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ABSTRACT Binding isotherms have been determined for the association of horse heart cytochrome c with dioleoyl
phosphatidylglycerol (DOPG)/dioleoyl phosphatidylcholine (DOPC) bilayer membranes over a range of lipid compositions and
ionic strengths. In the absence of protein, the DOPG and DOPC lipids mix nearly ideally. The binding isotherms have been
analyzed using double layer theory to account for the electrostatics, either the Van der Waals or scaled particle theory
equation of state to describe the protein surface distribution, and a statistical thermodynamic formulation consistent with the
mass-action law to describe the lipid distribution. Basic parameters governing the electrostatics and intrinsic binding are
established from the binding to membranes composed of anionic lipid (DOPG) alone. Both the Van der Waals and scaled
particle equations of state can describe the effects of protein distribution on the DOPG binding isotherms equally well, but
with different values of the maximum binding stoichiometry (13 lipids/protein for Van der Waals and 8 lipids/protein for scaled
particle theory). With these parameters set, it is then possible to derive the association constant, Kr, of DOPG relative to DOPC
for surface association with bound cytochrome c by using the binding isotherms obtained with the mixed lipid membranes.
A value of Kr (DOPG:DOPC) 5 3.3–4.8, depending on the lipid stoichiometry, is determined that consistently describes the
binding at different lipid compositions and different ionic strengths. Using the value of Kr obtained it is possible to derive the
average in-plane lipid distribution and the enhancement in protein binding induced by lipid redistribution using the statistical
thermodynamic theory.

INTRODUCTION

Basic peripheral proteins are bound to membranes largely
by electrostatic forces mediated by the negatively charged
lipid component in the membrane (Sankaram and Marsh,
1993). Of considerable interest with respect to the mem-
brane is the extent to which negatively charged lipids are
recruited to the vicinity of the protein (Fig. 1,middle),
which potentially could give rise to formation of in-plane
membrane domains. Additionally, a redistribution of the
lipids will enhance the apparent binding affinity of the
protein relative to that for a random lipid distribution in
membranes of heterogeneous lipid composition. The maxi-
mum degree of protein binding is expected for a complete
demixing of charged and zwitterionic lipid components in
the membrane, possibly in pre-existing domains (Fig. 1,
bottom). On the other hand, dissociation of lipid domains, or
any process that causes a transition toward a more homo-
geneous lipid mixture (Fig. 1,top), will decrease the extent
of protein binding and hence affords a means for controlling
the membrane-protein association. The latter is of func-
tional significance for, e.g., the activation of protein kinase
C (Mosior and Newton, 1995). The three limiting cases of
different lipid distributions are illustrated schematically in
Fig. 1.

Domain formation on binding basic proteins or peptides
has been observed both in natural membranes and in lipid
membranes containing charged and zwitterionic species us-
ing fluorescence microscopy (Rodgers and Glaser, 1991;
Haverstick and Glaser, 1989; Yang and Glaser, 1995). The
large size of the domains relative to the negatively charged
lipid content in these cases suggests, however, that they are
stabilized by long-range effects rather than by a direct local
selectivity for a particular lipid type (Kleinschmidt and
Marsh, 1997; Ben Tal et al., 1996). Investigation of the
assembly of the latter type of domains and of small, local-
ized domains in general still poses a considerable challenge.

Selectivity for the interaction of negatively charged lipids
with peripheral basic proteins and peptides has been ob-
served by spectroscopic techniques in mixtures with zwit-
terionic lipids (Sankaram and Marsh, 1993). For example,
selectivity series have been established for the perturbation
of different spin-labeled lipid species at probe amounts in
negatively charged lipid membranes to which peripheral
proteins are bound (Sankaram et al., 1989a,b; 1990). Pref-
erential interaction of cytochromec with cardiolipin has
been found by solid-state31P-NMR of mixtures with zwit-
terionic lipids (Pinheiro and Watts, 1994). Somewhat sim-
ilarly, a preferential interaction of cardiotoxin II with phos-
phatidylglycerol relative to phosphatidylcholine was found
(Carbone and Macdonald, 1996). In this latter case, resolu-
tion of the two lipid components was sufficient to permit the
construction of relative binding curves for the two lipids
from the NMR data. Using2H-NMR, a preferential inter-
action of the peptide pentalysine with phosphatidylserine
has been observed relative to phosphatidylcholine (Roux et
al., 1988). Fluorescence energy transfer measurements have
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also indicated a demixing of phosphatidylglycerol and phos-
phatidylcholine on binding a basic gp40-derived peptide to
mixed lipid membranes (Gawrisch et al., 1995).

Although these spectroscopic measurements provide di-
rect evidence for a selectivity in interaction of different lipid
species with peripheral proteins, most do not themselves
yield quantitative information on the lipid distribution. Nor,
with one notable exception (Carbone and Macdonald,
1996), are they capable of yielding estimates for the relative
association constants of the different lipids without making
certain ad hoc assumptions. To determine the surface asso-
ciation constants, it is necessary to perform experiments that
are directly related to the thermodynamics of the interaction.
One such way, used here, is to determine the protein binding
isotherms with mixed lipid systems.

In the present work we have focused on the binding of
cytochromec to mixed lipid membranes composed of dio-
leoyl phosphatidylglycerol (DOPG) and dioleoyl phosphati-
dylcholine (DOPC). Phosphatidylglycerols and phosphati-
dylcholines of identical chain compositions are known to
mix almost ideally at neutral pH in the absence of proteins
or divalent metal ions (Findlay and Barton, 1978; Garidel et
al., 1997). Therefore, their in-plane distribution should re-
spond optimally to the binding of peripheral proteins, ac-
cording to their intrinsic relative affinities for association
with the protein.

Previously, we have been able to describe the ionic
strength-dependence of cytochromec binding to mem-
branes composed wholly of a single negatively charged
lipid-species by using electrostatic double layer theory,
when allowance is made for the distributional free energy of
the surface-bound protein using the Van der Waals equation
of state (Heimburg and Marsh, 1995). Here, we show that
this is equally possible if scaled particle theory for hard
discs is used to describe the protein distribution (cf. Chat-
elier and Minton, 1996). The effective lipid/protein stoichi-
ometry at maximum binding is, however, different in these

two cases. On this basis, it is then possible to predict the
extent of protein binding to mixed lipid membranes for a
given surface distribution of the negatively charged and
zwitterionic components. The latter is determined by deriv-
ing a statistical thermodynamic expression for the distribu-
tional free energy that is characterized by the relative asso-
ciation constant for the two lipids. Somewhat different
approaches to this latter problem have been used previously
(Cutsforth et al., 1989; Mosior and McLaughlin, 1992a;
Carbone and Macdonald, 1996). The advantage of the
present method is that it leads directly to analytical expres-
sions for the mean lipid distribution over the complete range
of protein binding occupancies.

In this way, it has been possible to give a consistent
interpretation of all of the cytochromec binding isotherms
obtained at different ionic strengths and different lipid com-
positions, with the same value for the surface association
constant of DOPG relative to DOPC.

MATERIALS AND METHODS

Cytochromec (type VI, oxidized form, Sigma Chemical Co., St. Louis,
MO) was used without further purification. DOPG and DOPC (Avanti
Polar Lipids, Birmingham, AL) were shown to be pure on thin layer
chromatography and were used without further purification.

Lipids were mixed in a dichloromethane/methanol mixture and dried
under nitrogen and in a vacuum desiccator. Lipid dispersions (10 mg/ml)
and protein solutions (20 mg/ml) were prepared in distilled water. Various
amounts of protein solution were added to 0.1 or 1 mg of lipid, respec-
tively, under conditions of minimal ionic strength (i.e., of maximum
binding strength). The lipid-protein mixtures were then diluted to a total
volume of 6.0 ml (corresponding to 210mM lipid) with 2 mM Hepes, 1
mM EDTA buffer at pH 7.5, and various concentrations of NaCl in the
range of 40–100 mM. The NaCl concentration was adjusted after mixing
cytochromec and DOPG in the absence of salt in order to avoid any
changes in the accessibility of the protein to the lipid (e.g., multilayer
formation) that might occur at higher salt concentrations (Heimburg and
Marsh, 1995). The lipid-protein mixtures were then equilibrated at room
temperature for 48 h to allow for redistribution of protein from the
membrane surface into the buffer. To check on accessibility of the protein

FIGURE 1 Schematic representation of the lipid
distribution for different situations of protein bind-
ing to mixed membranes composed of charged
(shaded) and zwitterionic (open) lipids. Top: a ho-
mogeneous lipid mixture in which no lipid rear-
rangement takes place on binding of the peripheral
protein.Middle: lipids which mix well and redistrib-
ute according to their different affinities for the
protein. Bottom: immiscible lipids which form in-
plane membrane domains in the absence of protein
binding.
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to lipid in mixtures containing DOPC, the hydrated lipid-protein mixtures
were subjected to sonication in a Branson bath sonicator. This produced no
change in the degree of protein binding. Dispersing the lipid in protein-
containing buffer did not change to the extent of binding to DOPG alone,
but this preparation protocol was unsuitable for DOPC-containing samples
because free protein was trapped, presumably in vesicular structures. The
ionic strength was calculated including the counterions of the Hepes and
the EDTA in the buffer, a contribution corresponding to 4 mM Na1. All
preparations were under either argon or nitrogen in order to avoid oxidation
of the unsaturated lipid chains.

The lipid-protein complexes were separated from the protein free in
solution by centrifugation (Beckman L7-55, Ti-50 rotor, 50000 rpm, Beck-
man Instruments, Fullerton, CA.) for 1 h for samples of high ionic strength
and 2 h for samples of low ionic strength. No lipid phosphate was
detectable in the supernatant after ultracentrifugation, demonstrating com-
plete resolution of the lipid-protein complex. The concentration of free
protein was determined from the spectrophotometric extinction of cyto-
chromec at 546 nm and 410 nm in the supernatant. All protein other than
that in the supernatant was assumed to be bound to the lipid membranes.

THEORY

A general statistical thermodynamic expression for the
binding isotherm is (Heimburg and Marsh, 1995):

^i& 5 @L#K0 expS2d

diFDF~i!

kT GD (1)

where ^i& is the mean number of ligands bound to the
surface, [L] is the free ligand concentration,K0 is an intrin-
sic binding constant, andDF(i) is the overall free energy
change on bindingi ligands. The binding isotherm is com-
pletely determined if the dependence of the change in free
energy,DF(i), on the surface occupancy,i, is known. For
binding to homogeneous charged lipid membranes, the total
free energy change is given byDF(i) 5 DFel(i) 1 DFD(i),
whereDFel(i) is the electrostatic contribution andDFD(i) is
a distributional term that depends on the surface configura-
tion of the ligands and the lateral interactions between them,
including steric repulsion and nonelectrostatic interactions.
In the case of binding to inhomogeneous surfaces (for
example, a mixed lipid membrane with lateral inhomoge-
neities in the lipid distribution), the additional termDFLD(i)
is included that reflects the change in lipid distribution on
ligand binding (see later).

The protein distributional free energy,DFD(i), is given by
the work done to compress the proteins to their local equi-
librium surface density. Describing the protein distribution
as a two-dimensional van der Waals (VdW) gas on the
surface, the distributional free energy is given by (Heimburg
and Marsh, 1995):

DFD
VdW~i! 5 2ikT ln~n 2 i! 2 akTSi2

nD (2)

where n is the maximum number of ligands that can be
bound to the surface in a single layer anda is an empirical
parameter that describes the interaction between ligands on
the surface. Attractive interactions correspond toa . 0 and
repulsive interactions toa , 0. Alternatively, describing the
protein distribution by scaled particle theory (SPT) (Reiss et

al., 1959) leads to the following expression for the distri-
butional free energy, derived from the SPT equation of state
for hard circular discs (Helfand et al., 1961):

DFD
SPT~i! 5 2ikT@ln~n 2 i! 1 1# 1

inkT

n 2 i
(3)

The van der Waals gas model gives a first-order approxi-
mation for the distributional free energy. Compared with
SPT, which is known to overestimate the hard-disc pressure
somewhat (Boublı´k, 1975), the Van der Waals approxima-
tion underestimates the repulsive free energy term, espe-
cially in the case of asymmetric ligands (Chatelier and
Minton, 1996). The data obtained here for cytochromec,
which is an approximately symmetrical ligand, are analyzed
equivalently in terms of both formulations.

Binding to a homogeneous charged surface

A mixed lipid membrane with a uniform distribution of the
charged component that remains unchanged on binding of
the protein ligand (see upper part of Fig. 1) is considered
first. The electrostatic contribution to the free energy may
be expressed in terms of Gouy-Chapman double layer the-
ory. The electrostatic free energy of a charged surface in an
electrolyte is then given by (Ja¨hnig, 1976):

Fel
S~i! 5 22qSkT

e DlnS2L0s

Îc D (4)

whereq is the overall charge on the surface,s is the charge
density,c is the ionic strength, andL0 is a constant (see
Heimburg and Marsh, 1995).

A basic protein with effective charge1Ze is assumed to
bind to a homogeneously mixed lipid membrane consisting
of negatively charged and uncharged lipid species A and B,
respectively. The membrane consists ofna lipids with frac-
tion fA of the negatively charged component, wherea is the
number of lipids covered by a single protein. Ifi proteins are
bound to the surface which bears a total lipid charge of
2nafAe, the net charge and charge density of the membrane
are, respectively:

q 5 2~nafA 2 iZ!e

and

s 5 2SfA 2
iZ

naD e

a0
(5)

wherea0 is the surface area per lipid. From Eqs. 1–5, the
binding isotherm for a uniformly charged mixed lipid mem-
brane in the Van der Waals approximation (Eq. 2) is given
by (cf. Heimburg and Marsh, 1995):

@L# 5
1

K~0, fA!
z S1 2

u z Z

fA z aD
22Z

z
u

1 2 u
z expS u

1 2 u
2 2auD

(6)
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whereas the corresponding isotherm obtained by using SPT
(i.e., Eq. 3) for the ligand distribution is (cf. Chatelier and
Minton, 1996):

@L# 5
1

K~0, fA!
z S1 2

u z Z

fA z aD
22Z

z
u

1 2 u
z expS 3u

1 2 u
1 S u

1 2 uD
2D

(7)

where u 5 i/n is the degree of surface coverage by the
protein ligands.K(0, fA) is an intrinsic binding constant that
depends on the effective charge of the ligandZ and the
fraction of charged lipidfA:

K~0, fA! 5 K0e
2Z1L2Z2SL1

ÎcD
2ZSL3

ÎcD
L2(Z2/ 2)

z fA
2Z ; K~0! z fA

2Z

(8)

where the dependence on the ionic strength,c, is given
explicitly. K(0) is the intrinsic binding constant for a mem-
brane consisting solely of charged lipids, andL1, L2, and
L3 are constants that depend on the size of the ligand, the
lipid cross-sectional area, and the temperature (see Heim-
burg and Marsh, 1995).

These expressions for binding to a uniformly charged
mixed lipid membrane without lipid redistribution are very
similar to those for a membrane consisting solely of charged
lipids. They differ from the latter only in that the charge
density of the lipid surface is reduced by a constant fac-
tor fA.

Binding to a surface with complete lipid demixing

The simplest case of a heterogeneously charged surface
corresponds to total demixing of the charged and uncharged
lipid components into macroscopic domains (Fig. 1,bot-
tom). In this case, binding takes place only to the charged
lipid domains with a total size offAna lipids, wherefA is the
fraction of charged lipid. Binding to these regions is of
equal strength to the binding to membranes consisting
wholly of charged lipids (characterized byfA 5 1 in the
above equations). The binding isotherms for membranes
with complete lipid demixing are therefore given by Eqs.
6–8, in whichu 5 i/n is replaced byi/(n z fA) and fA is
replaced byfA 5 1 at each occurrence. Here it is assumed
that the size of the macroscopic domains of the charged
lipid is much larger than the Debye length that characterizes
screening of long-range electrostatic interactions by the
electrolyte.

Lipid redistribution upon ligand binding

In general, the negatively charged lipids will redistribute in
the plane of the membrane in response to protein binding
(Fig. 1, middle). The case considered here is one in which
the charged and uncharged lipids mix ideally in the absence
of bound ligand. Formally, the binding can be considered as

a two-step process (Cutsforth et al., 1989; Mosior and
McLaughlin, 1992a). The ligand first absorbs to the homo-
geneously charged surface with statistical arrangement of
lipids. Then successive rearrangements of the lipids take
place in the membrane plane, resulting in the free energy
changeDFLD(i). The first step is described by Eqs. 6–8.
The second step will be described by the mass action law
and the change in mixing entropy resulting from the accom-
panying lipid redistribution, which is given by the appro-
priate combinatorial term.

For the competitive lipid binding to a protein P at the
surface of a membrane consisting of two lipid species A
and B,

A 1 P z BNP z A 1 B

the relative binding constant is given by:

Kr 5
@P z A#@B#

@A#@P z B#
5

f A
b ~1 2 fA 2 u 1 f A

b !

~fA 2 f A
b !~u 2 f A

b !
(9)

wherefA is the fraction of total lipid that is of type A andu
is the fraction of the total lipid to which protein is bound.
The relative binding constantKr (.1) describes the prefer-
ence of the protein for the charged lipid species A over the
uncharged lipid species B. The fraction,f A

b, of lipids that are
of type A and to which protein is bound is given from Eq.
9 by:

f A
b 5

1

2F 1

Kr 2 1
1 fA 1 u

2 ÎS 1

Kr 2 1
1 fA 1 uD2

2
4Kr fAu

Kr 2 1G (10)

where the negative sign of the square root ensures thatf A
b 5

0 for u 5 0 or fA 5 0 (Kr . 1).
The change in free energy arising from the lipid redistri-

bution on binding of the protein can be obtained from the
partition function for the system ofN 5 na lipids of which
NA 5 fAN are of type A:

Q 5 O
Nu,A

VNu,A~Nu, NA!Kr
Nu,A (11)

whereNu 5 uN is the total number of lipids to which protein
is bound andNu,A 5 f A

b N is the number of these lipids that
are of type A. (It is assumed that all lipid sites associated
with the protein are equivalent and noninteracting.) The
combinatorial termVNu,A

is given by the number of ways for
distributing Nu,A lipids of type A among theNu protein
association sites andNA 2 Nu,A lipids of type A among the
N 2 Nu sites in the remaining lipid matrix:

VNu,A~Nu, NA!

5
Nu!

~Nu 2 Nu,A!! Nu,A!

~N 2 Nu!!

@N 2 Nu 2 ~NA 2 Nu,A!#! ~NA 2 Nu,A!!

(12)
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As shown in the Appendix, this statistical thermodynamic
formulation (Eqs. 11 and 12) is consistent with the mass
action formulation given by Eq. 9 above. The change in free
energy upon lipid redistribution is given by the difference
from the reference state in which the lipids are homoge-
neously distributed, i.e., from Eq. 11:

DFLD~Nu, NA! 5 2kT lnFVNu,A~Nu, NA!

VNu,A
o ~Nu, NA!

Kr
Nu,A2Nu,A

o G (13)

whereNu,A
o 5 fAuN is the number of lipids of type A to

which protein is bound in the absence of lipid redistribution.
In Eq. 13, the partition function is represented by its largest
term. For largeN, the factorials in the combinatorial terms
can be approximated by Stirling’s formula (i.e., lnN! 5 N
ln N 2 N). The derivative of the resulting expression for the
change in free energy with respect to the numberi of
proteins bound is then given by:

2
d

diSDFLD~i!

kT D 5 a lnS u

1 2 u
z
fA 2 f A

b

f A
b D 1 a~1 2 fA!ln Kr

(14)

where the identitydu/di 5 1/n has been used andf A
b is given

by Eq. 10.
The isotherm for binding to a mixed lipid membrane in

which the charged and uncharged lipids initially are homo-
geneously distributed is then given in the Van der Waals
approximation by (cf. Eqs. 1 and 6):

@L# 5
1

K~0, fA!
z S1 2

u z Z

fA z aD
22Z

z
u

1 2 u
z expS u

1 2 u
2 2auD z expSd

diSDFLD

kT DD
(15)

and the corresponding result using the SPT is given by (cf.
Eqs. 1 and 7):

@L# 5
1

K~0, fA!
z S1 2

u z Z

fA z aD
22Z

z
u

1 2 u
z expS 3u

1 2 u
1 S u

1 2 uD
2D z expSd

diSDFLD

kT DD
(16)

wherefA is the fraction of charged lipid and the final term
that represents the lipid redistribution upon protein binding
is given by Eq. 14. For the initial stages of ligand binding
(i.e., u 3 0), the limiting case of Eq. 14 is given by:

2
d

diSDFLD~u3 0!

kT D 5 a@ln~1 2 fA 1 fA z Kr! 2 fA z ln Kr#

(17)

The corresponding expression for the binding isotherm at
low degrees of surface coverage is given by (cf. Eqs. 15 and

16 with u ,, 1):

@L# 5
u

K~0, fA!
z

Kr
fAza

~1 2 fA 1 fA z Kr!
a ;

u

K~0, fA! z KLD~0, fA, Kr!
(18)

where the second identity defines an “intrinsic” equilibrium
constant,KLD(0, fA, Kr), for the lipid redistribution at low
degrees of protein binding. For the two limiting cases offA
5 1 andfA 5 0, KLD(0, fA, Kr) is equal to unity (see Fig. 2).
At intermediate values offA, KLD(0, fA, Kr) is greater than
unity and reaches a maximum atf A

max 5 1/ln Kr 2 1/(Kr 2
1) because lipid rearrangement is energetically favorable
wheneverKr . 1.

The limiting form of the binding isotherm for low degrees
of surface occupancy (Eq. 18) has considerable practical
utility because it allows determination of the basic param-
eters of the system from the initial slopes of the binding
isotherms. For a membrane consisting wholly of charged
lipids, the intrinsic binding constantK(0, fA), i.e.,K(0), can
be determined forfA 5 1. The value ofK(0, fA) for mixed
lipid membranes, in whichfA , 1, can then be predicted
from Eq. 8. Measurements on the mixed lipid membranes

FIGURE 2 Dependence of the equilibrium constant for lipid redistribu-
tion, KLD(0, fA, Kr), on the fraction,fA, of charged lipid in mixed mem-
branes. The dependence is calculated from Eq. 18 for relative binding
constantsKr 5 3.5 (full line), 3.0 (dashed line) and 2.5 (dotted line), and
a 5 11.9.

Heimburg et al. Protein Binding to Mixed Lipid Membranes 2579



then allow KLD(0, fA, Kr), and hence the relative lipid
binding constantKr, to be determined from the identity
given in Eq. 18. To obtain the latter (i.e.,Kr), it is necessary
to know the lipid/protein binding stoichiometry,a, which is
obtained from the saturation behavior at high protein con-
centrations for the single lipid system.

RESULTS

Binding isotherms have been measured for the association
of cytochromec with DOPG:DOPC mixed lipid membranes
containing different mole fractions of DOPG. This has been
done in order to determine the effects of protein binding on
the lateral distribution of the charged lipid component in the
membrane. Experiments have been performed for mem-
branes of different DOPG contents and at two different
ionic strengths in order to check the predictions of the
model used to determine the degree of lipid redistribution
on binding, which yields the relative affinities of the lipids
for the protein. First, however, it is necessary to determine
the ionic strength-dependence of the initial binding in order
to determine the effective charge on the protein that char-
acterizes the long-range electrostatic interactions according
to double-layer theory (cf. Heimburg and Marsh, 1995). The
effective protein charge parameterizes the idealized electro-
static double-layer theory in terms of the experimental sys-
tem under study. In particular, this makes allowance for the
finite size of the protein ligand relative to the Debye length
that characterizes the ionic screening, and for the discrete
nature of the protein charge distribution on the membrane
surface.

Initial binding

The binding constants for the initial stages of binding at low
ligand concentration were obtained over a range of ionic
strengths from [Na1] 5 40 mM upwards, in which region
the isotherms are monophasic (cf. Heimburg and Marsh,
1995). These values are defined experimentally as
[cyt.cbound]/[cyt.cfree] z [lipid], which differ only by a fixed
factor a (corresponding to the size of the protein binding
site) from those defined in the theoretical section. The data
are given in Fig. 3 as a function of ionic strength for
membranes of DOPG alone and for mixed membranes
composed of DOPG:DOPC (60:40 mol/mol). A linear de-
pendence is obtained in the double logarithmic plot, as
predicted from Eqs. 8 and 18, for both membrane systems.
Numerically, the dependence obtained for membranes com-
posed of DOPG alone is given by (cf. Eq. 8):

ln~K~0!! 5 ln 0.315a 2 4.11 lnc (19)

where the univalent cation concentration,c, is referred to a
standard stateco 5 1 M, yielding the ionic strength. For the
mixed DOPG:DOPC (60:40 mol/mol) membranes, the

corresponding ionic strength dependence is given by (cf.
Eq. 18):

ln~K! 5 ln 0.315a 2 4.11 lnc 1 2Z ln fA

1a@ln~1 2 fA 1 fA z Kr! 2 fA z ln Kr#
(20)

where the additional terms correspond to reduction in an-
ionic lipid content and the lateral redistribution of the lipids
on protein binding, respectively. The linearity in the mixed
membrane case and the identity of slope with that for DOPG
membranes alone imply that the local relative association
constant Kr does not depend appreciably on the ionic
strength.

The gradients of the ionic strength dependence,2Z 2
0.0315Z2, in Eqs. 19 and 20 yield an effective protein
charge ofZ 5 3.7 that governs the electrostatic enrichment
of the protein concentration at the membrane surface. This
effective value ofZ is the same for the single- and mixed-
lipid membrane systems. The absolute values of the binding
constants are smaller for the mixed-lipid system than for

FIGURE 3 Ionic strength (c) dependence of the binding constantsK/a
[l/mol lipid] obtained from the initial slopes of the binding isotherms for
cytochromec binding to DOPG membrane dispersions (E) and to DOPG:
DOPC (60:40 mol/mol) mixed membrane dispersions (M). In each case the
total lipid concentration is 210mM. The straight lines are linear regressions
for the double logarithmic plots according to Eqs. 8 and 18, yielding an
effective value ofZ 5 3.7 in both cases. From comparison with the data for
DOPG alone, a relative binding constant ofKr 5 3.3 (fora 5 13) orKr 5
4.8 (fora 5 7.8) is deduced for the DOPG:DOPC mixture by using Eq. 18.
These two values ofa are deduced from the VdW and SPT isotherms,
respectively, in the saturation region for DOPG alone (see Fig. 4). The
lower dotted line represents the values predicted for the DOPG:DOPC
mixture from Eq. 8, assuming a homogeneous distribution without lipid
rearrangement on protein binding (i.e.,Kr 5 1). The filled triangles
represent the values of the binding constant used in Fig. 4b.
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membranes composed entirely of DOPG, as is expected.
However, the binding constants for DOPG:DOPC (60:40
mol/mol) mixed membranes are considerably greater than
would be predicted for a homogeneous lipid mixture. The
latter, obtained from Eq. 20 withKr 5 1, are shown by the
lower dashed line in Fig. 3. Taking values of the lipid
stoichiometry,a, deduced from the complete binding iso-
therm for membranes of DOPG alone (see later) allows
determination of the surface association constant for DOPG
relative to DOPC:Kr 5 3.3 fora 5 13 (VdW) andKr 5 4.6
for a 5 7.8 (SPT). These values for the relative affinities
are deduced from the difference between the two dashed
lines in Fig. 3 by using Eq. 18.

The value obtained for the effective protein charge ofZ 5
3.7 for interaction with both DOPG and mixed DOPG/
DOPC membranes deserves some comment. This is less
than the formal net change of19 on the protein (Heimburg
and Marsh, 1995). The positively charged residues on cy-
tochromec that can, in principle, interact with negatively
charged lipid headgroups are distributed in approximately
equal amounts on opposite faces of the protein (Dickerson
et al., 1971). The reduced effective change for interaction
with negatively charged surfaces that is parameterized by
electrostatic double-layer theory therefore arises, at least in
part, from the finite size of cytochromec relative to the
Debye length of the double layer. As already mentioned, the
nonuniform surface distribution of the protein charge on the
membrane also contributes to the reduction in effective
charge of the protein. Using the complete expressions from
electrostatic double-layer theory, rather than the high po-
tential limit introduced in the Theory section, still yields a
very similar value of the effective protein charge,Z 5 3.6,
from the data in Fig. 3. The conjugate value of the intrinsic
binding constant (K0) is correspondingly increased by a
factor of;3, but this has the compensating effect of yield-
ing predicted binding isotherms that are practically identical
to those calculated using the high potential limit.

It will be noted that the results given in Fig. 3 are free of
uncertainties regarding the accessibility of lipid to protein
because they are obtained only from the initial stages of
protein binding.

Binding curves

The complete experimental binding isotherms for associa-
tion of cytochromec with DOPG:DOPC mixed membranes
at mole ratios from 100:0 to 40:60 are given in Fig. 4 for
two ionic strengths corresponding to [Na1] 5 45 mM and
[Na1] 5 90 mM. First, the binding isotherm for DOPG
alone at [Na1] 5 45 mM was fitted to Eqs. 6 and 7 by using
values of K(0) and Z obtained from Fig. 3. This yields
values for the lipid stoichiometry ofa 5 13 from the VdW
isotherm (Eq. 6) anda 5 7.8 from the SPT isotherm (Eq. 7).
Both models yield equally good fits to the experimental
binding isotherm for DOPG alone, but differ in the lipid
stoichiometry deduced because of the difference in treat-

ment of the excluded area terms (cf. Chatelier and Minton,
1996). For the VdW isotherm it was assumed thata 5 0 for
the protein-protein interaction term, as found previously for
native cytochromec (Heimburg and Marsh, 1995).

FIGURE 4 Cytochromec-binding isotherms for mixed lipid membranes
of the DOPG:DOPC (mol/mol) compositions shown and at ionic strengths
of [Na1] 5 45 mM (a) and [Na1] 5 90 mM (b). The solid lines are SPT
isotherms calculated from Eq. 16, together with Eqs. 8, 10, and 14, and the
dashed lines are the corresponding VdW isotherms from Eq. 15 witha 5
0. In each caseZ 5 3.7, and the lipid/peptide stoichiometry,a, has a value
adjusted to fit the isotherms for DOPG alone (100:0) at 45 mM ionic
strength ina. The latter yieldsa 5 7.8,Kr 5 4.8 for SPT anda 5 13, Kr

5 3.3 for VdW (see also Fig. 3). Ina, the binding constants are obtained
from the linear regressions in Fig. 3, and inb, the binding constants are
given by the filled triangles in Fig. 3. The dashed-and-dotted and dotted
lines are corresponding isotherms for DOPG:DOPC 40:60 mol/mol calcu-
lated withKr 5 6.5 (SPT) andKr 5 4.5 (VdW), respectively.
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Taking these values ofa from the DOPG isotherm, it is
then possible to obtain the value ofKr, which governs the
lipid redistribution on protein binding, as was described in
the previous section (see Fig. 3 legend). Using this value
together with the other parameters,K(0) andZ, derived from
Fig. 3, it is then possible to predict the isotherms for binding
cytochromec to the various lipid mixtures at different ionic
strengths. This is done by using the full isotherms given by
Eq. 15 or 16 for the two models, together with Eqs. 8, 10,
and 14. The results of these predictions for an ionic strength
specified by [Na1] 5 45 mM are compared with the exper-
imental binding isotherms in Fig. 4a. The predictions agree
quite well with the measured values for both models, VdW
and SPT, within the experimental accuracy without making
any adjustments in the parameters. Only at lower contents of
charged lipid and low degrees of surface coverage are some
discrepancies seen. The latter can be allowed for by con-
servative adjustment of the fixed values ofKr that were used
in predicting the isotherms. Simply increasingKr by less
than 50% produces a much better agreement with the ex-
perimental isotherms for mixtures with high DOPC content.
The predictions with self-consistent values ofKr 5 6.5 (SPT
isotherm) andKr 5 4.5 (VdW isotherm) are given in Fig. 4
a for the DOPG:DOPC 40:60 mol/mol mixture that shows
the largest discrepancies. Correspondingly smaller adjust-
ments inKr for the DOPG:DOPC 60:40 mol/mol mixture
would also improve the agreement. Possibly there is a
limited but progressive increase inKr, corresponding to an
increased intrinsic strength of interaction with the PG com-
ponent, as the PC content in the mixtures increases. It
should also be noted, however, that the experimentally
determined degree of binding may be underestimated at
high cytochromec concentrations for lipid mixtures with
high DOPC content. This is because of potential problems
with accessibility that might not have been fully allowed for
by the different sample preparation protocols used (see
Materials and Methods).

Corresponding isotherms for a higher ionic strength spec-
ified by [Na1] 5 90 mM are shown in Fig. 4b. In this case,
the degree of protein binding is considerably lower than for
[Na1] 5 45 mM. A somewhat better agreement with the
measured data is obtained by increasing the value of the
intrinsic binding constant,K0, in the isotherms predicted for
[Na1] 5 90 mM. The binding isotherms given in Fig. 4b
were calculated by increasing the constant argument of the
logarithm in Eqs. 19 and 20 from 0.315 to 0.500. The
corresponding values of the binding constant are given by
the filled triangles in Fig. 3. It is seen that they lie practi-
cally within the range of experimental uncertainty for these
values.

The experimental binding isotherms for DOPG:DOPC
(60:40 mol/mol) mixed lipid membranes are compared in
Fig. 5 with predictions for the two extreme cases of the
lateral lipid distribution that are depicted by the top and
bottom parts of Fig. 1. In both cases, the value ofZ 5 3.7
obtained from Fig. 3 and the values ofa obtained from the
isotherm for DOPG alone in Fig. 4a are used in calculating

the theoretical isotherms. It is again assumed thata 5 0 for
the VdW approximation. For a homogeneous lipid mixture,
the binding isotherms are calculated from Eqs. 6 and 7,

FIGURE 5 Comparison of the experimental isotherms for binding of
cytochrome c to DOPG:DOPC (60:40 mol/mol) membranes at ionic
strengths of [Na1] 5 45 mM (a) and [Na1] 5 90 mM (b), with predictions
from the three models for the lipid distribution. Parameters used are given
in the legends to Figs. 3 and 4. Solid lines are for the SPT model and
dashed lines are for the VdW approximation. The two lowest curves are
isotherms for binding to a homogeneous mixture of charged and zwitteri-
onic lipids, given by Eq. 6 witha 5 0 (VdW), or by Eq. 7 (SPT) and Eq.
8. The two uppermost curves are isotherms for binding to membranes with
complete macroscopic demixing of the charged and zwitterionic lipids.
These latter isotherms are given by the same equations as for homogenous
mixing but withu replaced byu/fA, and elsewherefA 5 1, as described in
the text. The middle curves are the isotherms for redistribution of lipids on
protein binding according to the law of mass action, as given by Eq. 15
with a 5 0 (VdW), or Eq. 16 (SPT), together with Eqs. 8, 10, and 14.
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corresponding to the VdW and SPT isotherms, respectively.
These predictions are given by the lowermost curves in Fig.
5. It is seen that, over the entire range of cytochromec
concentrations, the degree of binding measured is much
greater than that expected if the lipids remain mixed homo-
geneously. This is in agreement with the conclusions al-
ready reached for the initial regime of low protein concen-
trations (Fig. 3). For a complete macroscopic demixing of
the negatively charged and zwitterionic lipids, the binding
isotherms are given by Eqs. 6 and 7 in whichu is replaced
by u/fA and fA 5 1, at each explicit occurrence in these
equations (see Theory section). These predictions are given
by the uppermost curves in Fig. 5. The measured degree of
binding is seen to be less than that predicted for this other
extreme case at both ionic strengths. The experimental
binding isotherms lie between those predicted by the two
extreme models and correspond to a partial demixing of the
lipids on protein binding that can be described satisfactorily
by the law of mass action.

Limiting binding

The degree of surface coverage obtained in the presence of
an excess of cytochromec (roughly equal to the total
number of protein binding sites) is given in Fig. 6 as a
function of the mole fraction of charged lipid,fDOPG, for
membranes at two different ionic strengths. Under these
conditions, the preponderance of the protein is free in so-
lution. A sigmoidal-like dependence of the cytochromec
binding on the DOPG content of the membranes is obtained.
Qualitatively similar results on this apparent cooperativity
of lipid binding have been obtained for the association of
pentalysine and related peptides with PG:PC mixed mem-
branes (Mosior and McLaughlin, 1922a,b). Predictions of
the degree of binding at stoichiometric concentrations of
cytochromec obtained from the three different models for
the lipid distribution are also given in Fig. 6. The measured
dependence on negatively charged lipid content of the mem-
brane clearly is not compatible with a complete macro-
scopic demixing of the lipid components. For the latter to be
the case, a strictly linear dependence onfDOPG is required.
Retention of a homogeneous mixture of the lipid compo-
nents yields a sigmoidal-like dependence onfDOPG but un-
derestimates the degree of binding for the parameters estab-
lished from Figs. 3 and 4a. The dependence of cytochrome
c binding on the mole fraction of the DOPG component can
be described almost quantitatively, however, by the model
that assumes a lateral redistribution of DOPG and DOPC
according to their relative local affinities for cytochromec.
Electrostatic gathering at the membrane surface coupled to
lateral redistribution of the lipids under the influence of the
bound protein are sufficient to account for the apparent
cooperativity, as was pointed out previously (Mosior and
McLaughlin, 1992a).

DISCUSSION

The analysis of the cytochromec binding isotherms for
DOPG:DOPC mixed membranes indicates that a redistribu-

FIGURE 6 Fractional surface binding,uexcess, of cytochrome c to
DOPG:DOPC mixed membranes (210mM lipid), as a function of mole
fraction, fDOPG, of DOPG in the presence of an excess (20mM) of
cytochromec added, at ionic strengths of a) [Na1] 5 45 mM and b) [Na1]
5 90 mM. Data are compared with predictions from the three models for
the lipid distribution, using the parameters given in the legends to Figs. 3
and 4. The middle curve is calculated from Eq. 15 witha 5 0 (together
with Eqs. 8, 10, and 14) and corresponds to lipid redistribution on protein
binding. The upper and lower curves correspond to macroscopic demixing
and homogeneous mixing of the lipids, respectively, and are obtained from
Eq. 6 with modifications described in the text for the former case. Predic-
tions from the SPT model are not shown but are very close to those given
for the VdW model approximation.
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tion of the lipids takes place within the plane of the mem-
brane on binding the protein. Phosphatidylglycerols and
phosphatidylcholines with identical acyl chains are known
to mix very well in hydrated membranes (Findlay and
Barton, 1978; Garidel et al., 1997). Nevertheless, the bind-
ing of cytochromec to DOPG:DOPC membranes is con-
siderably greater than that predicted for a homogeneous
lipid mixture. Complete demixing of the two lipid compo-
nents is not achieved in the presence of an excess of cyto-
chromec, however, because the extent of binding is less
than that predicted for this limiting case. Instead, the aug-
mentation in binding, above that for homogeneously mixed
lipids, can be described by a lateral redistribution of the
lipids according to their relative affinities for the surface-
bound protein.

The extent of lipid redistribution on protein binding is a
significant membrane parameter that can be determined
from the foregoing analysis. In Fig. 7, the fractional lipid
composition of the membrane regions to which the protein
is bound is compared with the total lipid composition of the

mixed membrane. The fraction of the lipid associated with
the protein that bears a charge is given byf A

b /u, whereu is
the fraction of the total lipids to which protein is bound and
f A

b is the corresponding quantity for the charged lipids. This
quantity is obtained from Eq. 10 in the limit of low protein
binding, i.e., for a situation where each protein binds inde-
pendently to the membrane without appreciably affecting
the binding of subsequent proteins. The composition of the
protein-associated regions of the membrane is given for
various values of the relative lipid association constant,Kr,
which span those determined here for cytochromec and
DOPG:DOPC membranes. It is clearly seen from Fig. 7 that
the enrichment in negatively charged lipid content of the
protein regions is considerable, and corresponds to the re-
duction in dimensionality for association within the mem-
brane surface, in comparison with that in bulk solution (cf.
Mosior and McLaughlin, 1992a; Brotherus et al., 1981). For
instance, for a 60:40 mol/mol DOPG:DOPC mixed mem-
brane the lipid associated with cytochromec consists of
80–90% DOPG, and for a 40:60 mol/mol DOPG:DOPC
mixture is still composed of 70% or more DOPG. At high
degrees of protein binding this would cause a most appre-
ciable depletion in negatively charged lipid of the protein-
free membrane domains.

Much emphasis in this work has been put on the inho-
mogeneous surface lipid distribution that results from bind-
ing of peripheral proteins to membranes. This has been
derived in terms of the relative affinities of the different
lipid components for the surface-bound protein and the
distributional free energy arising from the combinatorial
statistics of the various lipid arrangements. A somewhat
similar approach to the membrane binding of peripheral
proteins has been introduced by Mosior and McLaughlin
(1992a) and by Cutsforth et al. (1989). The relative lipid
affinities were described in the former case in terms of a
three-dimensional intrinsic binding constant that was mod-
ulated by an effective surface concentration of the lipids,
and in the latter case by a surface binding constant defined
in terms of the mole fraction of the membrane lipid com-
ponents. Here, on the other hand, we have used a relative
lipid binding constant, which has the advantage that it may
be compared directly with corresponding data obtained for
the selectivity of lipid interactions with integral membrane
proteins (Marsh, 1985) and leads in a natural way to a
description of the lipid distributional statistics. Interestingly,
it is concluded from the data presented in Fig. 3 that the
relative surface association constant,Kr, does not depend
appreciably on ionic strength. No deviations are observed
from the ionic strength-dependence predicted for the elec-
trostatic enhancement in surface protein concentration that
could be attributed to an ionic strength-dependence ofKr

(cf. Eqs. 8 and 18). This arises from the local surface nature
of the lipid exchange equilibrium. The bound protein pre-
sumably is closely associated with the lipid headgroups
such that intervening ions which might screen their mutual
interaction are excluded from this region. Evidence has
previously been advanced that partial dehydration of the

FIGURE 7 Dependence of the fraction of charged protein-associated
lipid, f A

b /u, on the mole fraction,fA, of charged lipid in mixed membranes
containing a zwitterionic lipid component. The dependence is calculated
from Eq. 10, for low levels of surface occupancy (i.e.,u 3 0) and values
of the relative association constant ofKr 5 3.0, 4.0, and 5.0 (solid lines,
lower to upper). The dashed line shows the dependence for homogeneous
mixing of the two lipids.
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surface takes place on binding cytochromec to negatively
charged lipid membranes (Sankaram et al., 1990), which is
consistent with this latter conclusion.

Determination of the relative association constant,Kr,
requires knowledge of the lipid stoichiometry,a, of the
protein binding region. The latter has been obtained from
two separate models for the full protein binding isotherms
by using either a Van der Waals description or a hard-disc
treatment based on SPT. These give rise to two different
values ofa and hence of the lipid binding constant,Kr. The
VdW approach is thought to underestimate the steric repul-
sions between bound proteins (Chatelier and Minton, 1996),
whereas SPT somewhat overestimates hard-disc pressures
(Boublı́k, 1975). The lipid-protein stoichiometry obtained
from the VdW approximation,a 5 13, is somewhat at the
high end of the values expected for cytochromec binding,
and that from SPT,a 5 7.8, is appreciably smaller than is
expected on geometric grounds. Globular cytochromec can
be approximated as a prolate ellipsoid of dimensions 3.03
3.43 3.4 nm (Dickerson et al., 1971), which corresponds to
a cross-sectional area of 8–9 nm2 facing the lipid surface.
This value must be increased by a factor of;2=3/p,
corresponding to the area occupied by closely packed cir-
cular discs. The surface area occupied by a DOPC molecule
is in the range 0.70–0.82 nm2 (Marsh, 1990). Thus, the
values predicted for the lipid stoichiometry are in the range
a 5 11–14 DOPG/DOPC molecules per cytochromec. It
therefore seems likely that the value for the relative lipid
binding constant lies intermediate within the rangeKr(PG:
PC) 5 3.3–4.8 that is determined for the VdW and SPT
stoichiometries, respectively. Discrimination between the
VdW and SPT models cannot be made on the basis of the
binding isotherms, other than in the quantitative values
derived fora, because both models describe the experimen-
tal results equally well.

It should be noted that estimation of the relative associ-
ation constantKr from the data given in Fig. 3 requires use
of the electrostatic model as expressed in Eq. 8. The reli-
ability of these values therefore rests on the extent to which
experimental parameterization by means of the effective
value of the protein charge,Z, accounts for the limitations of
the simple double-layer theory with respect to finite protein
size and discreteness of protein distribution on the mem-
brane surface. The consistency of the predictions of the
model with the full experimental binding curves determined
under a variety of conditions (Fig. 4), when conservative
adjustments are made in the relative association constant
(Kr), suggests that a reasonable degree of reliability is
achieved.

The intrinsic surface affinity for cytochromec of phos-
phatidylglycerol relative to phosphatidylcholine corre-
sponds to a free energy difference ofDG(PG:PC)5 2RT ln
Kr 5 2(3.1–4.0) kJ/mol at 37°C. This relatively modest
free energy difference, however, gives rise to a strong
preferential association of DOPG with cytochromec, as
seen in Fig. 7, because of the high effective surface con-
centrations in the membrane. Correspondingly, this prefer-

ential affinity for DOPG greatly enhances the membrane
binding of cytochromec, as seen already from Fig. 5.
Formally, this enhanced binding is described by the com-
posite equilibrium constantKLD(0, fA, Kr) (see Fig. 2) that
depends on both the relative binding constantKr and the
lipid stoichiometrya.

The values for the relative association constant and free
energy of interaction of phosphatidylglycerol with cyto-
chromec that are determined here lie within the range of
those found for the selective interaction of different spin-
labeled phospholipid species with integral membrane pro-
teins (Marsh, 1985, 1995). Although the latter mostly dis-
play a specificity for anionic lipids, an interesting feature is
that phosphatidylglycerol generally does not display a se-
lectivity of interaction with integral proteins relative to
phosphatidylcholine. This difference between the two types
of membrane proteins probably lies not only in a different
amino acid disposition, but also in the different topography
of the lipid interactions with peripheral and integral pro-
teins, respectively. As mentioned in the Introduction, sev-
eral spectroscopic studies have indicated a preferential in-
plane interaction of negatively charged phospholipids with
peripheral proteins. In ESR studies, these have been used to
establish a hierarchy of interactions of spin-labeled lipids (at
probe amounts) with a range of peripheral proteins (San-
karam et al., 1989, 1990). With certain assumptions, the
latter were also used to obtain approximate values for the
relative association constants: a value ofKr(PG:PC);2 was
estimated for the interaction of phosphatidylglycerol rela-
tive to phosphatidylcholine with cytochromec. The present
thermodynamic determinations suggest that the assumptions
made in these approximations must be modified and that the
values ofKr obtained from ESR must be corrected upward.
Spin-labeled lipids that experience a greater perturbation
than phosphatidylglycerol on binding cytochromec, e.g.,
phosphatidylinositol, are, however, expected to have larger
values ofKr than those reported here.

This study has been devoted to pairs of lipids that mix
well in the absence of protein, and therefore constitutes the
most sensitive test of the model used to describe the influ-
ence of lipid redistribution on protein binding. It will be
noted, however, that the treatment applies also to lipids that
have an inherent tendency either to phase separation or to a
more uniform ordered distribution. In these latter cases, the
protein binding will tend more to be determined by the lipid
mixing properties than by the relative selectivity of interac-
tion with the protein.

This work has been supported in part by the Deutsche Forschungsgemein-
schaft (Ma756/8-1).

APPENDIX

Statistical thermodynamic derivation of the
fraction of protein-associated lipid

Corresponding to the partition function given by Eq. 11, the free energy of
the configurations withNu,A lipids of type A that are bound to the protein
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is given by:

FNu,A 5 2kT ln@VNu,A~Nu, NA!Kr
Nu,A# (A1)

where the combinatorial term,VNu,A
(Nu, NA), is given by Eq. 12. The

equilibrium condition for minimum free energy, i.e.,­FNu,A
/­Nu,A 5 0, is

therefore:

ln Kr 5 2
­ ln VNu,A~Nu, NA!

­Nu,A
(A2)

where the derivative of the combinatorial term can be evaluated by using
Stirling’s formula [i.e., (1/N!)(dN!/dN) 5 ln N]. The resulting expression
for the relative binding constant is:

Kr 5
Nu,A~N 2 Nu 2 NA 1 Nu,A!

~Nu 2 Nu,A!~NA 2 Nu,A!
(A3)

which, expressed in terms of the fractional lipid populations, is identical to
Eq. 9. The partition function used for determining the free energy of lipid
redistribution is therefore equivalent to the law of mass action and the
fraction of protein-associated lipid (f A

b 5 Nu,A/N) is given by Eq. 10.
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