix are pinned in
a deep potential trough, causing the undulations of the
strands within the supercoil to remain fairly weak. The
slopes of the free energy well in which the strands are
undulating are dominated by the electrostatic interaction
favoring some optimal pitch and optimal radius, and by the
torsional free energy, coming into play via White’s relation,
which favors an increasing pitch and decreasing radius.

The strands of the plectonemic superhelix are ordered
positionally with respect to one another, so we expect un-
dulation enhancement of the interactions to occur, in a
manner similar to that conceived earlier for hexagonal
phases of semiflexible polyions (Odijk, 1993a). In particu-
lar, owing to the exponentially screened form of the elec-
trostatic interaction, we anticipate a strong enhancement of
the bare electrostatic interaction by the undulations.

Now, a rigorous analytical treatment of the statistical
mechanics of a plectonemic worm interacting with itself is
anything but trivial. The typical radius of curvature is much
smaller than the persistence length, so we are in the semi-
classical limit (Odijk, 1996), where fairly weak undulations
of the chains are defined with respect to a (local) state of
minimum energy. The latter may be called a classical limit.
The configurational statistics of such tightly curved worms
has been dealt with by several methods (Shimada and Ya-
makawa, 1984; Marko and Siggia, 1995; Odijk, 1996). The
general conclusion is that a stiff chain undulates virtually
independently of its degree of tight bending. We simply
assume that this holds true in our case with electrostatics
included, despite the lack of a rigorous mathematical proof.
Nevertheless, from a physical point of view, switching on
repulsive forces does not increase the import of bending;
rather the reverse is true. On the whole, we expect the
electrostatics to be balanced by entropy as far as the undu-
lations of the plectoneme are concerned. Next, we know the
plectoneme fluctuates about some equilibrium configura-
tion. Clearly positional order exists that is similar but not
identical to that of a linear polyion undulating within a
hexagonal lattice (Odijk, 1993a). One obvious difference is
that a plectonemic strand does not undulate within a poten-
tial of simple symmetry. At this stage we simply posit a
two-variable description (r andp independent) to introduce
coarse-grained undulatory electrostatics. Marko and Siggia
(1995) have presented arguments based on pseudopotentials

TABLE 2 Ratio of the approximation c1 (Eq. 18) to the
plectonemic electrostatic potential and the numerical
calculation cnm of Eq. 8

m

w

2 6 10

0.1 2.44 1.057 0.525
0.3 1.27 1.042 0.960
1 1.054 1.005 0.994
3 1.044 1.009 1.001
10 1.047 1.015 1.008

w 5 2kr; m 5 p2/4r2.
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that this is a useful approximation. In this paper we disre-
gard all end effects, including branching.

We now first presuppose that the undulations in bothr
andp are small. Below, we shall see that we will be forced
to modify this hypothesis, but we need to investigate this
case first. It is then reasonable to postulate a Gaussian
distribution for the undulations in the two-dimensional
(r, p)-space:

Gr~ur! 5
1

p1/2dr
expF2 ur

2

dr
2G

Gp~up! 5
1

p1/2dp
expF2 up

2

dp
2G (21)

whereur and up and dr/2
1/2 and dp/2

1/2 are the undulatory
amplitudes inr andp and their root mean squares, respec-
tively (dr ,, r, dp ,, p). Orientational fluctuations of
neighboring polymer segments may be neglected in this
limit (Odijk, 1993a).

The two strands in the plectonemic helix are presumed to
undulate independently. Let us choose one of the strands
and average its potential over all of the undulations (Fig. 3
a):

C~kr, kp!

5 E
2`

`

dup E
2`

`

durGr~ur!Gp~up!c1~k@r 1 ur#, k@p 1 up#!

< jSp

krD
1/2

exp@k2dr
2 2 2kr#FZ~m! 1

dp
2

2p2S3m1

m
1

10m2

m2 DG
1 2S 1

krD 1 2Sdp
4

p4D (22)

The bare potentialc1 given by Eq. 18 is smeared out by the
undulations of the test strand exerting the potential. The

renormalization of the radial undulation is potentially
strong, for it is exponential. But the renormalization of the
longitudinal undulation is slight because the dependence of
c1 onp is weak. Equation 22 has been derived using the fact
that dp ,, p.

The strand adjacent to the test strand is also undulating
(Fig. 3 b). Because of symmetry, averaging the renormal-
ized potential (Eq. 22) over the undulations of the adjacent
strand is equivalent to averaging again over the undulations
of its neighbor:

^el

kBT

5
1

2
neffE

2`

`

dupE
2`

`

durGr~ur!Gp~up!C~k@r 1 ur#, k@p 1 up#!

<
j2

2QB
Sp

krD
1/2

exp@2k2dr
2 2 2kr#FZ~m! 1

dp
2

p2S3m1

m
1

10m2

m2 DG
(23)

^el is the free energy of electrostatic interaction per unit
length of strand. In Eq. 23 relative terms of2(1/kr) and
2(dp

4/p4) have been consistently deleted.

ENTROPY

In the previous section we discussed the mechanism by
which small undulations of magnitudesdr and dp of the
strands within the plectonemic superhelix give rise to an
amplification of the bare electrostatic interaction that is
weighted unevenly. Now, the reduction of entropy of a
worm upon confinement to the close neighborhood of its
classical path—the typical transverse wanderings being of
average amplituded—is generally expressed in terms of a
deflection lengthl ' Pb

1/3 d2/3, which replaces the persis-
tence length as an independent length scale (Odijk, 1983).
The free energy of entropic confinement per unit length of
the strand in the plectonemic supercoil may then be written
approximately as (Odijk, 1983, 1993a; Helfrich and Har-
bich, 1985; Marko and Siggia, 1994)

^conf

kBT
5

cr

Pb
1/3dr

2/3 1
cp

Pb
1/3dp

2/3 (24)

The coefficientscr andcp are here 3/28/3 (we have reexam-
ined them in Appendix I).

The undulation-enhanced free energy per unit length of
strand, which is of electrostatic origin and here scaled by
kBT, is thus expressed as

f 5
^el

kBT
1

^conf

kBT
(25)

All terms contributing to the free energy should be aver-
aged over the relevant semiclassical paths. The undulatory
degrees of freedom of a confined worm are weighted via the

FIGURE 3 The bare electrostatic potential within the plectonemic con-
figuration (r, p) is averaged over all undulations of (a) the strand adjacent
to the test strand and (b) the test strand itself.
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free energy of confinement; the confinement due to the
electrostatic interaction is evaluated within a Gaussian ap-
proximation. In principle, the torsional forces, restraining
the strands in the supercoil via White’s relation (Eq. 4),
should also be renormalized over all undulations. An ap-
proximate evaluation of the torsional energy, allowing for
undulations that do not disrupt the plectonemic symmetry,
is straightforward, but the undulatory effect turns out to be
negligible. Some advances toward a more rigorous ap-
proach have been forwarded by Shimada and Yamakawa
(1984, 1985), by Marko and Siggia (1995), and by Odijk
(1996). However, simple quantitative approximation
schemes for the coupling between torsional deformation and
entropy in confined or topologically constrained systems
have yet to be proposed. Moreover, the backbone of the
plectoneme is not perfectly straight as assumed here, but
fluctuates on length scales that are possibly on the order of
the superhelical pitch, so that we may expect some influence
of these fluctuations on the internal structure of the super-
helix. We do not address these topics here, but simply
assume that torsional effects are adequately taken into ac-
count by considering only the classical plectonemic path.

FREE ENERGY

In line with an approximate minimization procedure pro-
posed by us (Odijk and Ubbink, 1998), we write the total
free energy per unit length of strand of the plectonemic
helix in the following form:

^

kBT
5 *c 1 f

5
1

2
Pbkc

2 1
1

2
PtV

2 1 f (26)

The Hamiltonian*c consists of the elastic free energy of
the regular plectonemic helix, andf will be assumed to be a
perturbation.Pb andPt are the persistence lengths associated
with the bending and torsional deformations, respectively.

In our two-variable description in terms of the variablesr
anda, defined by tana 5 p/r (Odijk and Ubbink, 1998), the
ideal plectonemic curvaturekc and the excess twistV of the
plectonemic helix become

kc 5
cos2a

r
V 5

2pDTw

l
5 2pFusu

h
2

sin a cosa

2pr G (27)

The explicit dependence of the excess twist onDTw has
been eliminated via White’s relation (Eq. 4) and the expres-
sion for the writhe (Eq. 3).

In the general case, the forces perturbing the plectonemic
helix may be taken together inf, the perturbation per unit
length of strand (Odijk and Ubbink, 1998). One could
mention, for instance, global deformations of the plectone-
mic helix, external forces acting on the superhelix, interac-
tions between the strands within the supercoil and the un-
dulation entropy, the effects of end loops and branching

points, and intersupercoil interactions between colliding
superhelices in crowded states. Of course, one assumes that
the perturbations are such that the postulate of a “classical”
plectonemic helix remains viable.

In this paper we concentrate only on the interplay of
undulation-enhanced electrostatic interaction and confine-
ment entropy as the major force perturbing the plectonemic
helix. In Appendix II we show that one other type of
perturbation that is sometimes thought to have a significant
effect on plectonemic structure, namely attractive disper-
sion forces, plays only a secondary role in the regimes
focused on here.

We minimize the total free energy (Eqs. 25 and 26)
according to the iterative scheme proposed in a recent paper
(Odijk and Ubbink, 1998). We introduce as dimensionless
variables the angleb [ 2a and the “inverse plectonemic
parameter”t [ h0/4prusu. In equilibrium, the first variation
in the free energy with respect to these independent vari-
ables should vanish:­^/­b 5 0, ­^/­t 5 0. In general, the
perturbationf may contain the auxiliary variablesXi for
which we also require­f/­Xi 5 0 for all i.

Here the auxiliary variablesXi are dr and dp under our
assumption that these should be smaller thanr and p,
respectively. Minimizinĝ with respect todr anddp then
leads to the approximate relation

Sp

dp
D2

k2dr
2 < Sdp

dr
D2/3

(28)

It is immediately clear that there is trouble in trying to meet
this requirement. For a typical plectonemic supercoil we
havep 5 2(r) and, generally,dp ,, p anddr ,, r, so that
dr 5 2(dp). Furthermore, at high and intermediate ionic
strengths,k21 ,, r, and it is likely thatkdr 5 2(1). It is
therefore improbable that Eq. 28 can hold for the conditions
of interest to the present investigation. A full numerical
minimization of ^ with respect todr, dp, r, andp indeed
bears out that plectonemes withdp ,, p are impossible
within the context of the current theory.

Equation 28 hints at a model withp 5 2(dp), i.e., the
undulations along the plectonemic axis are not restrained by
electrostatics but mainly by the plectonemic structure itself.
Hence, there should be virtually no undulation enhancement
of the potential along the axis of the plectoneme. We
propose a revised undulation-enhanced energy instead of
Eq. 23:

^el

kBT
5

j2

2QB
Fp

krG
1/2

exp@2k2dr
2 2 2kr#Z~m! (29)

and a revised form of the undulatory free energy instead of
Eq. 24:

^conf

kBT
5

cr

Pb
1/3dr

2/3 1
hcp

Pb
1/3p2/3 (30)

Thus, we do not introduceGp(up) because we assumedp 5
2(p). The effective tube confining a strand has a diameter of
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aboutp and notdp, according to Eq. 30. Because the density
distribution is not a Gaussian, but is somewhat flattened, we
also introduce a coefficienth 5 2(1). We do not know its
precise value, but here we simply seth 5 1. The merit of
Eqs. 29 and 30 will have to be borne out by experiment and
simulations.

Next, our leading order approximation gives for the open-
ing angle (Odijk and Ubbink, 1998)

b < p 2 21/3S­g

­t
UaD1/3

(31)

The perturbationf has been rescaled asg [ 2Pb (h0/
2pPbusu)2 f. The radius of the supercoil follows from the
opening angle (Odijk and Ubbink, 1998):

t <
E sin b 2 ~1/4!sin3 b

~1 1 cosb!2 1 E sin2 b
(32)

whereE 5 Pt/Pb. We stress that Eqs. 31 and 32 indicate that
the opening angle will not be very sensitive to changes in
the electrostatic perturbationg.

For the sake of completeness, we explicitly state the way
we compute­g/­t, i.e.,­f/­t. We minimize^ with respect
to dr, which leads to

­f

­dr
5

­~^el 1 ^conf!

kBT­dr
5 0 (33)

with the help of Eqs. 25, 29, and 30. Next, we define the
derivatives

­f

­r
up 5

­f

­dr

­dr

­r
1

­f

­r
up,dr 5

­^el

kBT­r
udr (34)

­f

­t
ua 5 F­f

­r
Up 1 tana

­f

­p
UrG­r

­t
ua (35)

(In Eqs. 34 and 35, it is useful to reintroduce the original
variables:f 5 f(r, p)). It is now straightforward to solve Eqs.
31–35 by numerical iteration.

In the next section, our undulation-enhancement theory is
compared with experimental data on the basis of Eqs. 31–
35. One could, of course, argue in favor of a full numerical
minimization of the total free energy (Eq. 26) together with
Eqs. 29 and 30 with respect to the parametersr, p (or a), and
dr. See Table 3 for a quantitative comparison of both meth-

ods: it is evident that our iterative scheme does capture the
main features of the plectonemic helix in the limit of tight
superhelical winding. We stress that our two-variable model
is not free from limitations, but the analytical approxima-
tions, Eqs. 31 and 32, do not worsen the status of the theory,
given the possible small errors incurred in the formulation
of the theory from the very beginning.

DISCUSSION

Choice of parameters

The parameters that enter our theory are all known inde-
pendently within rather narrow bounds. The theory is there-
fore essentially without any adjustable parameters. In the
previous sections and in Appendix I, we have already in-
troduced numerical values for the parameters pertaining to
the characterization of the topological state and the free
energy of entropic confinement, so that we are left to
specify here the DNA elastic constants and the electrostatic
parameters.

The DNA bending persistence lengthPb is now known
with reasonable accuracy. The results from a variety of
experiments agree on a value of 50 nm, at high ionic
strengths (Hagerman, 1988; Wang et al., 1997; Baumann et
al., 1997). The assignment of a numerical value to the
torsional persistence lengthPt, on the other hand, is some-
what equivocal. Current experimental values may differ by
about a factor of 2, the origin of the discrepancy still being
a matter of some controversy (Hagerman, 1988; Schurr et
al., 1992; Crothers et al., 1992; Gebe et al., 1996; Schurr,
personal communication; Moroz and Nelson, 1998). Here
we choose the two extremesPt 5 50 nm andPt 5 100 nm,
althoughPt 5 75 nm is an often favored choice in theoret-
ical and computer work.

The DNA molecule bears two negative charges per base
pair of 0.34-nm helical rise, and the unhydrated DNA hard-
core radiusa is close to 1.0 nm. The Poisson-Boltzmann
charge parameterj or, equivalently, the effective linear
charge densityneff [ j/QB can then be evaluated (Stroo-
bants et al., 1986) if the ionic strength of the solution is also
known. We will concentrate below on the microscopy ex-
periments by Boles et al. (1990). They have carried out their
measurements at a starting temperature of 298 K, at which

TABLE 3 Comparison between the minimization of the total plectonemic free energy (Eqs. 25 and 26) following the iterative
scheme (Eqs. 31 and 32) and a fully numerical minimization

usu

a (°) r (nm) dr (nm) Wr/DLk dr
2k/r

num. iterat. num. iterat. num. iterat. num. iterat. num. iterat.

0.02 62.1 48.2 19.7 22.1 3.8 4.0 0.63 0.63 0.78 0.78
0.04 66.1 59.6 6.8 7.9 1.7 2.0 0.93 0.77 0.47 0.52
0.06 66.2 61.5 4.4 4.9 1.1 1.2 0.96 0.80 0.29 0.32
0.08 65.6 61.1 3.4 3.7 0.8 0.9 0.93 0.79 0.19 0.21
0.10 64.8 60.0 2.9 3.1 0.6 0.7 0.88 0.78 0.13 0.15
0.12 64.2 58.8 2.5 2.7 0.5 0.5 0.84 0.76 0.10 0.11

Parameter values are as in Table 4.E 5 2; Pt 5 100 nm.
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the Bjerrum lengthQB is 0.715 nm. Their aqueous buffers
contain;0.105 M monovalent salt and trace amounts of the
multivalent complexing agent EDTA, which, however, as
co-ion to DNA, does not have a significant impact on the
double-layer electrostatics. The Debye screening lengthk21

is 0.94 nm, so for the effective charge parameter we obtain
j 5 4.18. We have collected the relevant parameters in
Table 4.

Comparison with experiment and
computer simulations

We are rather restricted in our choice of experimental data.
One problem has been that the mesoscopic structure of the
superhelix is difficult to probe in sufficient detail by most
experimental techniques. On the other hand, the buffers
most commonly used in microbiology are often rather com-
plex in composition and, in many cases, contain divalent or
multivalent (counter) ions. This is a complicating factor, as
polyelectrolyte theory based on the Poisson-Boltzmann ap-
proximation is well established only for monovalent salt
(Fixman, 1979).

At present, there are two electron-microscopic studies of
DNA supercoiling that turn out to be useful in a quantitative
assessment of our computations. Boles et al. (1990) have
carried out an extensive investigation of plectonemic struc-
ture by conventional electron microscopy. For two sizes of
circular plasmid DNA, they varied the superhelical density
between20.016 and20.117 under controlled ionic condi-
tions. They always observed an open, rather strongly fluc-
tuating plectonemic helix whose radius varied asusu21 to a
very good approximation. The writhe per added linkWr/
DLk had a value of;0.72 for all values ofs and was
essentially constant within the margin of experimental error.

By contrast, via cryoelectron microscopy, Bednar et al.
(1994) purportedly found a collapsed plectonemic state
under comparable ionic conditions. The observed superheli-
cal diameter was close to twice the hard-core diameter of
DNA. From their micrographs, we have determined the
plectonemic opening angle to be around 57°, which is very
close to the angle of 55° reported by Boles et al. (1990) for
the open structure. However, we do not expect a collapsed
state at such angles on the basis of our previous theoretical
work (Odijk and Ubbink, 1998) (see Eq. 32). In this dis-
cussion, we therefore restrict ourselves to the data of Boles

et al. In Appendix II, we tentatively investigate the issue of
superhelical collapse by attractive dispersion forces.

In Figs. 4 and 5, we plot the superhelical radius as a
function of the specific linking difference for two values of
the persistence ratioE 5 Pt/Pb (see also Tables 5 and 6).
Throughout the full range ofs, the agreement of theory with
experiment is satisfactory forE 5 2 but not forE 5 1. We
have also plotted the theoretical amplitudes of the undula-
tions dr in both figures. We observe a remarkable coinci-
dence with the spread in experimental data, which are
plotted in such a way that the error bars display one standard
deviation. At low values ofusu, the predicted amplitudes are
significantly smaller than the experimental variations, even
whenE 5 2. The explanation for this may be twofold. First,
in this regime, our mean-field treatment of molecular fluc-
tuations is expected to break down; specifically, the postu-

TABLE 4 Parameter values used in the comparison with the
experimental data of Boles et al. (1990)

DNA bending persistence length Pb 50 nm
DNA torsional persistence length Pt 50 nm; 100 nm
DNA hard-core radius a 1.0 nm
Helical repeat DNA relaxed state h 3.5 nm
Bjerrum length QB 0.715 nm
Debye length k21 0.94 nm
Poisson-Boltzmann charge parameter j 4.18
Coefficients of confinement free

energy
cp, cr 3/28/3

FIGURE 4 Plectonemic radius versus specific linking difference.Cir-
cles: Experimental data of Boles et al. (1990). The error bars indicate one
standard deviation in the spread of the experimental data.Solid line:
Theory. The dashed lines indicate the undulation amplitudesdr. The
parameters are as specified in Table 4;Pt 5 50 nm;E 5 1.

FIGURE 5 See Fig. 4, but nowPt 5 100 nm;E 5 2.
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lated Gaussian distribution of undulations may become poor
as they become too marked. Second, in the experiments at
low usu, a regular superhelical structure will be increasingly
difficult to discern, so that the distinction between regular
parts of the superhelix and irregularities like branching
points, end loops, and sections which are just randomly
coiled becomes less clear, and, concomitantly, the margins
of error will increase.

By plotting the undulation amplitudes and experimental
error bars in this way, we are suggesting a direct correspon-
dence between them, whereas the sources contributing to
experimental errors may be multifarious and their relative
impact difficult to gauge. For instance, it would be surpris-
ing if the handling of samples before the electron micro-
scopic analysis did not have a significant influence on the
distribution of fluctuations within the supercoil, given the
highly invasive nature of the procedure. One expects strong
mechanical forces to act on the supercoil, which may be
flattened as it is transposed onto the EM grid. In addition, it
seems difficult to maintain constant ionic conditions during
this process. Furthermore, any experimental uncertainty will
also be reflected in the magnitude of the error bars. Never-
theless, in view of the excellent overall agreement forE 5
2 shown in Fig. 5, it seems reasonable to conclude that the
structural fluctuations visible on the micrographs are indeed
intrinsic to the superhelix in solution (Cozzarelli, personal
communication).

In Fig. 6 we have plotted the normalized superhelix
length as a function of the specific linking difference, again,
for two values ofE. This length is twice the length of the
superhelical axis divided by the total contour length of the
molecule. If we neglect end loops and branching points, the
normalized superhelix length simply equals sina. For con-

venience, nominal values ofa are indicated on the axis to
the right. In the experiments of Boles et al. (1990), the
normalized superhelical length turns out to be effectively
constant within the margin of error and is;0.82, which
implies an average opening angle of 55°. Fluctuations seem
to be small but are difficult to quantify, as each measure-
ment is the average over a considerable number of super-
helical turns. An average superhelical opening angle close
to 55° is obtained in a wide variety of other experiments and
simulations (Adrian et al., 1990; Bednar et al., 1994; Klenin
et al., 1991; Vologodskii et al., 1992). At highusu, our
theoretical values are consistently a few degrees higher than
this rather characteristic 55° (Fig. 6): both curves exhibit a
broad maximum; the curve atE 5 2 is in better agreement
with experiment. Similar results, although with higher max-
imum values of the opening angle, were obtained in recent
theoretical work (Marko and Siggia, 1994, 1995) using a
superposition approximation.

The writhe per added linkWr/DLk varies only slightly for
values ofusu higher than;0.04. This is in good agreement
with the experimental trend (see Fig. 7). The theoretical
value atE 5 2 is ;0.77, which is a bit higher than the
values obtained from experiment. The latter are scattered
within a small range centered around 0.7 (Boles et al.,
1990); at highusu, the discrepancy may be attributed, in
large part, to the disparity in the respective opening angles.
Note that, although the exact magnitude of the writhe is
slightly off, the minimization according to Eqs. 31 and 32
gives a dependence ofWr on DLk that conforms closely to
the linear relationship inferred from both experiment and
computer simulations.

On the whole, the theory (Eqs. 31–35) withE 5 2 is in
conformity with the dimensions of superhelical DNA deter-
mined by Boles et al. (1990), except for a slight overesti-
mation of the pitch anglea (see Figs. 5–7). Therefore, we

TABLE 5 Plectonemic parameters from the electrostatic-
undulatory theory (Eqs. 31–35) for the DNA parameters
quoted in Table 4

usu a (°) r (nm) dr (nm) Wr/DLk dr
2k/r

0.02 44.8 37.3 5.5 0.37 0.86
0.03 55.3 16.4 3.4 0.53 0.73
0.04 59.8 10.0 2.4 0.60 0.60
0.06 62.7 5.7 1.5 0.66 0.39
0.08 63.0 4.2 1.0 0.66 0.27
0.1 62.4 3.5 0.8 0.65 0.19
0.12 61.6 3.0 0.6 0.64 0.14

Pt 5 50 nm;E 5 1.

TABLE 6 As in Table 5, but Pt 5 100 nm, E 5 2

usu a (°) r (nm) dr (nm) Wr/DLk dr
2k/r

0.02 48.2 22.1 4.0 0.63 0.79
0.03 56.2 11.8 2.7 0.73 0.65
0.04 59.6 7.9 2.0 0.77 0.52
0.06 61.5 4.9 1.2 0.80 0.32
0.08 61.1 3.7 0.9 0.79 0.21
0.1 60.0 3.1 0.7 0.78 0.15
0.12 58.8 2.7 0.5 0.76 0.11

FIGURE 6 Normalized superhelix length versus specific linking differ-
ence. The nominal opening angles for an infinite plectonemic helix are
indicated on the right-hand axis.Circles: Experimental data of Boles et al.
(1990).Dashed line: Theory withPt 5 50 nm;E 5 1. Solid line: Theory
with Pt 5 100 nm;E 5 2. The parameters are as specified in Table 4.
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tend to conclude that the torsional persistence lengthPt

should be close to 100 nm. Such a relatively high value is in
agreement with a careful theoretical treatment by Moroz
and Nelson (1998). They insist on aPt of 109 nm if they
want to explain the stretching experiments by Allemand and
Croquette (unpublished results), although within an essen-
tially similar theoretical scheme somewhat lower values of
Pt (E ' 1.4–1.7) have also been reported (Bouchiat and
Mezard, 1998). In the past, lower values forPt have been
proposed, e.g.,Pt 5 80 nm (Shimada and Yamakawa,
1985),Pt 5 50 nm (Taylor and Hagerman, 1990; Gebe et
al., 1996, and references therein), andPt 5 75 nm (Volo-
godskii and Cozzarelli, 1995). The purpose of this paper is
to introduce a new supercoiling model, not to determinePt

to a high degree of precision. Nevertheless, within the
context of the electrostatic analysis, a value ofPt as low as
50 nm seems quite unlikely.

At this stage, we can finally remark on the validity of the
Gaussian approximation forGr(ur) (Eq. 21). It has been
argued that a Gaussian undulation theory for positionally
ordered systems is only legitimate when the Gaussian dis-
tribution tapers off fast enough (Odijk, 1993c; de Vries,
1994). In our case, the probability of a test strand occupying
the position of its neighbor in the supercoil must be essen-
tially zero. In quantitative terms, we then have the condition
d2k/r # 1. Table 6 shows that this requirement is indeed
satisfied.

Another issue of concern is the ionic strength dependence
of the plectonemic parameters. This has been investigated
by numerical simulation by several groups (Vologodskii
and Cozzarelli, 1995; Rybenkov et al., 1997; Delrow et al.,
1997). The Vologodskii group has used a set of parameters
different from that compiled in our Table 4. In particular,
their torsional persistence lengthPt is 75 nm (E 5 1.5), and
their DNA radius is 1.2 nm (for the “hydrated” form intro-

duced by Stigter (1977); his electrophoretic charge instead
of the actual DNA charge may also be dubious in describing
static DNA configurations). The newly computed DNA
charge parameterj agrees with that calculated by Vologod-
skii and Cozzarelli (1995). (Compare their Table I with our
Table 7). In Table 8 we present the plectoneme parameters
computed with the help of Eqs. 31–35 at a specific linking
differenceusu 5 0.06. Fig. 8 shows that the analytical theory
for the writhe starts to deviate from the simulations a bit at
ionic strengths lower than 0.1 M. We do not have an
explanation for this deviation, although it is probably sys-
tematic. The recent simulation work by Delrow et al. (1997)
at usu 5 0.05 coincides, in the main, with that of Vologod-
skii and Cozzarelli (1995) atusu 5 0.06. (The change from
0.05 to 0.06 does not have a marked effect on the analytical
theory; compare Table 8 with Table 9).

The dependence of the superhelical radius on salt was
studied by the Vologodskii group in yet another paper
(Rybenkov et al., 1997) at a different value ofusu 5 0.05.
Their results are plotted in Fig. 9 together with the radius
predicted by the undulatory-electrostatic theory (see Table
9). The theory overestimates the simulations by;15% on
average, although the general form of the curve is quite well
predicted. Our undulation theory explains why the usual
effective diameterDeff of a DNA rod (Stigter, 1977) is not
at all a measure of the diameter 2r of a DNA plectoneme:
the undulations are particularly strong at high ionic
strengths, so that 2r .. Deff in that case.

FIGURE 7 Writhe per added link versus the specific linking difference.
The dashed line denotes the theory withPt 5 50 nm;E 5 1. The solid line
denotes the theory withPt 5 100 nm;E 5 2. The open circles are the
experimental data of Boles et al. (1990). The parameters are as specified in
Table 4.

TABLE 7 Poisson-Boltzmann parameter j as chosen by
Stigter (1977)

c (M) k21 (nm) j

0.01 3.04 1.38
0.02 2.15 1.93
0.05 1.36 3.03
0.1 0.961 4.37
0.2 0.680 7.16
0.5 0.430 18.6
0.75 0.351 33.4
1 0.304 54.7

Linear charge density of DNA helix[ electrophoretic charge density5
0.73 phosphate charges per unit length; DNA diameterd 5 2.4 nm.j has
been computed with the help of Philip and Wooding (1970).

TABLE 8 Ionic strength dependence of the plectonemic
parameters calculated via the electrostatic-undulatory theory
(Eqs. 31–35)

c (M) a (°) r (nm) dr (nm) Wr/DLk dr
2k/r

0.01 51.6 7.6 1.8 0.59 0.15
0.02 55.1 6.8 1.7 0.64 0.19
0.05 59.2 5.8 1.4 0.70 0.27
0.1 61.6 5.2 1.3 0.74 0.34
0.2 63.3 4.9 1.2 0.76 0.41
0.5 64.5 4.6 1.0 0.78 0.51
0.75 64.7 4.6 0.9 0.78 0.54
1 64.8 4.6 0.9 0.79 0.57

Specific linking differenceusu 5 0.06.
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Finally, we emphasize that a superposition formula like
Eq. 17, when enhanced by Gaussian fluctuations (Eq. 21), is
not at all able to explain the ionic strength dependence of
the plectoneme dimensions. We have found that such an
undulatory potential leads to a virtually constant radius and
writhe, in stark disagreement with Figs. 8 and 9. What
happens is that the minute term exp[2pp] is blown up
disproportionately when a Gaussian is applied. As we have
argued at length, thep dependence should be accounted for
to a far better degree (see Eq. 18).

CONCLUDING REMARKS

In conclusion, we have shown that, despite the seemingly
fairly wild fluctuations in structure, the plectonemic helix
may behave like a rather well-ordered system with respect
to the radial organization of the strands within the supercoil.
In the limit of tight winding, the radial undulations of the
strands are small and may be dealt with on a mean-field
level. By contrast, we have argued that the longitudinal
fluctuations within the supercoil related to the pitch are
relatively large. We have carried out a quantitative analyt-
ical computation for a plectonemic supercoil immersed in

an aqueous solution containing excess monovalent salt. The
undulatory electrostatics is the dominant force, and the
predicted supercoil structure and undulation amplitudes of
the strands agree well with current experimental data if we
let the torsional persistence length be 100 nm. The special
symmetry inherent in the purely elastic energy is the cause
of the remarkable invariance of the plectonemic opening
angle under conditions where the superhelical radius varies
by almost one order of magnitude. We suspect that this
effective conservation of opening angle could well have
important biological consequences (Odijk, 1998).

Finally, a referee has invited us to comment on the status
of the present theory and supercoiling models in general.
First, it is well to recall that biophysical modeling itself is
subject to an almost inexorable conflict between biological
contingency and physical universality (for some general
remarks on the formulation of mesoscopic models of com-
plex matter, see Odijk (1997)). There are at least two major
problems in developing a theory of DNA supercoils. The
first is how to reckon with the topological constraint (the
DNA helix cannot intersect itself); the second is the inevi-
table reduction in the number of degrees of freedom as one
defines a model for real DNA in aqueous buffer (i.e., the
molecule DNA surrounded by water molecules, ions, etc.).
For instance, in this paper we have introduced a two-
variable description of a superhelix without end effects. The
supposition has been made that the DNA configurations are
purely plectonemic; hence, the phase space of all possible
configurations has been severely restricted. In particular, we
have not introduced a reference state. Moreover, the aque-
ous electrolytic environment is dealt with merely at the level
of Poisson-Boltzmann electrostatics. The bending and twist-
ing degrees of freedom are purely elastic.

Another difficulty is the status of mean-field theories
guided by variational principles using trial functions. For a
complex system, we may devise a reasonable mathematical

FIGURE 9 Plectonemic radius versus the concentration of monovalent
salt. The open circles are from the simulations by Rybenkov et al. (1997);
the solid line is the electrostatic-undulatory theory (Eqs. 31–35).Pt 5 75
nm, usu 5 0.05; electrostatic parameters are as in Table 7.

FIGURE 8 Writhe per added link as a function of the concentration of
monovalent salt. Comparison between the electrostatic-undulatory theory
(Eqs. 31–35) (solid line) and simulations by Vologodskii and Cozzarelli
(1995), using either a line charge approximation to the Poisson-Boltzmann
equation (open circles) or an effective diameter (filled circles). Pt 5 75 nm
(E 5 1.5), usu 5 0.06; electrostatic parameters are as in Table 7.

TABLE 9 As in Table 8, but with zsz 5 0.05

c (M) a (°) r (nm) dr (nm) Wr/DLk dr
2k/r

0.01 52.2 9.0 2.3 0.60 0.19
0.02 55.5 8.0 2.1 0.65 0.25
0.05 59.1 7.0 1.8 0.70 0.34
0.1 61.1 6.4 1.7 0.73 0.42
0.2 62.3 6.1 1.4 0.75 0.50
0.5 63.0 5.9 1.2 0.76 0.60
0.75 63.1 5.9 1.1 0.76 0.63
1 63.1 5.9 1.1 0.76 0.65
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model that seems to work admirably but could well turn out
to be wrong in the long run (for instance, Anderson (1984)
has criticized current semiempirical quantum-chemical
models of complex molecules described in terms of a large
set of trial functions). In any event, we have here attempted
to formulate a convenient mesoscopic form of the free
energy of a plectonemic supercoil. Gaining insight into the
nature of the entropy, which has implicit contributions
within the bending, twisting, and electrostatic parameters, is
another matter.

APPENDIX I: ENTROPY OF GENERALIZED
WORMLIKE CHAINS RESTRICTED
TO A GAUSSIAN

Certain functional integrals related to the statistical mechanics of “gener-
alized” wormlike chains have been investigated in some detail recently
(Kleinert, 1996, 1990; Dodonov et al., 1991; Burkhardt, 1995; Jain and
Nelson, 1995). However, it is possible to derive the value of an important
coefficient by a simple scaling argument.

Let us consider a quadratic Hamiltonian signifying a harmonically
confined “generalized” polymer:

* ; *0 1 U ; 1
2

gE
0

l

dsSdnx

dsnD2

1 1
2

bE
0

l

dsx2 (36)

(n 5 integer).
A configuration of the chain describes a one-dimensional pathx 5 x(s).

The partition function is defined on the space of paths [x(s)]. The harmonic
potentialU of strengthb has been added to the “bending” term*0. This
simulates the effect of constraining the chain to a Gaussian distribution (as
l 3 `):

G~x! 5
1

p1/2d
expF2x2

d2G (37)

The fully quadratic form of Eq. 36 ensures that the simulated distribution
is exactly Gaussian.

Next, assume that a deflection lengthl exists. Estimates for the energy
scales are simply

*0 <
gld2

l2n (38)

U < bld2 (39)

so that a balance of these two terms implies

l < ~g/b!1/2n (40)

The chain is a sequence of deflection segments, so the total free energy,
which is extensive, is given by

Ftot <
l

l
< lSbgD

1/2n

~l .. l! (41)

Furthermore, Eq. 36 together with the standard definition of the partition
function gives the average potential:

^U& 5 b
­Ftot

­b
5

1

2n
Ftot (42)

Finally, to focus on the correct expression for the free energy of confining
the polymer in accordance with the restriction in Eq. 37, we have to

acknowledge that the external potentialU is merely an artifice (Odijk,
1986):

Fconf ; Ftot 2 ^U& 5 S1 2
1

2nDFtot (43)

The coefficient (12 1/2n) is in agreement with computations forn 5 1
(Odijk, 1986) andn 5 2 (Kleinert, 1986; Burkhardt, 1995). If the chain
were to be viewed as an effective harmonic oscillator, the coefficient would
be 1/2 (Odijk, 1986), but for the system at hand (n 5 2), such a point of
view is incorrect. Care must also be exercised in applying a virial theorem
(Landau and Lifshitz, 1976) to Eq. 36. To sum up, for a one-dimensional
worm (n 5 2, g [ PbkBT) Eq. 43 still holds, so we have (Burkhardt, 1995)

^conf

kBT
5

3

28/3Pb
1/3d2/3 (44)

APPENDIX II: INFLUENCE OF WEAK ATTRACTIVE
INTERACTIONS ON PLECTONEMIC STRUCTURE

In cryoelectron microscopic studies, collapsed states of plectonemically
supercoiled DNA have purportedly been witnessed in which the two
strands of a supercoil had adhered laterally (Bednar et al., 1994). The
collapse was observed at a specific linking difference of about20.05 in
buffers containing either 0.1 M NaCl or 0.01 M MgCl2.

Under these ionic conditions, one would ordinarily assume the usual
electrostatic repulsion to dominate any attractive interaction between DNA
segments. However, there is evidence that nonsupercoiled DNA aggregates
at high enough DNA concentrations (Wissenburg et al., 1994, 1995).
Nevertheless, the aggregation has been thought to arise from attractive
forces at the third virial level, i.e., beyond the pair level (Odijk, 1994;
Wissenburg et al., 1995). There may be little or no relation between the two
sets of experiments, after all (Bednar et al., 1994; Wissenburg et al., 1994,
1995).

In recent years, the origin and role of attractive interactions in colloidal
and polymer solutions have become a matter of some debate. At present,
short-range ion-ion correlation forces (Oosawa, 1968; Schmitz, 1996;
Rouzina and Bloomfield, 1996; Grønbech-Jensen et al., 1997) and an
exponentially decaying long-range attraction, of unknown but possibly
hydrophobic nature (Odijk, 1994), are thought to compete in strength with
the classical London-Hamaker interaction. In this appendix, we do not
enter into this debate and simply gauge the effect of one type of attractive
interaction on plectonemic structure, namely dispersion forces. These are
weak, of course, but the twisting force within supercoiled DNA brings
about an additional interaction pulling the strands of the plectoneme
together. It is worthwhile to investigate whether both effects in concert
could induce side-by-side adhesion. A rough calculation was performed
recently (Marko and Siggia, 1995), but, as explained in the Introduction,
we go somewhat deeper into several issues here.

In the nonretarded regime, the van der Waals interaction between a
volume element dV1 of the test strand of the supercoil and a volume
element dV2 of the opposing strand may be written asAkBT/r6 dV1 dV2,
where A is the Hamaker constant scaled bykBT and r is the distance
between dV1 and dV2 (Derjaguin, 1989). Only the strand opposing the test
strand contributes significantly to the van der Waals free energy because
the force is short-ranged.

Both the radius and the pitch of the superhelix are much larger than the
DNA hardcore radiusa, so we may approximate a volume element of
strand by dV 5 pa2ds, where ds is an element of length along a super-
helical strand. We neglect the variation in the van der Waals forces across
the cross section of the DNA double helix, which would give rise to a
correction of relative magnitude2(a2/r2) to the total interaction (Sparnaay,
1959).

The van der Waals forces are only weakly perturbed by undulations, at
least within the Gaussian approximation (Odijk, 1993b). Hence we neglect
this undulatory correction also; so we calculate the interaction as if the
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DNA strands were in their classical plectonemic configuration (Fig. 1). A
volume element of strand is written as dV 5 pa2[p2 1 r2]1/2 du z r(u) 5
[2r2[1 1 cos(u)] 1 p2u2]1/2, whereu is the parameterization along the
plectonemic axis introduced earlier (see also Fig. 2).

The free energy of attraction per unit length of strand in the plectonemic
helix thus becomes

^VdW

kBT
5 2Aa4@p2 1 r2#1/2E

2`

`

du
1

r~u!6 (45)

We anticipate thatp . r, so that we may approximater(u) ' [4r2 1
p2u2]1/2. Accordingly, we obtain

^VdW

kBT
< 2

3pAa4

256

@p2 1 r2#1/2

r5p
5 2

3pAa4

256r5sin a
(46)

We minimize the total free energy of the supercoil according to the
iterative scheme in Eqs. 31 and 32. The perturbation per unit length of
strand now consists of the electrostatic undulatory interaction plus the van
der Waals free energy:

f 5
^el

kBT
1

^conf

kBT
1

^VdW

kBT
(47)

The effect of the van der Waals interaction is largest whenr is as small as
possible. We therefore merely regard the case in which the absolute linking
difference is the maximum attained in the experiments by Boles et al.
(1990), namely,usu 5 0.12. Then we have

^VdW

^el
5 22~A/1000! (48)

DNA in water should have a scaled Hamaker constant of order unity; it is
clear that the dispersion interaction is entirely negligible. Furthermore, it
turns out that the secondary minimum we are focusing on is separated from
the totally collapsed state (when the two strands adhere) by a huge energy
barrier of;20kBT/nm strand.

In addition, we note that the opening angle as determined by us from the
electron micrographs of Bednar et al. (1994) is;57°, which is close to the
55° obtained by Boles et al. (1990) for the open structures. As we have
stressed earlier, the combination of a very slight variation in the opening
angle versus a huge variation in the superhelical radius as in a collapsed
state contradicts our semiclassical relation (Eq. 32). The contradiction hints
at an inconsistency in the experimental data. Gebe et al. (1996) recently
presented arguments for why the collapsed state of the plectonemic super-
helix seen by Bednar et al. (1994) may actually be an artifact of the
vitrification procedure used in cryoelectron microscopy.

We thank J. Bednar, J. Langowski, and C. L. Woldringh for discussions
and especially N. R. Cozzarelli and J. M. Schurr for very helpful comments.
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