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Electrostatic-Undulatory Theory of Plectonemically Supercoiled DNA

Job Ubbink and Theo Odijk
Faculty of Chemical Engineering and Materials Science, Delft University of Technology, 2600 GA Delft, the Netherlands

ABSTRACT We present an analytical calculation of the electrostatic interaction in a plectonemic supercoil within the
Poisson-Boltzmann approximation. Undulations of the supercoil strands arising from thermal motion couple nonlinearly with
the electrostatic interaction, giving rise to a strong enhancement of the bare interaction. In the limit of fairly tight winding, the
free energy of a plectonemic supercoil may be split into an elastic contribution containing the bending and torsional energies
and an electrostatic-undulatory free energy. The total free energy of the supercoil is minimized according to an iterative
scheme, which utilizes the special symmetry inherent in the usual elastic free energy of the plectoneme. The superhelical
radius, opening angle, and undulation amplitudes in the radius and pitch are obtained as a function of the specific linking
difference and the concentration of monovalent salt. Our results compare favorably with the experimental values for these
parameters of Boles et al. (1990. J. Mol. Biol. 213:931-951). In particular, we confirm the experimental observation that the
writhe is a virtually constant fraction of the excess linking number over a wide range of superhelical densities. Another
important prediction is the ionic strength dependence of the plectonemic parameters, which is in reasonable agreement with
the results from computer simulations.

GLOSSARY #.  elastic Hamiltonian
a DNA hard-core radius ke I_30I'Fzmann S constant
Hamaker constant, scaled kyT Lk linking number
' Lk, linking number relaxed state

A
b coupling parameter of harmonic potential
c

. ALk excess linking number
concentration of monovalent salt

my, m, fitting coefficients of the approximation of the

C coefficient of confinement free energy, electrostatic potential
confnjgment - ng number concentration monovalent salt
Cy coefficient of confinement free energy, itch/2m of bl . heli
confinement inp p pitch/2m of plectonemic superhelix
L Py DNA bending persistence length
d, root mean square undulation n

P, DNA torsional persistence length
q elementary charge
Qs Bjerrum length= ¢%/(ekgT)
r radius of plectonemic superhelix

d root mean square undulation iin
f perturbation per unit length of strand
F total free energy of plectoneme per unit length

of strand R. radius of curvature in plectonemic
F cont confinement free energy per unit length of ! . P

strand configuration
o . : S contour distance
Fal undulation-enhanced electrostatic free energy

: T absolute temperature
per unit length of strand o
Tw twisting number

Fel0 electrostatic free energy of the nonfluctuating
configuration per unit length of strand
Fyaw van der Waals free energy per unit length of uf
strand vs
g generalized bending constant
Gaussian distribution of undulations
G, Gaussian distribution of undulations iin
helical repeat DNA relaxed state

u angle of plectonemic rotation
u amplitude of undulation im
amplitude of undulation ip
dimensionless parameter 2«r
ATw excess twisting number

Wr writhing number

Wr writhe per unit length of strand of the

plectonemic helix
Z function defined by Eq. 19
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A deflection length Our understanding of the biological implications of su-
n dimensionless parameter p%/4r? percoiling is still incomplete, although many qualitative
Veit effective linear charge density of DNA arguments and models supporting either passive or active
3 Poisson-Boltzmann charge parameter roles of supercoiling have been advanced (Sinden, 1987;
p distance between two points on the superhelical Cozzarelli and Wang, 1990; Stasiak, 1996). At present it is

contour thought that supercoiling may be functional with respect to
o specific linking difference the compaction of DNA, in this way enhancing the rate of
T inverse plectonemic parameter hy/(4t|o]) certain recombination reactions by bringing together distant
b dimensionless distance p/2r segments of DNA (Wasserman and Cozzarelli, 1986; Gel-
¢ electrostatic potential, scaled byg/kgT lert and Nash, 1987) and the regulation of DNA-specific
I electrostatic potential, scaled byg/kgT enzymatic activity by a partial unwinding of the double
R4 renormalized potential, scaled byg/kgT helix, which facilitates a local unstacking of base pairs
w,  twist rate relaxed DNA (Drew et al., 1985).
Q excess twist In other cases, however, supercoiling or the formation of

supercoiled domains within a very long DNA molecule may
potentially interfere with the proper functioning of the cell.
INTRODUCTION For instance, if the cell were not able to relax excess

Both the global conformation and the local structure of thesupercomng density, both DNA transcription (Liu and

DNA double helix depend subtly on applied forces. En_Wang, 1987) and the wrapping of DNA into nucleosome

tropy, interactions, topological constraints, and externaf°'® particles (Wolffe, 1992) would be hampered by the

forces are nonlinearly intermingled to various degrees, giviatccumulatlon of positive supercoils in the remaining free
ing rise to the remarkable structural and functional versa-0oPs: . . o .

tility of the DNA molecule (Bloomfield et al., 1974; Sinden, In dealing with the myriad topological impediments that
1994) occur during normal cell operation, with or without associ-

When put under sufficient torsional stress, a closed dou‘:ﬂEd elastic stres_ses, thg living ce!l has at its. disposal a
ble-helical chain of DNA will respond by forming super- complex enzymatic machine, of which the topoisomerases

helical structures that are more or less regular and interf-orm the center (Wang, 1971, 1991, 1996; Gellert, 1981).

wound. In the plectonemic helix (Fig. 1), two strands of theVarlqusl meT]bers c.)f th||s class fofhenéym;ls 2“?. ab!eh to
double helix are intertwined, each superhelical strand dis[‘n"".""plu aée t € tgrs[ona s_,tatg 0 ; ed Olél eh I?IX e'th er
placed with respect to the other by half the superhelicaf’lcuve y, Dy introducing twist into the double helix at the

pitch. At least two end loops are present, but there may p&XPENSE of the consgmptlon_of ATP, or passively, by relax-
more loops if branching defects occur. Ing the excess twist in the circular DNA. In the latter case

In the supercoiling of DNA, topology and twist are inti- the release of excess twist may be the sole driving force of

mately related. The topology of a complex molecule "keth?”t]opologmal llr_eactl?rlleA led by el .
DNA, however, gives rise to multifarious phenomena, € supercoliling o was revealed by electron mi-

whose relevance extends well beyond supercoiling alon&"0SCOPY aft_er hints Of. its anomalous behavior in sedimen-
(Wasserman and Cozzarelli, 1986; Cozzarelli and Wangt,atlon expenments (Vinograd et .aI., 1965). The _topology
1990; Bates and Maxwell, 1993; Stasiak, 1996). It may beaf’md physical structure of supercoiled DNA have since been

on both isolated molecules and those in congested states, ﬁ hdied by a Widi variety E.f tecr}niciLézso, includin(gjg.ftf:iyna.mic
the formation of knots (Liu et al., 1981), and on the cate- Ight scattering (Langowski et al., ), x-ray diffraction

nation of rings (Martin and Wang, 1970). Topological con- (Brady et al., 1987), site-specific recombination and trans-

straints may be permanent or may manifest themselves onR/OSItIon (Boles et al., 1990), microcalorimetry (Seidl and

transiently when obstructions or entanglements diffusd*'nz’ 1984), gel electrophoresis (Keller and Wendel, 1974;
away. Keller, 1975; Depew and Wang, 1975; Pulleyblank et al.,

1975), dialysis studies of intercalating agents (Bauer and

Vinograd, 1970; Hsieh and Wang, 1975), ring closure prob-

abilities (Shore et al., 1981; Shore and Baldwin, 1983), and

2np single-molecule stretching experiments (Strick et al., 1996).
' Many of these experiments were directed mainly at the

elucidation of the topological state itself. Unfortunately,
G most of the common physical chemical techniques do not
2r ( \ allow a precise and unambiguous assignment of supercoll
v/\\_/ structure because the resolution in the experiments is too
weak.

In recent years, however, modern (cryo-) electron micro-

FIGURE 1 A configuration of the plectonemic helixis the radius and ~ SCOPIC techniques have b?en applied, aiming at a deeper
27p the pitch of the plectoneme, andis its opening angle. reassessment of supercoil structure (Boles et al., 1990;

o
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Adrian et al., 1990; Bednar et al., 1994). The supercoilaccount via the use of an effective diameter, both in simu-
parameters are thus becoming better known, and withations (Vologodskii et al., 1992) and in analytical theory
greater accuracy. Of course, microscopy remains a teciMarko and Siggia, 1994). The effective diameter depends
nique that is never without some ambiguity. on the ionic strength of the solution (Onsager, 1949; Stigter,
The correct topological relations governing closed DNA1977), but it was introduced as a statistical concept pertain-
were determined merely a few years after the experimentahg to the isotropic interaction between two straight charged
discovery of DNA supercoiling (White, 1969; Fuller, 1971, rods. The statistical averaging and Boltzmann weighting
1978; Bauer et al., 1978). The conformations of DNA ringsare, in principle, entirely different in a theory of supercoils.
and coils under torsion have been studied primarily withinin recent work the use of an effective diameter was circum-
the elastic limit (Fuller, 1971; Camerini-Otero and Felsen-vented. A soft, exponentially decaying electrostatic poten-
feld, 1978; LeBret, 1979, 1984; Benham, 1979, 1983;tial was taken into account in computer simulations (Fenley
Tanaka and Takahashi, 1985; Wadati and Tsuru, 1986t al., 1994; Vologodskii and Cozzarelli, 1995) and, albeit
Tsuru and Wadati, 1986; Hao and Olson, 1989; Hunt andvithin a bare, unrenormalized approximation, in analytical
Hearst, 1991; Shi and Hearst, 1994; Westcott et al., 1997theory (Marko and Siggia, 1995). In positionally ordered
An analytical study that goes some way in explaining plec-systems, however, we recall that the bare electrostatic in-
tonemic structure is the elastic theory by Hunt and Hearsteraction is strongly enhanced by even small undulations of
(1991). They calculated the bulk plectonemic parameters athe chains around their equilibrium conformation (Odijk,
a function of the excluded-volume radius of the DNA. 1993a). Entropy and electrostatics conspire to give rise to an
The thermally averaged properties of supercoiled DNAelectrostatic-undulatory interaction.
have been probed extensively by computer simulations (Vo- Here we would like to go beyond previous theoretical
logodskii et al., 1979, 1992; Klenin et al., 1991; Olson andwork in the following ways: 1) The electrostatics is dealt
Zhang, 1991; Chirico et al., 1993; Rybenkov et al., 1997;with by summing all interactions in a far-field Poisson-
Delrow et al., 1997). The simulations differ widely in their Boltzmann approximation. Closed analytical approxima-
degree of sophistication, but the results are, in generatjons for the electrostatic potential at all values of the
mutually consistent, and the agreement with experiment iplectonemic parameters are given, which may also be useful
satisfactory in most cases. outside the context of this paper. 2) The potentially power-
The analytical development of the statistical mechanicgul enhancement of the potential by thermal undulations is
of supercoiling is hampered considerably by the topologicatomputed within a Gaussian ansatz for the undulatory con-
constraints (Shimada and Yamakawa, 1984, 1985; Tanakimement. 3) The pitch and radius are two scales determining
and Takahashi, 1985; Benham, 1990; Hearst and Hung plectonemic supercoil. It will turn out that they cannot be
1991; Guitter and Leibler, 1992; Marko and Siggia, 1994 treated on the same footing at all. 4) Analytical procedures
1995; Odijk, 1996). Quantitative understanding was firstare employed to handle the total free energy of the plec-
achieved in the consideration of the ring closure probabilitoneme (i.e., the sum of electrostatics, entropy, bending, and
ties of short stiff chains with torsion (Shimada and Ya-twisting), so that we attain a tractable theory for supercoil-
makawa, 1984, 1985). The similarity between a superhelicahg that is of practical use and yields physical insight at the
strand undulating within a supercoil and a wormlike chainsame time.
confined within a harmonic potential was noted by Marko The outline of the paper is as follows. First, we recapit-
and Siggia (1994), who advanced a simple scaling picture ofilate the main topological relations governing covalently
supercoil structure in the limit of fairly large fluctuations. closed circular DNA. We calculate, both numerically and
Even for tight bending, it has been argued that the entropgsymptotically, the electrostatic potential exerted by the
and bending of a wormlike chain are superposable to a gooplectonemic configuration to evaluate the free energy of
approximation (Marko and Siggia, 1995; Odijk, 1996). This electrostatic interaction. We next discuss the entropic mech-
introduces a major shortcut to theoretical work. In fact, aanism by which small undulations of the strands within the
semiclassical treatment of supercoil structure may be pusupercoil couple nonlinearly with the electrostatic potential
forward. Exploiting the special symmetry inherent in the and present an approximate calculation of this effect. Then
classical elastic Hamiltonian of the plectoneme, we havdhe total free energy of the supercoil is cast in the scheme
recently shown that some of the peculiarities of plectonemigreviously proposed by us (Odijk and Ubbink, 1998). We
DNA observed both in experiment and in computer simu-concentrate on the limit of tight supercoiling, for it is then
lation may be understood in fairly simple terms (Odijk and possible to postulate the existence of semiclassical config-
Ubbink, 1998). urations, in which the undulations are small. The free en-
Besides topology, bending, and entropy, there is a fourtlergy consists of an elastic contribution and a perturbative
problem that needs to be analyzed, namely the interaction dérm, the electrostatic-undulatory interaction. We self-con-
superhelical DNA with itself. Under physiological condi- sistently minimize the total plectonemic free energy with
tions, the behavior of DNA is strongly influenced by the the help of the iterative procedure derived by us earlier
screened Coulomb forces exerted by its negative phospha(®dijk and Ubbink, 1998). Our results are compared with
charges. The electrostatic interaction in supercoiled DNAhe available quantitative data. Finally, in the Appendices,
immersed in a monovalent salt solution has been taken intawe give a detailed analysis of an entropic coefficient and
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briefly consider the effect of attractive interactions on plec-In Eq. 3 it is assumed that end loops may be neglected. The

tonemic structure. plus and minus signs hold for left- and right-handed plec-
tonemic helices, respectivelyis the radius, and2p is the
pitch of the superhelix (see Fig. 1); the two variables are

TOPOLOGY assumed to be uniform. The plectonemic opening aagte

.E ven when we d!srggard the probability of knot formation deIfDIn(::(\a/(ijatti)c))/nt:l r;‘?om Ft)ge relaxed state are measured by the

in tlhe dloulpkle helix itself, tze cllosurg of a doubIe—Istrf':mcliledexCess linking numbeaLk = Lk — Lk, and the excess

e Dt S e L cEoleals ising umberkTw = T — L, The e s aken 1
ys- NI . _be zero in the relaxed state. Furthermdrk, = 27wgl/h,

strands run in opposite directions along the double hellxWherel is the DNA contour length, so we can write

and the ends of the sugar-phosphate backbones are of a

different chemical nature. The number of turns of the ALK = ATwW + Wr (4)

strands of the double helix around one another characterizes

a specific topological state. For a covalently closed DNABoth excess quantities may be positive or negative, pertain-

molecule, the appropriate topological invariant is the link-ing either to over- or underwinding of the double helix.

ing numberLk (Fuller, 1971). Normal B-DNA in the re- By dividing the excess linking numbeXLk by Lk,, we

laxed state forms a right-handed helix characterized by @btain the specific linking difference:

helical repeath of ~3.5 nm (or, equivalently, 10.5 bp)

(Bates and Maxwell, 1993), so to measure the degree of ALk

supercoiling, which may manifest itself in either under- or o= Lk, ®)

overwinding of the double helix, it is convenient to intro-

duce the linking number in the relaxed stdtk, This  For a homogeneously supercoiled molecule, the degree of

number is defined in such way that for B-DNA it is positive supercoiling is determined completely by the intensive

(Bauer et al., 1978; Cozzarelli et al., 1990; Bates andjuantityo.

Maxwell, 1993).

In 1969 White derived a relation between the linking
number and two configurational quantities, one bearing otELECTROSTATIC POTENTIAL OF
the local twist of the chain and the other reflecting thePLECTONEMIC DNA

global shape of the molecule (White, 1969): We view the double-stranded DNA molecule as a closed

Lk = Tw+ Wr 1) cwpular curve o_f cyhndrlcal cross section. Its body is a
uniform dielectric with a permittivity much lower than that
whereTw is the twisting number, defined by of water, and its surface is assumed to bear a uniform charge

density. In aqueous solution, the electrostatic potential of
1 the supercoil is often screened by excess 1:1 salt, so we
Tw= 20 gdsw, + Q] (2)  address its electrostatics within the nonlinear Poisson-Boltz-
mann approximation. This has been established to be quite
The integration is performed along the contour of the axis ofaccurate (Fixman, 1979).
the double helix,w, is the intrinsic rate of twist of the The difficult problem of solving the Poisson-Boltzmann
relaxed double helix, anf) is the excess twist. The second equation for the charged plectoneme may be replaced by a
guantity introduced in Eqg. 1 is the writhing numb#fr, much simpler one, however. Because the distances between
which, for an arbitrary space curve, is given by the Gausadjacent winds in the plectonemic helix are typically much
integral (White, 1969; Jagaeanu, 1959). The writhe is a larger than about twice the sum of the DNA hard-core
functional of the configuration of the axis of the double radiusa and the Debye screening lengii ! (owing to
helix only. The energy of a supercoil depends on the twisBoltzmann weighting), we are interested in the far-field
that can be eliminated via Eq. 1 in favor of the writhe. In asymptotic solution to the Poisson-Boltzmann equation
this way, the energy conveniently becomes a functional obnly. This solution is essentially a linear superposition of
the configuration vector. effective Debye-Hakel potentials arising from all of the
Analytical evaluation of the writhing number is generally phosphate charges on the DNA supercoil. In the case of a
cumbersome; simple analytical approximations have beestraight polyion, the charged cylinder may be replaced by a
derived in several cases, including that of the regular interline charge coinciding with the axis of the cylinder (Brenner
wound configuration (Fuller, 1971; White and Bauer, and Parsegian, 1974). The nonlinear screening in the inner
1986). We will need the writhe per unit length of strand of double layers of the charged cylinder is taken into account

a plectonemic superhelix, by adjusting the effective charge density (i.e., the num-
ber of charges per unit length along the helical axis) in such
Wy = p a way that the outer double layers of the respective poten-

== 2a(p? + r?] ) tials coincide (Stroobants et al., 1986).
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Here we consider the potential exerted by a polyion ofwheres is the arclength from-{r, 0, 0) to N along the
plectonemic shape, which is again characterized by a radiuspposing strand, == [(p> + r3)Y%pldz ¢ = Qg is an
r and a pitch Zp (Fig. 1). Corrections to the effective effective charge parameter that may be calculated within the
charge density4 due to the superhelical curvature of the Poisson-Boltzmann approximation (Stroobants et al., 1986;
polyions may be neglected, for they are of ordeR) >  Philip and Wooding, 1970% ' is the Debye length defined
(Fixman, 1982) when the characteristic radius of curvaturédy «* = 87Qgn,, Qg = q/eksT is the Bjerrum lengthg is
R. ~ (p? + r?Ir of the plectoneme is much larger than the the elementary charge, amg is the number concentration
Debye length. of monovalent salte is the permittivity of the solvenkg is

Next, we superpose Debye-Ekel potentials exerted by Boltzmann’s constant, anflis absolute temperature. In the
the uniformly charged superhelix, whose charge densityntegrand of Eq. 7 one recognizes the Debyekél poten-
along the helical axis i, We choose a Cartesian coor- tial exerted by an element of arclength, i.e., a Coulomb
dinate systemx( y, 2) in such a way that theaxis coincides potential screened by a decaying exponential. The potential
with the central axis of the plectonemic helix (Fig. B (r, has been multiplied by the elementary charge and divided
0, 0) is a point on one strand of the plectonemic helix, andy kgT to render it dimensionless, for convenience. The
N: (—r cosu, =r sinu, pu) is a point on the opposing strand; electrostatic self-energy of the DNA helix itself will be
the plus and minus signs hold for left- and right-handedassumed to be constant.
superhelices, respectively.is the parameterization along  The potential may be usefully expressed as a function of
the plectonemic axis. The distansdetweerM andN may  the two dimensionless variables= 2kr andu = p%/4r?, so

be written as that Eq. 7 is transformed into
p(u) =[2r71 + cosu] + pau?]*? (6) L[ exd—wou]
— 112 |
The total Debye-Hckel potential exerted by the opposing W, 1) = &1+ 4p] d d(u) ®)
strand on point of the test strand is then given by 0
" ! with
“oexpg-—
P(p, 1) = 2§ f ds 1 vz
o p $(u) = [2 [1+ cosu] + Muz] (9)

*  exd—«kp] To investigate the physical behavior of the potential, we
— 2 211/2 p . .
= 2¢p* + 7] duip (7)  here anticipate thatv = 1 and 4uw? = 1, for the inner

0 double layers of the strands are unlikely to interpenetrate.
We also do not expect twisting forces within the DNA helix
to compete with electrostatic forces in the event they be-
come unduly high¥> kgT/nm) upon such interpenetration.

It is seen from the behavior near= 0 of the integrand

2
in Eq. 8 that the construction of asymptotic expansions for
largew that are uniformly valid for all. > 0 is not standard.
Bleistein’s method (Olver, 1974) could be used in this case,
J

but the presence of casin ¢(u) proves to be awkward.
Therefore, we have opted for the usual Laplace method

(Olver, 1974; Bender and Orszag, 1978), albeit as it is
applied in various regimes, for it does not yield a uniformly
P valid approximation for integrals of the type in Eqg. 8.

Forw > 1, the integrand in Eq. 8 decays exponentially

N
fast away from some minimumn= u,, of the function(u).
X M r O A major contribution to the integral comes from the neigh-
y borhood ofu,,, so we expandp(u) aroundu,,:
1 k ¢.(k)
() = PUn) + 17 (U= Up) ™ Uy) + -+ (10)
S, \ Here we retain only the first nonvanishing term, which is

/ positive. The leading asymptotic contribution to Eq. 8 is
then given by (Olver, 1974; Bender and Orszag, 1978)

o1+ AV (1/K) (k1)K
w10~ g )

FIGURE 2 The plectonemic coordinate system. (12)
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wherec, = 1 if the minimum is atu,, = u, = 0 andc, = potential
2ifu,>0(mM=1,2,...). )
24" (114 & s
P(w, 1/4) = ot exd —w] = 4.0122w Yexd —w]
The case 1/4w? < n < 0.2 (14)

We have to distinguish among a number of cases, depending

on the value ofu. If u < 1/4, we have either one or a The case p > 1/4
multiple of local minima, which are to be determined from
sinu,/u,, = 4u. In view of our lower boungl > 1/4w?, the
minima beyond the first may be neglected: this is easil;ﬁ
proved by noting that the first minimumy, < 7 andu,,, >
27 (m= 2,3, ...)andve(u,) = u,/2. If we approximate

For uw > 1/4, the second-order derivative again comes into
lay and dominates the contribution from the fourth-order
erivative for large enoughu (the third-order derivative
vanishes ati = 0 for any u). For w somewhat larger than

sin u, by the polynomial— (a2 + (4/m)u, (which is unity, we may again use the Laplace method so as to obtain

reasonable fop < 0.2), we determine the first minimum to 2|V 4 + 1742
beu, ~ m — mu. The lead term for the potential is then (W, p) ~ §[W] [4IU~ - 1] exd—w]  (15)
approximately given by

If we let w — o0 by increasing the pitch2p while keeping

2m 1M 1+4p the radiusr constant, Eq. 15 reduces to a limiting form
YW, ) ~ 2§[W¢(ul)] [—cosul + 4#«] expl —web(uy)] independent op:
(12) 1/2
o
If we now letu become very small by increasing the radius YW, p > 1) = 5[;«] exy —2«r] (16)

r while keeping the pitch 2p constant ¢, — ), we o _
ultimately obtain the limiting form for the potential, which This is interpreted as the potential at a test strand exerted by
is independent of: a straight line charge at a distance. Note the formal

equivalence of Egs. 13 and 16.
v We have derived the asymptotic forms of the potential in
Plw, p < 1) = Zf[Kp] exf —mxp] (13)  several regimes to gain physical insight into its dependence

on the superhelical pitch angle. Interacting charged rods
This is interpreted as the potential at the test strand due texert an electric torque on each other, forcing them toward
two neighboring line charges, each at a distance of half tha perpendicular orientation, an effect with measurable im-
superhelical pitch. The line charges are effectively straighpact on various phenomena (Stroobants et al., 1986). In the
on the scale op. present analysis (Egs. 12—16), the influence of twist might

appear to be less severe. The simplest uniform approxima-

tion—a superposition of the two limiting forms given by
The case pn = 1/4 Egs. 13 and 16—seems not such a bad zeroth-order expres-

For u larger than~0.2, u, starts to approach zero, and this SIOn at first sight:

causes problems. In fact, asincreases to 1/4, Laplace’s 172 Y2
method fails because the second-order derivative at the 5= Zf[Kp} exd —wkp] + g[xr] exd —2kr]

minimum becomes small compared to the value of the next (17)
nonvanishing derivative, which is of fourth-order. o=

1/4, ¢(u) attains only one minimum ak, = 0. The casg. = This was already proposed by Marko and Siggia (1995). See
1/4 is peculiar, for the first nonvanishing derivativeugt= Table 1 for the accuracy of this simple form. Equation 17

0 is fourth-order. Upon using Eq. 11, we may write for the becomes fairly poor whenevev = 4 and 0.1= p = 1,

TABLE 1 Electrostatic potential: accuracy of the simple superposition approximation (Eq. 17)

W
I 2 6 10
0.01 3.614 4.077 0.557 0.583 0.122 0.130
0.1 0.728 0.830 7.83010°3 2.0332-10°2 1.131- 1074 5.807- 1074
0.3 0.326 0.431 2.58810° 5.574- 1072 3.603-10°° 8.581-10°°
1 0.244 0.287 2.53710°2 3.183- 1073 3.599- 10°° 4.566- 10°°
3 0.240 0.247 2.53710°° 2.703- 1073 3.599- 10°° 3.864-10°°
10 0.240 0.234 2.53710 3 2.551- 103 3.599- 10 ° 3.646-10°°

First number of each entry: Eq. 17. Second number: numerical solution of Bo=8L; w = 2«r; w = p*/4r.
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whereas the asymptotic formulas Eqgs. 12, 14, and 15 farby the electrostatic potential exerted by its neighbor:
much better.

However, the magnitude of the plectonemic potential is, Fel0 _
in itself, not such a serious issue. The two major problems kT
with Eq. 17 are, in fact, as follows: 1) We ultimately need
to minimize the total free energy of the supercoil, so deriv-The factor 1/2 has been introduced to avoid double counting.
atives are important; the derivative &f with respect t@ is However, as is already discernible in electron micro-
often a vast underestimate of the actual derivative (segraphs, the plectonemic helix is definitely perturbed by
Table 1). 2) Undulation enhancement (as we explain below)hermal undulations, which in some cases may be so wild
of any weak exponential-like term one would inadvertentlythat it becomes impossible to speak of a regular interwound
introduce could lead to a huge (fictive) contribution to the state. Here we restrict ourselves to plectonemic supercoiling
undulatory electrostatic energy. We are therefore forced tat moderate to high values of the specific linking difference
devise a bare plectonemic energy considerably more accso that the superhelix may be viewed as tightly wound. In
rate than Eq. 17. this limit, the strands in the plectonemic helix are pinned in

Now it so happens that in practice the superhelical pitcha deep potential trough, causing the undulations of the
angle is rarely smaller than 45°, i.et,= 45° orp=r or  strands within the supercoil to remain fairly weak. The
w = 1/4. Accordingly, we focus only on regime c as definedslopes of the free energy well in which the strands are
above, and the asymptotic form (Eq. 15) suggests an apindulating are dominated by the electrostatic interaction
proximation that does not have the unphysical divergence davoring some optimal pitch and optimal radius, and by the
n = 1/4: torsional free energy, coming into play via White’s relation,

which favors an increasing pitch and decreasing radius.

1
5 Veithi(2xr, p14r?) (20)

2| The strands of the plectonemic superhelix are ordered
=& W] exd —wlZ (18) " ) )
positionally with respect to one another, so we expect un
dulation enhancement of the interactions to occur, in a
m manner similar to that conceived earlier for hexagonal
Z=1+ m + u? (n=1/4) (19) phases of semiflexible polyions (Odijk, 1993a). In particu-
lar, owing to the exponentially screened form of the elec-
We have adjusted the coefficiemtsy = 0.207 andm, = trostatic interaction, we anticipate a strong enhancement of
0.054 to letys; agree closely with the numerical evaluation the bare electrostatic interaction by the undulations.
Pum Of EQ. 8 (see Table 2). Clearly, the functian is Now, a rigorous analytical treatment of the statistical

accurate enough to circumvent both major difficulties mechanics of a plectonemic worm interacting with itself is
quoted above. Moreover, Egs. 18 and 19 show that the pitchnything but trivial. The typical radius of curvature is much
and radius are definitely not independent variables, as in themaller than the persistence length, so we are in the semi-
superposition formula (Eq. 17). Thus there is a twistingclassical limit (Odijk, 1996), where fairly weak undulations
torque of electrostatic origin. of the chains are defined with respect to a (local) state of
minimum energy. The latter may be called a classical limit.
The configurational statistics of such tightly curved worms
UNDULATION ENHANCEMENT OF THE has been dealt with by several methods (Shimada and Ya-
ELECTROSTATIC INTERACTION makawa, 1984; Marko and Siggia, 1995; Odijk, 1996). The
general conclusion is that a stiff chain undulates virtually

If we were to neglect undulations of the strands, the elec:

trostatic free energy per unit length of strand in the plec_lndependently of its degree of tight bending. We simply

tonemic supercoil would be calculated by multiplying the assume that this holds true in our case with electrostatics

foctive i h density.. = &/ f the test strand included, despite the lack qfarigqrous mathemqticql proof.
effective linear charge densityy = &/Qgp of the test stran Nevertheless, from a physical point of view, switching on

repulsive forces does not increase the import of bending;
rather the reverse is true. On the whole, we expect the

TABLE 2 Ratio of the approximation i, (Eq. 18) to the electrostatics to be balanced by entropy as far as the undu-

plectonemic electrostatic potential and the numerical lations of the plectoneme are concerned. Next, we know the

calculation yir, of Eq. 8 plectoneme fluctuates about some equilibrium configura-
w tion. Clearly positional order exists that is similar but not

" 2 6 10 identical to that of a linear polyion undulating within a

o1 04 1057 0.525 hexagonal Iattlce. (Odijk, 1993a). One obvious @fference is

03 197 1.042 0960 thata plectonemic strand does not undulate within a poten-

1 1.054 1.005 0.994 tial of simple symmetry. At this stage we simply posit a

3 1.044 1.009 1.001 two-variable descriptionr(andp independent) to introduce

10 1.047 1.015 1.008  coarse-grained undulatory electrostatics. Marko and Siggia

W = 2«r; u = pY4r2 (1995) have presented arguments based on pseudopotentials
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that this is a useful approximation. In this paper we disrevenormalization of the radial undulation is potentially
gard all end effects, including branching. strong, for it is exponential. But the renormalization of the
We now first presuppose that the undulations in both longitudinal undulation is slight because the dependence of
andp are small. Below, we shall see that we will be forced {5, onpis weak. Equation 22 has been derived using the fact
to modify this hypothesis, but we need to investigate thishatd, << p.
case first. It is then reasonable to postulate a Gaussian The strand adjacent to the test strand is also undulating
distribution for the undulations in the two-dimensional (Fig. 3 b). Because of symmetry, averaging the renormal-
(r, p)-space: ized potential (Eq. 22) over the undulations of the adjacent
strand is equivalent to averaging again over the undulations

1 u? . : _
G(u) = g €XP ~ drz] of its neighbor:
r r

9;el
1 Up T
Gp(up) = WTZCIp exp[— dS:| (21) kB
whereu, andu, andd/2"? andd,/2" are the undulatory = 1veﬁJ du, f du,G, () G(u) W (k[r + u], k[p + u,))
amplitudes inr andp and their root mean squares, respec- 2 . .
tively (d. << r, d, << p). Orientational fluctuations of
neighboring polymer segments may be neglected in this & [7\"? d2/3m,  10m,
limit (Odijk, 1993a). ~ 20 \wr exf2k’d? — 2«r]| Z(w) + A + 2
The two strands in the plectonemic helix are presumed to

undulate independently. Let us choose one of the strands (23)
an.d average its potential over all of the undulations (Fig. 3z _ ig the free energy of electrostatic interaction per unit
a): length of strand. In Eq. 23 relative terms 6fl/kr) and
W(kr, kp) 0(dg/p") have been consistently deleted.

= f du, f du.G(U)Gy(Upy(K[r + ul, l[p + u,)) ~ ENTROPY
o0 o0 In the previous section we discussed the mechanism by
12 ) which small undulations of magnitude and d, of the
T dy (3m;  10m, o : R
~ g() exp k?d? — 2Kr][2(/.k) + 2( + 2)] strands within the plectonemic superhelix give rise to an
Kr 2p°\ M amplification of the bare electrostatic interaction that is
1 ¢ weighted unevenly. Now, the reduction of entropy of a
+ @(> + @(2) (22)  worm upon confinement to the close neighborhood of its
Kr p classical path—the typical transverse wanderings being of
The bare potential, given by Eq. 18 is smeared out by the aVerage amplltudd—lsllgsenz?srally expressed in terms of a
undulations of the test strand exerting the potential. Théleflection lengthh ~ Py d™, which replaces the persis-
tence length as an independent length scale (Odijk, 1983).
The free energy of entropic confinement per unit length of
the strand in the plectonemic supercoil may then be written
approximately as (Odijk, 1983, 1993a; Helfrich and Har-

|
|
l / . bich, 1985; Marko and Siggia, 1994)
| .
o

. . / ¥ f Cr C
, é /: ;\L_T; ) k:')lT = Pé/Ser/S + Pé’ssiﬁle' (24)
| \\ - N The coefficientsc, andc, are here 3/%2 (we have reexam-
[N N ined them in Appendix ).
! \\ The undulation-enhanced free energy per unit length of
[ h strand, which is of electrostatic origin and here scaled by
| kgT, is thus expressed as
I

f o @el + O'}conf (25)
a b Tkl KT

FIGURE 3 The bare electrostatic potential within the plectonemic con- All terms Contr'bu“ng to the fre? energy should be aver-
figuration ¢, p) is averaged over all undulations @ (the strand adjacent 2ged over the relevant semiclassical paths. The undulatory

to the test strand andb) the test strand itself. degrees of freedom of a confined worm are weighted via the
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free energy of confinement; the confinement due to thepoints, and intersupercoil interactions between colliding
electrostatic interaction is evaluated within a Gaussian apsuperhelices in crowded states. Of course, one assumes that
proximation. In principle, the torsional forces, restrainingthe perturbations are such that the postulate of a “classical”
the strands in the supercoil via White’s relation (Eqg. 4),plectonemic helix remains viable.

should also be renormalized over all undulations. An ap- In this paper we concentrate only on the interplay of
proximate evaluation of the torsional energy, allowing forundulation-enhanced electrostatic interaction and confine-
undulations that do not disrupt the plectonemic symmetryment entropy as the major force perturbing the plectonemic
is straightforward, but the undulatory effect turns out to behelix. In Appendix Il we show that one other type of
negligible. Some advances toward a more rigorous apperturbation that is sometimes thought to have a significant
proach have been forwarded by Shimada and Yamakaweffect on plectonemic structure, namely attractive disper-
(1984, 1985), by Marko and Siggia (1995), and by Odijksion forces, plays only a secondary role in the regimes
(1996). However, simple quantitative approximationfocused on here.

schemes for the coupling between torsional deformation and We minimize the total free energy (Egs. 25 and 26)
entropy in confined or topologically constrained systemsaccording to the iterative scheme proposed in a recent paper
have yet to be proposed. Moreover, the backbone of th€Odijk and Ubbink, 1998). We introduce as dimensionless
plectoneme is not perfectly straight as assumed here, bwariables the angl@® = 2« and the “inverse plectonemic
fluctuates on length scales that are possibly on the order gfarameter’r = hy/4at|o]. In equilibrium, the first variation
the superhelical pitch, so that we may expect some influenci the free energy with respect to these independent vari-
of these fluctuations on the internal structure of the superables should vanisld%/o8 = 0, 0%/t = 0. In general, the
helix. We do not address these topics here, but simplyerturbationf may contain the auxiliary variableX; for
assume that torsional effects are adequately taken into aerhich we also requir@f/oX; = 0 for all i.

count by considering only the classical plectonemic path. Here the auxiliary variableX; are d, and d, under our
assumption that these should be smaller thaand p,
respectively. Minimizing# with respect tod, andd, then

FREE ENERGY leads to the approximate relation

In line with an approximate minimization procedure pro- s q.\22
posed by us (Odijk and Ubbink, 1998), we write the total (p) = (P) 28)
free energy per unit length of strand of the plectonemic d, d,

helix in the following form: It is immediately clear that there is trouble in trying to meet

F this requirement. For a typical plectonemic supercoil we
keT =¥+ f havep = 0(r) and, generallyd, << p andd, << r, so that
d, = 0(dy). Furthermore, at high and intermediate ionic
i, 1 strengthsx~* << r, and it is likely thatkd, = 0(1). It is
- QPch ts P+ f (26)  therefore improbable that Eq. 28 can hold for the conditions

of interest to the present investigation. A full numerical

The Hamiltoniani(,, consists of the elastic free energy of minimization of % with respect tod,, dp, I, andp indeed
the regular plectonemic helix, arfidvill be assumed to be a bears out that plectonemes with << p are impossible
perturbationP, andP; are the persistence lengths asated  within the context of the current theory.
with the bending and torsional deformations, respectively. Equation 28 hints at a model with = 0(d,), i.e., the

In our two-variable description in terms of the variables undulations along the plectonemic axis are not restrained by
anda, defined by tanx = p/r (Odijk and Ubbink, 1998), the  electrostatics but mainly by the plectonemic structure itself.
ideal plectonemic curvature, and the excess twigt of the  Hence, there should be virtually no undulation enhancement
plectonemic helix become of the potential along the axis of the plectoneme. We

coa 5 2 ATW , [’U‘ T propose a revised undulation-enhanced energy instead of
- _ P

= - Eqg. 23:
Ke r | h 27 } (27) a

o 2

The explicit dependence of the excess twist XFfw has e = i
been eliminated via White’s relation (Eq. 4) and the expres- KT 2Qs
sion for the writhe (Eq. 3). _ and a revised form of the undulatory free energy instead of

In the general case, the forces perturbing the pIectonem@q_ 24
helix may be taken together i) the perturbation per unit
length of strand (Odijk and Ubbink, 1998). One could F cont C nC,
mention, for instance, global deformations of the plectone- keT  PPg2° t SIENZE (30)
mic helix, external forces acting on the superhelix, interac-
tions between the strands within the supercoil and the unfhus, we do not introduc€,(u,) because we assung =
dulation entropy, the effects of end loops and branchingd(p). The effective tube confining a strand has a diameter of

[’Z} exp2«’d? — 2kr]Z(n)  (29)
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aboutp and notd,,, according to Eq. 30. Because the densityods: it is evident that our iterative scheme does capture the
distribution is not a Gaussian, but is somewhat flattened, wenain features of the plectonemic helix in the limit of tight
also introduce a coefficieny = 0(1). We do not know its  superhelical winding. We stress that our two-variable model
precise value, but here we simply sgt= 1. The merit of is not free from limitations, but the analytical approxima-
Egs. 29 and 30 will have to be borne out by experiment andions, Egs. 31 and 32, do not worsen the status of the theory,
simulations. given the possible small errors incurred in the formulation
Next, our leading order approximation gives for the open-of the theory from the very beginning.
ing angle (Odijk and Ubbink, 1998)

a9

1/3
B~m— 21/3(37 ) (31) DISCUSSION

Choice of parameters

The perturbationf has been rescaled as = 2P, (hy
27P,|a])? f. The radius of the supercoil follows from the The parameters that enter our theory are all known inde-
opening angle (Odijk and Ubbink, 1998): pendently within rather narrow bounds. The theory is there-
. . fore essentially without any adjustable parameters. In the

~ Esinp — (1/4sin’ B (32) previous sections and in Appendix |, we have already in-
(1+ cosp)®+ Esir’ B troduced numerical values for the parameters pertaining to

whereE = P/P,. We stress that Egs. 31 and 32 indicate thatthe characterization of the topological state and the free

the opening angle will not be very sensitive to changes iFneray of entropic CO”f'”Fame”t' so that we are left tq
the electrostatic perturbatiap specify here the DNA elastic constants and the electrostatic

For the sake of completeness, we explicitly state the Wayarar\]meters. bendi . | . K
we computedg/a, i.e., af/or. We minimizeF with respect ,T € DNA bending persistence lengt is now nown
to d.. which leads to with reasonable accuracy. The results from a variety of
r

experiments agree on a value of 50 nm, at high ionic
of (T + Feond) strengths (Hagerman, 1988; Wang et al., 1997; Baumann et
ad, ~ keTod, 0 (33)  al, 1997). The assignment of a numerical value to the
] . torsional persistence lengt, on the other hand, is some-
with the help of Egs. 25, 29, and 30. Next, we define theyhat equivocal. Current experimental values may differ by

T

derivatives about a factor of 2, the origin of the discrepancy still being
of of od,  of 0F,, a matter of some controversy (Hagerman, 1988; Schurr et
§|p =adar T §|p,d = keTorls (34)  al., 1992; Crothers et al., 1992; Gebe et al., 1996; Schurr,
' personal communication; Moroz and Nelson, 1998). Here
of of of 1 lor we choose the two extrem& = 50 nm andP, = 100 nm,
87|a = [ar pT tanaa—p r:|a | (35)  althoughP, = 75 nm is an often favored choice in theoret-

ical and computer work.
(In Egs. 34 and 35, it is useful to reintroduce the original The DNA molecule bears two negative charges per base
variablesf = f(r, p)). It is now straightforward to solve Eqs. pair of 0.34-nm helical rise, and the unhydrated DNA hard-
31-35 by numerical iteration. core radiusa is close to 1.0 nm. The Poisson-Boltzmann
In the next section, our undulation-enhancement theory isharge parameteé or, equivalently, the effective linear
compared with experimental data on the basis of Egs. 31leharge density.; = &/Qg can then be evaluated (Stroo-
35. One could, of course, argue in favor of a full numericalbants et al., 1986) if the ionic strength of the solution is also
minimization of the total free energy (Eq. 26) together with known. We will concentrate below on the microscopy ex-
Egs. 29 and 30 with respect to the parametgpgor «), and  periments by Boles et al. (1990). They have carried out their
d.. See Table 3 for a quantitative comparison of both methmeasurements at a starting temperature of 298 K, at which

TABLE 3 Comparison between the minimization of the total plectonemic free energy (Egs. 25 and 26) following the iterative
scheme (Eqgs. 31 and 32) and a fully numerical minimization

a(?) r (nm) d, (nm) Wr/ALk Brlr

o num. iterat. num. iterat. num. iterat. num. iterat. num. iterat.
0.02 62.1 48.2 19.7 22.1 3.8 4.0 0.63 0.63 0.78 0.78
0.04 66.1 59.6 6.8 7.9 1.7 2.0 0.93 0.77 0.47 0.52
0.06 66.2 61.5 4.4 4.9 1.1 1.2 0.96 0.80 0.29 0.32
0.08 65.6 61.1 3.4 3.7 0.8 0.9 0.93 0.79 0.19 0.21
0.10 64.8 60.0 2.9 3.1 0.6 0.7 0.88 0.78 0.13 0.15
0.12 64.2 58.8 2.5 2.7 0.5 0.5 0.84 0.76 0.10 0.11

Parameter values are as in TableE4= 2; P, = 100 nm.



2512 Biophysical Journal Volume 76 May 1999

the Bjerrum lengthQg is 0.715 nm. Their aqueous buffers 20
contain~0.105 M monovalent salt and trace amounts of the
multivalent complexing agent EDTA, which, however, as
co-ion to DNA, does not have a significant impact on the 15 4
double-layer electrostatics. The Debye screening lergth
is 0.94 nm, so for the effective charge parameter we obtain ~
& = 4.18. We have collected the relevant parameters in £ 10 -
Table 4. -

Comparison with experiment and
computer simulations

0

I T T I I

We are rather restricted in our choice of experimental data.
000 002 004 006 008 010 0.12

One problem has been that the mesoscopic structure of the

superhelix is difficult to probe in sufficient detail by most lo|

experimental techniques. On the other hand, the buffers

most commonly used in microbiology are often rather com-FIGURE 4 Plectonemic radius versus specific linking differerCe-

pIex in composition and, in many cases, contain divalent olees Experimgnt_al dgta of Boles et al. (1990). Thg error bars ?ndi.cate one
. . . . standard deviation in the spread of the experimental datdid line

multivalent (counter) ions. This is a comphcatmg factor, aSTheory. The dashed lines indicate the undulation amplitudiesThe

polyelectrolyte theory based on the Poisson-Boltzmann apsarameters are as specified in TablePg= 50 nm:E = 1.

proximation is well established only for monovalent salt

(Fixman, 1979).

At present, there are two electron-microscopic studies oét al. In Appendix I, we tentatively investigate the issue of
DNA supercoiling that turn out to be useful in a quantitative superhelical collapse by attractive dispersion forces.
assessment of our computations. Boles et al. (1990) have |n Figs. 4 and 5, we plot the superhelical radius as a
carried out an extensive investigation of plectonemic strucfunction of the specific linking difference for two values of
ture by conventional electron microscopy. For two sizes ofthe persistence ratie = P/P, (see also Tables 5 and 6).
circular plasmid DNA, they varied the superhelical density Throughout the full range af, the agreement of theory with
between—0.016 and—0.117 under controlled ionic condi- experiment is satisfactory f& = 2 but not forE = 1. We
tions. They always observed an open, rather strongly fluchave also plotted the theoretical amplitudes of the undula-
tuating plectonemic helix whose radius varied@S*to a  tions d, in both figures. We observe a remarkable coinci-
very good approximation. The writhe per added IMk/  dence with the spread in experimental data, which are
ALk had a value 0f~0.72 for all values ofc and was plotted in such a way that the error bars display one standard
essentially constant within the margin of experimental error deviation. At low values ofa|, the predicted amplitudes are

By contrast, via cryoelectron microscopy, Bednar et alsignificantly smaller than the experimental variations, even
(1994) purportedly found a collapsed plectonemic stateyhenE = 2. The explanation for this may be twofold. First,
under comparable ionic conditions. The observed superhelin this regime, our mean-field treatment of molecular fluc-

cal diameter was close to twice the hard-core diameter ofuations is expected to break down; specifically, the postu-
DNA. From their micrographs, we have determined the

plectonemic opening angle to be around 57°, which is very

close to the angle of 55° reported by Boles et al. (1990) for 20
the open structure. However, we do not expect a collapsed
state at such angles on the basis of our previous theoretical
work (Odijk and Ubbink, 1998) (see Eq. 32). In this dis- 15 —
cussion, we therefore restrict ourselves to the data of Boles

E 10-
TABLE 4 Parameter values used in the comparison with the e
experimental data of Boles et al. (1990)
DNA bending persistence length Py, 50 nm 5
DNA torsional persistence length P, 50 nm; 100 nm
DNA hard-core radius a 1.0 nm
Helical repeat DNA relaxed state h 3.5 nm 0
Bjerrum length Qs 0.715 nm [ ‘ ' ' ‘
Debye length 1 0.94 nm 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Poisson-Boltzmann charge parameter ¢ 4.18 o]
Coefficients of confinement free Cor G 3/28R
energy

FIGURE 5 See Fig. 4, but no®, = 100 nm;E = 2.
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TABLE 5 Plectonemic parameters from the electrostatic- 1.0 00°
undulatory theory (Eqgs. 31-35) for the DNA parameters
quoted in Table 4 =
> 0.9 - —164°

It a (%) r (nm) d, (nm) WI/ALK Prlr &

0.02 44.8 37.3 55 0.37 0.86 % 08 | e} o
0.03 55.3 16.4 3.4 0.53 073 £ 53° ¢
0.04 59.8 10.0 24 0.60 0.60 %‘

0.06 62.7 5.7 1.5 0.66 039 o 074 ! L ag°
0.08 63.0 4.2 1.0 0.66 0.27 ﬁ

0.1 62.4 3.5 0.8 0.65 0.19 g

0.12 61.6 3.0 0.6 0.64 0.14 § 0.6 — —
P, = 50 nm;E = 1.

0.5 \ T \ \ T

0.00 002 004 006 008 010 012
lated Gaussian distribution of undulations may become poor
as they become too marked. Second, in the experiments at
low |U|’ a regular superhelical structure will be increrdsmglyFlGURE 6 Normalized superhelix length versus specific linking differ-
difficult to discern, so that the distinction between regularence. The nominal opening angles for an infinite plectonemic helix are
parts of the superhelix and irregularities like branchingindicated on the right-hand axiircles Experimental data of Boles et al.
pointS, end |00p5, and sections which are just randomb&l.ggo).DaShed line Theory withP, = 50 nm;E = 1. SOlId Iing Theory
coiled becomes less clear, and, concomitantly, the margin&th P = 100 nmiE = 2. The parameters are as specified in Table 4.
of error will increase.

By plotting the undulation amplitudes and experimental ) o )
error bars in this way, we are suggesting a direct correspori€nience, nominal values of are indicated on the axis to
dence between them, whereas the sources contributing € right. In the experiments of Boles et al. (1990), the
experimental errors may be multifarious and their relativenormalized superhelical length turns out to be effectively
impact difficult to gauge. For instance, it would be surpris-constant within the margin of error and s0.82, which
ing if the handling of samples before the electron micro-MPplies an average opening angle of 55°. Fluctuations seem
scopic analysis did not have a significant influence on thd® be small but are difficult to quantify, as each measure-
distribution of fluctuations within the supercoil, given the Ment is the average over a considerable number of super-
highly invasive nature of the procedure. One expects stronfjelical turns. An average superhelical opening angle close
mechanical forces to act on the supercoil, which may bd0 55° iS obtained in a wide variety of other experiments and
flattened as it is transposed onto the EM grid. In addition, itSimulations (Adrian et al., 1990; Bednar et al., 1994; Klenin
seems difficult to maintain constant ionic conditions during®t al., 1991; Vologodskii et al., 1992). At higlo], our
this process. Furthermore, any experimental uncertainty wileoretical values are consistently a few degrees higher than
also be reflected in the magnitude of the error bars. Neverthis rather characteristic 55° (Fig. 6): both curves exhibit a
theless, in view of the excellent overall agreementfor ~ broad maximum; the curve & = 2 is in better agreement
2 shown in Fig. 5, it seems reasonable to conclude that th&ith experiment. Similar results, although with higher max-
structural fluctuations visible on the micrographs are indeedMum values of the opening angle, were obtained in recent
intrinsic to the superhelix in solution (Cozzarelli, personaltheoretical work (Marko and Siggia, 1994, 1995) using a
communication). superposition approximation.

In Fig. 6 we have plotted the normalized superhelix The writhe per added IinWr/ALk.va_rie.s only slightly for
length as a function of the specific linking difference, again,values ofla| higher than~0.04. This is in good agreement
for two values ofE. This length is twice the length of the With the experlr_nental trend .(seg Fig. _7)._ The theoretical
superhelical axis divided by the total contour length of thevalue atE = 2 is ~0.77, which is a bit higher than the
molecule. If we neglect end loops and branching points, th&alues obtained from experiment. The latter are scattered

normalized superhelix length simply equals sinFor con- ~ Within @ small range centered around 0.7 (Boles et al.,
1990); at high|o], the discrepancy may be attributed, in

large part, to the disparity in the respective opening angles.
TABLE 6 As in Table 5, but P, = 100 nm, E = 2 Note that, although the exact magnitude of the writhe is
slightly off, the minimization according to Egs. 31 and 32

lo|

o a(°) r (nm) d, (nm) WI/ALK Prlr )

gives a dependence ®¥r on ALk that conforms closely to
0.02 48.2 22.1 4.0 0.63 079" the linear relationship inferred from both experiment and
0.03 56.2 11.8 2.7 0.73 0.65 . X
004 596 7.9 2.0 0.77 052 computer simulations. .
0.06 61.5 4.9 1.2 0.80 0.32 On the whole, the theory (Egs. 31-35) wkh= 2 is in
0.08 61.1 3.7 0.9 0.79 0.21  conformity with the dimensions of superhelical DNA deter-
0.1 60.0 3.1 0.7 0.78 015 mined by Boles et al. (1990), except for a slight overesti-
0.12 58.8 2.7 05 0.76 0.11

mation of the pitch angle: (see Figs. 5-7). Therefore, we
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1.0 TABLE 7 Poisson-Boltzmann parameter £ as chosen by
Stigter (1977)
%97 ] c (M) k() :
0.8 - 0.01 3.04 1.38
0.02 2.15 1.93
x 0.7 o 0.05 1.36 3.03
g 0.1 0.961 4.37
Z 06 0.2 0.680 7.16
0.5 0.430 18.6
0.5 0.75 0.351 334
1 0.304 54.7
04 -
/ Linear charge density of DNA helix electrophoretic charge density
0.3 0.73 phosphate charges per unit length; DNA diaméter 2.4 nm.¢ has
: \ T T T \

been computed with the help of Philip and Wooding (1970).
0.00 0.02 0.04 0.06 0.08 0.10 0.12

c
el duced by Stigter (1977); his electrophoretic charge instead
FIGURE 7 Writhe per added link versus the specific linking difference. Of the actual DNA charge may also be dubious in describing
The dashed line denotes the theory with= 50 nm;E = 1. The solid line  static DNA configurations). The newly computed DNA
denot_es the theory witP, = 100 nm;E = 2. The open circles are tr_]e_z charge parameteragrees with that calculated by Vologod-
experimental data of Boles et al. (1990). The parameters are as specified ISrkii and Cozzarelli (1995)' (Compare their Table | with our
Table 4.
Table 7). In Table 8 we present the plectoneme parameters
computed with the help of Egs. 31-35 at a specific linking
tend to conclude that the torsional persistence lerigjth differencejo] = 0.06. Fig. 8 shows that the analytical theory
should be close to 100 nm. Such a relatively high value is irfor the writhe starts to deviate from the simulations a bit at
agreement with a careful theoretical treatment by Morozonic strengths lower than 0.1 M. We do not have an
and Nelson (1998). They insist onRa of 109 nm if they  explanation for this deviation, although it is probably sys-
want to explain the stretching experiments by Allemand andematic. The recent simulation work by Delrow et al. (1997)
Croquette (unpublished results), although within an esserat|o] = 0.05 coincides, in the main, with that of Vologod-
tially similar theoretical scheme somewhat lower values ofskii and Cozzarelli (1995) gt/ = 0.06. (The change from
P, (E ~ 1.4-1.7) have also been reported (Bouchiat and.05 to 0.06 does not have a marked effect on the analytical
Mezard, 1998). In the past, lower values frhave been theory; compare Table 8 with Table 9).
proposed, e.g.P, = 80 nm (Shimada and Yamakawa, The dependence of the superhelical radius on salt was
1985),P, = 50 nm (Taylor and Hagerman, 1990; Gebe etstudied by the Vologodskii group in yet another paper
al., 1996, and references therein), @d= 75 nm (Volo-  (Rybenkov et al., 1997) at a different value |of = 0.05.
godskii and Cozzarelli, 1995). The purpose of this paper isTheir results are plotted in Fig. 9 together with the radius
to introduce a new supercoiling model, not to deternitpe predicted by the undulatory-electrostatic theory (see Table
to a high degree of precision. Nevertheless, within the9). The theory overestimates the simulationsb$5% on
context of the electrostatic analysis, a valueéPphs low as  average, although the general form of the curve is quite well
50 nm seems quite unlikely. predicted. Our undulation theory explains why the usual
At this stage, we can finally remark on the validity of the effective diameteD of a DNA rod (Stigter, 1977) is not
Gaussian approximation fa&,(u,) (Eg. 21). It has been at all a measure of the diameter @ a DNA plectoneme:
argued that a Gaussian undulation theory for positionallythe undulations are particularly strong at high ionic
ordered systems is only legitimate when the Gaussian disstrengths, so thatr2=> D in that case.
tribution tapers off fast enough (Odijk, 1993c; de Vries,
1994). In our case, the probability of a test strand occupying
the position of its neighbor in the supercoil must be essenTABLE 8 lonic strength dependence of the plectonemic
tially zero. In quantitative terms, we then have the condition:’:r:";tf;;)ca'c"'ated Via the electrostatic-undulatory theory
d’k/r = 1. Table 6 shows that this requirement is indeed e

satisfied c (M) a(°) r (nm) d, (hm) Wr/ALk Rl
Another issue of concern is the ionic strength dependenc®.01 51.6 7.6 1.8 0.59 0.15
of the plectonemic parameters. This has been investigate-02 55.1 6.8 17 0.64 0.19
by numerical simulation by several groups (Vologodskii 0.05 Zf'é 22 ig 8';2 g'gz
and Cozzarelli, 1995; I.?ybenkov et al., 1997; Delrow et al., o » 63.3 4.9 12 076 041
1997). The Vologodskii group has used a set of parameterg.s 64.5 4.6 1.0 0.78 0.51
different from that compiled in our Table 4. In particular, 0.75 64.7 4.6 0.9 0.78 0.54
their torsional persistence lengtpis 75 nm € = 1.5),and 1 64.8 4.6 0.9 0.79 0.57

their DNA radius is 1.2 nm (for the “hydrated” form intro- Specific linking differencdo| = 0.06.
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FIGURE 8 Writhe per added link as a function of the concentration o
monovalent salt. Comparison between the electrostatic-undulatory theo
(Egs. 31-35) folid line) and simulations by Vologodskii and Cozzarelli

(1995), using either a line charge approximation to the Poisson-BoltzmanA™ lof =

equation ¢pen circle¥ or an effective diametefilled circles). P, = 75 nm
(E = 1.5),|a] = 0.06; electrostatic parameters are as in Table 7.

Finally, we emphasize that a superposition formula like
Eq. 17, when enhanced by Gaussian fluctuations (Eq. 21), i
not at all able to explain the ionic strength dependence o
the plectoneme dimensions. We have found that such a
undulatory potential leads to a virtually constant radius an
writhe, in stark disagreement with Figs. 8 and 9. What

happens is that the minute term expfp] is blown up

disproportionately when a Gaussian is applied. As we hav
argued at length, thp dependence should be accounted for
to a far better degree (see Eq. 18).

CONCLUDING REMARKS

§FIGURE 9 Plectonemic radius versus the concentration of monovalent
I,s{jlalt. The open circles are from the simulations by Rybenkov et al. (1997);

e solid line is the electrostatic-undulatory theory (Egs. 31-B5% 75
0.05; electrostatic parameters are as in Table 7.

an aqueous solution containing excess monovalent salt. The
undulatory electrostatics is the dominant force, and the
predicted supercoil structure and undulation amplitudes of
e strands agree well with current experimental data if we
et the torsional persistence length be 100 nm. The special
mmetry inherent in the purely elastic energy is the cause
f the remarkable invariance of the plectonemic opening
angle under conditions where the superhelical radius varies
by almost one order of magnitude. We suspect that this

Bffective conservation of opening angle could well have

important biological consequences (Odijk, 1998).

Finally, a referee has invited us to comment on the status
of the present theory and supercoiling models in general.
First, it is well to recall that biophysical modeling itself is
subject to an almost inexorable conflict between biological

In conclusion, we have shown that, despite the seemingloniingency and physical universality (for some general
fairly wild fluctuations in structure, the plectonemic heliX omarks on the formulation of mesoscopic models of com-
may behave like a rather well-ordered system with respech oy matter, see Odijk (1997)). There are at least two major
to the radial organization of the strands within the S“perco'lproblems in developing a theory of DNA supercoils. The
In the limit of tight winding, the radial undulations of the ;¢ js how to reckon with the topological constraint (the
strands are small and may be dealt with on a mean-fielgy\ A helix cannot intersect itself): the second is the inevi-
level. By contrast, we have argued that the longitudinakape reduction in the number of degrees of freedom as one
fluctuations within the supercoil related to the pitch arejqfines a model for real DNA in aqueous buffer (i.e., the
relatively large. We have carried out a quantitative analyty, jiacule DNA surrounded by water molecules, ions, etc.).
ical computation for a plectonemic supercoil immersed Ny, instance. in this paper we have introduced a two-
variable description of a superhelix without end effects. The
supposition has been made that the DNA configurations are

TABLE 9 As in Table 8, but with |o| = 0.05 _ ¢
purely plectonemic; hence, the phase space of all possible

c (M) «0 r (nm) d (m) WALk el configurations has been severely restricted. In particular, we
0.01 52.2 9.0 2.3 0.60 0.19  have not introduced a reference state. Moreover, the aque-
g:gg ggi 3;8 i; g:gg 8:2‘? ous electrolytic environment is dealt with merely at the level
01 61.1 6.4 17 0.73 042 Of Poisson-Boltzmann electrostatics. The bending and twist-
0.2 62.3 6.1 1.4 0.75 0.50 ing degrees of freedom are purely elastic.

05 63.0 5.9 1.2 0.76 0.60 Another difficulty is the status of mean-field theories
0.75 63.1 5.9 11 0.76 0.63  guided by variational principles using trial functions. For a

1 63.1 5.9 11 0.76 0.65

complex system, we may devise a reasonable mathematical
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model that seems to work admirably but could well turn outacknowledge that the external potentilis merely an artifice (Odijk,

to be wrong in the long run (for instance, Anderson (1984)1986):

has criticized current semiempirical quantum-chemical 1

models of complex molecules described in terms of a large Feont = Frot — (U) = (1 — )th (43)

set of trial functions). In any event, we have here attempted 2n

to formulate a Convemem mesc_)scoplc_ for.m .Of the freeThe coefficient (1— 1/2n) is in agreement with computations far= 1
energy of a plectonemic supercoil. Gaining insight into theodijk, 1986) andn = 2 (Kleinert, 1986; Burkhardt, 1995). If the chain
nature of the entropy, which has implicit contributions were to be viewed as an effective harmonic oscillator, the coefficient would

within the bending, twisting, and electrostatic parameters, i§e 1/2 (Odijk, 1986), but for the system at hamd= 2), such a point of
another matter view is incorrect. Care must also be exercised in applying a virial theorem

(Landau and Lifshitz, 1976) to Eq. 36. To sum up, for a one-dimensional

worm (0 = 2, g = P kgT) Eq. 43 still holds, so we have (Burkhardt, 1995)
APPENDIX I: ENTROPY OF GENERALIZED
WORMLIKE CHAINS RESTRICTED T~ P
TO A GAUSSIAN b

gconf 3

(44)

Certain functional integrals related to the statistical mechanics of “gener-
alized” wormlike chains have been investigated in some detail recentyAPPENDIX Il: INFLUENCE OF WEAK ATTRACTIVE
(Kleinert, 1996, 1990; Dodonov et al., 1991; Burkhardt, 1995; Jain andINTERACTIONS ON PLECTONEMIC STRUCTURE

Nelson, 1995). However, it is possible to derive the value of an important

coefficient by a simple scaling argument. ~In cryoelectron microscopic studies, collapsed states of plectonemically
Let us consider a quadratic Hamiltonian signifying a harmonically supercoiled DNA have purportedly been witnessed in which the two
confined “generalized” polymer: strands of a supercoil had adhered laterally (Bednar et al., 1994). The

collapse was observed at a specific linking difference of abeO5 in

. o[ buffers containing either 0.1 M NaCl or 0.01 M MgCl
H=%,+U= > g ds @ + 5 b [ ds¥ (36) Under these ionic conditions, one would ordinarily assume the usual
0 o electrostatic repulsion to dominate any attractive interaction between DNA
segments. However, there is evidence that nonsupercoiled DNA aggregates
(n = integer). at high enough DNA concentrations (Wissenburg et al., 1994, 1995).
A configuration of the chain describes a one-dimensional pathx(s). Nevertheless, the aggregation has been thought to arise from attractive

The partition function is defined on the space of pa#is)[. The harmonic ~ forces at the third virial level, i.e., beyond the pair level (Odijk, 1994;
potentialU of strengthb has been added to the “bending” tebify. This Wissenburg et al., 1995). There may be little or no relation between the two
simulates the effect of constraining the chain to a Gaussian distribution (asets of experiments, after all (Bednar et al., 1994; Wissenburg et al., 1994,
| — 0): 1995).
) In recent years, the origin and role of attractive interactions in colloidal
and polymer solutions have become a matter of some debate. At present,
G(X) = 2d ex% - dZ} (37) short-range ion-ion correlation forces (Oosawa, 1968; Schmitz, 1996;
Rouzina and Bloomfield, 1996; Grgnbech-Jensen et al., 1997) and an
The fully quadratic form of Eq. 36 ensures that the simulated distributionexponentially decaying long-range attraction, of unknown but possibly

is exactly Gaussian. hydrophobic nature (Odijk, 1994), are thought to compete in strength with
Next, assume that a deflection lengttexists. Estimates for the energy the classical London-Hamaker interaction. In this appendix, we do not
scales are simply enter into this debate and simply gauge the effect of one type of attractive
interaction on plectonemic structure, namely dispersion forces. These are

gld2 weak, of course, but the twisting force within supercoiled DNA brings

#Ho =~ A2 (38) about an additional interaction pulling the strands of the plectoneme

together. It is worthwhile to investigate whether both effects in concert

U = bld? (39) could induce side-by-side adhesion. A rough calculation was performed

recently (Marko and Siggia, 1995), but, as explained in the Introduction,

so that a balance of these two terms implies we go somewhat deeper into several issues here.
In the nonretarded regime, the van der Waals interaction between a
A = (g/b)¥>" (40)  volume element W, of the test strand of the supercoil and a volume

element ¥, of the opposing strand may be written Ak, T/p® dV, dV,,
The chain is a sequence of deflection segments, so the total free energyhere A is the Hamaker constant scaled kyT and p is the distance

which is extensive, is given by between W, and d/, (Derjaguin, 1989). Only the strand opposing the test
1/2n strand contributes significantly to the van der Waals free energy because
_ ~ 1= the force is short-ranged.
Fot A l(g) (=2 (41) Both the radius and the pitch of the superhelix are much larger than the

DNA hardcore radius, so we may approximate a volume element of
Furthermore, Eq. 36 together with the standard definition of the partitionstrand by & = wa®ds, where & is an element of length along a super-
function gives the average potential: helical strand. We neglect the variation in the van der Waals forces across
the cross section of the DNA double helix, which would give rise to a
IF ot o 1 correction of relative magnitud@é(a®r?) to the total interaction (Sparnaay,
ob % Frot (42) 1959).
The van der Waals forces are only weakly perturbed by undulations, at
Finally, to focus on the correct expression for the free energy of confiningleast within the Gaussian approximation (Odijk, 1993b). Hence we neglect
the polymer in accordance with the restriction in Eq. 37, we have tothis undulatory correction also; so we calculate the interaction as if the

Uy=b
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