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ABSTRACT When two membranes fuse, their components mix; this is usually described as a purely diffusional process.
However, if the membranes are under different tensions, the material will spread predominantly by convection. We use
standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid
shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible
viscous media with the same shear viscosity, n,. The two monolayers interact by sliding past each other, described by an
intermonolayer viscosity, n,. Combining a continuity equation with an equation that balances the work provided by the tension
difference, Ao, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, v, and
area of lipid flux, ®. These expressions for vand ® depend on Ag, 7, 1,, and geometrical aspects of a toroidal pore, but the
general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily
applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different
tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, r,,, to a saturating value at large r,,. As a
result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement
with available experimental data for both large and transient fusion pores.

INTRODUCTION

The event that defines the fusion of two biological mem-1993). But if the two fusing membranes are under different
branes is the formation of a fusion pore: a structural pastensions, lipid flux will be predominately convective rather
sageway linking two formerly separated aqueous spaceshan diffusive. There are experimental situations in which
Water-soluble materials move through this passageway; thigising membranes are known to be under different tensions.
membrane lipids may also move from one membrane to then the case of fusion of two planar membranes made from
other, but do so as a part of the pore walls themselves. Thgifferent lipids (Chernomordik et al., 1987), the tension
composition of the fusion pore at the time of formation is in gifference is constant, it is independent of time, and it is
dispute. Some hypothesize that the initial pore consistgnaintained by the Gibbs-Plateau borders that support each
exclusively of protein (Tse et al., 1993; Lindau and AImers,p|anar membrane. When liposomes (Cohen et al., 1984) or
1995). Others argue that lipid is an essential component gfg|s (Melikyan et al., 1995) are fused to planar membranes,
the pore wall, along with protein (Zimmerberg et al., 1991} iniq will flow until the differences in tension that exist at
Nanavati et al., 1992; Chernomordik et al., 1995, 199740 moment of fusion pore formation are relieved. Gener-
Melikyan et al., 1995; Hernandez et al., 1996). If the initial ally, liposomes are induced to swell—increasing their mem-

pore I compc_)sed solely of protein, lipid COU|d_ NOt MOVey, 2 ne tensions—to induce their fusion to planar membranes
from one fusing membrane to the other until the pore(Cohen et al., 1984: Niles et al., 1996) or to promote

enlarged. On the other hand, if the initial pore is a Comb"expansion of pores that form in the membrane shared by

nation of lipid and protein, lipid movement between mem- . . . .
L . . hemifused liposomes and planar bilayers (Chernomordik et
branes could begin immediately upon pore formation, un- i .
. : . al., 1995; Chanturiya et al., 1997). In some purely cellular
less restricted by the proteins that contribute to pore’.”’ ~° . .
Situations, membranes may also be under different tensions

structure. In any case, the larger a pore grows, the more on . .
would expect lipid to move unhindered along the pore walls 8S they fuse. In exocytotic fusion, careful measurements that

Diffusive movement of lipid along fusion pore walls has have tracked lipid movement during pore flickering—the

been analyzed in detail (Rubin and Chen, 1990; Chen et al°Pening and closing of small pores—suggest that the exo-
cytotic granule membranes are under significantly more

tension than plasma membranes (Monck et al., 1990; Sol-
Received for publication 28 September 1998 and in final form 31 Marchsona et al., 1998)_ It may be that tension-driven membrane
1999. flow after fusion is more common than currently appreci-
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joining two membranes under different tensions. The cal-  (a)
culated flux agrees with measured values (Monck et al.,

1990; Melikyan et al., 1995). Experimentalists who wish to

analyze data of transfer of lipid dye observed during fusion

can use the graphs of Fig. 2, and Egs. 20 and 21, whictpo, __ %2k
describe lipid velocity and area flux, to calculate differences L
in membrane tensions. This calculation requires reasonable
estimates of membrane viscosity and a knowledge of pore  Quter
radii, which can be obtained from simultaneous electro-20; j——
physiological measurements of fusion pore conductance.

Inner

STATEMENT OF THE PROBLEM
The geometry of the system

Consider two parallel planar membranes, each of thickness (B)
2h, whose neutral surfaces (the interfaces between the two
monolayers) are separated byl 2Fig. 1 A). A fusion pore

of toroidal shape (a half-circle revolved around thaxis)

connects the planar bilayers. The system is cylindrically
symmetrical about the axis, which passes through the

center of the pore. We define the distance fromzhis to 5
the boundary between the toroidal and unbent planar sur-

faces as the pore radiuR, The radius of the narrowest N Toroidal /

port.ion of the lumen of the pore iy = R — (H + h). Itis “. portion 7 R,

obvious thatr, = 0 andR = (H + h). The radius of the S _ -7

fusing objects is given bR, >> R. The symbolsr, ando,

designate tensions of single monolayers in the upper (1) and

lower (2) membranes (Fig.A). We consider the case when

the monolayers of a given membrane are under the same

tension, and the two bilayer tensions are differemnt, 2

20,, maintained as a constant at the circumferegRgeThe _FIGURE 1 Schematic representation _of a toroida_l fusion pore connect-
geometry of the planar portions of the membranes is de" two planar membranes, 1 and 2, at different tensiomga®d 2r,, with

ibed b lindrical dinat o h . 20, > 207,. (A) Cross-sectional, side view of the systenzjix coordinates.
scribe y cylindrical coordina eg’(z’ )’ wherer Is The bold solid lines represent membrane-solution interfaces. The surfaces

measured relative to theaxis (Fig. 1B). For the toroidal  of constant lipid density (CLD) for each monolayer are shown as dashed
portion, we use the more specialized coordinatesp( p)  lines. The velocities defined on these surfaagsand v, are shown by
(Fig. 1, A andB). The p coordinate takes on values within arrows. The thin solid lines designate the interfaces between monolayers.
an intervalH + h > p>H - h. The anglecp is confined (B) Top view of the system iy, x coordinates. The walls of the toroidal

. . . pore meet the planar membranes at radRu3he radius of the narrowest

in the mterval Fﬂ'/z’ 77/2.] and is equ.al to .zero .On the portion of the water-filled pore lumen is given by Thus the toroidal part
equatorial plane. The azimuthal angleis defined in the  of the membrane lies betweepandR. The coordinate systems, (y, 2),
interval [0, 27]. To calculate lipid flow induced by differ- (r, 0, 2), and g, ¢, 0) illustrated here are described in the main text and in
ences in membrane tension, we assume that a fusion pof@pendix A.

maintains its shape and dimension (i.e., all geometrical

parameter®, H, h as well as the tensions, ando, remain

constant). For fusion systems in general (e.g., cell-cell fuembrane. Lipid does not move normal to the plane of the
sion or exocytotic fusion), for pore radils much smaller  memprane, but within the plane flows as a liquid. Bilayer
than the characteristic size of the fusing objects, the tWonempranes can be characterized as a mechanical continuum
fusing membranes can be treated as planar and parallel {ith material properties such as an elastic modulus and
each other, connected by a pore. coefficient of viscosity (Evans and Skalak, 1980); volu-
metrically they are almost incompressible (Evans and Hoch-
muth, 1978; Nagle and Wilkinson, 1978).

In this paper we rigorously calculate the stationary con-
In biological membranes, lipids form a continuous fluid vective flux of lipids by using standard fluid mechanics: for
phase. The presence of proteins affects lipid dynamicstationary convective flow, the work performed by the ten-
through changes in membrane viscosity. Artificial lipid sion difference to cause lipid movement is balanced by the
bilayers as well as cell membranes are essentially anisotralissipation of mechanical energy due to viscosity. Dissipa-
pic systems, with lipid mobility restricted to the plane of the tion of energy that accompanies lipid flow occurs because

Fluid mechanical approach
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of two types of deformation: in-plane shear and relativewhereRis a pore radius (Fig. 1), and andv’ are the linear

sliding of monolayers. Dissipation due to shear deformavelocities of lipid in the two monolayers at = R, the

tions in both the planar membrane and toroidal pore origijunction of the toroidal pore and planar membranes. The

nates from lipid-lipid and lipid-protein interactions within constanta/ andv’ must be determined.

each monolayer. These intermolecular interactions are de- We use the same principle of continuity of area flux to

scribed with a shear viscosityj,. Dissipation due to relative obtain lipid velocities on the toroidal surface of the pore.

movement of monolayers arises from viscous friction be+or reasons of symmetry, only the-component of the

tween the monolayer leaflets as they slip past each other analocity v, is nonzero (see Fig. A):

is described with a relative viscosity,. The viscous fric-

tion between a monolayer and the bathing agueous solutio® = 27T v, = const;,  ®" = 2air"v; = const. )

is negligibly sma]l -(see Discu_ssion). . . wherer’ = R— (H + h/2)cose (Eq. A9 whenp = H + h/2)
We calculate lipid flow by first solving the equations of is the radius of the surface of the CLD of the inner mono-

fluid mechanics within both the planar membranes and th?ayer of the toroidal pore at angle. For the outer CLD
curved toroidal pore and then matching their solutions at th%urface we have’ = R — (H — h/2)c.os<p It is convenient

boundarie; where they jgin. For planar mgmbranes, flow iS5 rewrite Eq. 2 in the form

purely radial and for an incompressible viscous monolayer

is easily calculated (Deryaguin and Gutop, 1962; Deryaguin r'j,=Rv, =R )
and Prokhorov, 1981). The situation for a curved toroidal

membrane is more complicated. Within the inner monolayetvherev’ andv” are the constants (linear velocitiesrat R)

of a toroidal pore (Fig. 18), the area available to a lipid Of Egs. 1 and 2. These equations define the velocity
headgroup is greater than that available to the acyl chains. |gistributions in the planar and toroidal portions of outer and
this monolayer, therefore, the region occupied by the headner monolayers:

groups is expanded relative to the portion filled by the acyl =

chains, which is compressed. The opposite consideration V= planar part
pertains to the outer monolayer. This means that a curved r ) 3)
monolayer of finite thickness does not strictly have constant o = v'R toroidal part
density. Attempts to account for nonconstant density lead to ¢ R—(H=h2)cose

horrendous mathematical complexities. We avoided this here+ and— si d to the inne d
problem by choosing within each monolayer of the toroidal'’ ere+ and — signs correspond to the inn€j nd outer

pore a surface of constant lipid density (CLD) that matcheéﬁ) monolayers, respectively. These equations are valid for

the lipid density (molecules/unit area) of the planar mem—the upper (denoted 1, Fig. 1) and lower (2) membranes, but

branes (Fig. 18). This surface lies between the polar head-2" es;ential asymmetry should be noted. If the tension is
groups and the hydrophobic acyl chains. By considering{arger in the upper than in the lower membrane, 2 20,

surfaces of CLDs instead of monolayers of finite thickness ipid flows from the lower to the upper membrane. So that
the fluid mechanical problem is reduced to a two-dimen-

lipid velocities have the same sign in membranes 1 and 2,
sional problem of the flow of an incompressible liquid along we a.:)3|gn a2pos(|jt|ve dlrefcnon ‘;fe;f'.OW. tO\;]vard thexis in
these surfaces. We explicitly consider frictional interaction emorane 2 and away from tizeaxis n t € ubper mem-
between the two surfaces of the CLD. For caIcuIationaIbrane 1. In the toroidal pore, the velocilyis directed from

concreteness, we assume that each surface of CLD is I§ ~ — ™2 10 ¢ = m/2. Equation 3 shows tha, achieves

cated in the middle of its monolayer (i.e.,@t= H * h/2) a maximum value ap » 0. L .
and has a toroidal geometry within the fusion pore. To obtain the velocity distributions everywhere in the
system, we need only to determine the two unknown pa-

rametersp’ andv’. This is obtained rigorously by using a

THEORY local balance of force equation for each monolayer, valid
Velocity distribution when flow has. reached steady state. Balanping tension by

_ o _ the opposing viscous forces yields two equations for the two
The radial flow of lipid in the planar portions of the mem- ynknown constants’ andv’. These calculations are pre-
brane is obtained from the condition that membranes argented in Appendix B, where it is shown that Ry, > R,
incompressible. We write this conservation of area as aghe two monolayers move almost together in the planar
equation of continuity: portions of the system, without relative sliding. That is, to a

"

@ = 27t - v = const’ 1) reasonable approximation, = vy at anyr, and therefore

®' = 271 - v = const’,
wherer is an arbitrary radius on the plan®, is area flux, vV=1v=v 4

andv, is the velocity at. The superscriptsand” denote the The phvsical reason Eq. 4 holds is that if monolavers were
surfaces of CLD of the inner and outer monolayers, respec- Phys d- ! : Yers w
. . to slide past each other over the large area covered by the
tively. We rewrite Eqg. 1 as B
planar membranesR(< r < R,), the energy dissipation

ry =R, r/=R/ (1)  would be enormously high. This would contradict the prin-
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ciple that entropy production is at a minimum for stationaryand for the lower bilayer,

states (Prigogine, 1967). Minimum entropy production oc- )

curs when monolayers only slide past each other within the W,, = =20, 2Ry, - vy, (7)

walls of the toroidal pore, a much smaller area than is i . i

covered by the planar portions of the system. The minus sign |n'Eq. 7 arises from.the fgct that for the case
The approximation of Eq. 4 significantly simplifies the 71 > 0, lipid In bllayer'(2) moves in a direction opposite

problem. The velocity distribution in the whole system is that of the .applled tensioms,. o ,

defined by the single parameterthe lipid velocity atr = We obtainy,, through the velocity distribution, Eq.'3

R (i.e.,v = v(R)). We find v by using the energy balance v R

equation for the whole membrane (which is computationally Up= 5 (8)

more convenient than employing an equation of local force R

balance). With the approximation of Eq. 4 we can rewrite Combining Egs. 6, 7, and 8, we obtain the total work

the velocity distribution, Eq. 3, in the simple form: performed by tension forces per unit time:
Inner monolayer W, = W,; + W,, = 47RAov 9)
U= ? planar part where A0 = 20, — 20,.
WR 3)
V= Ro (H + W2)cose toroidal part Energy dissipation

We assume that only viscous forces dissipate energy. For

Outer monolayer example, we consider bending of an element of a membrane
R that enters the toroidal region a reversible elastic process
= - planar part v_wthgut an accompanying d|§s!pat|on. The energy dissipa-
R tion in the membrane per unit timg, therefore consists of
Ui . .

¢ R—(H— h2)cose
E=E,+E+E; (10)

It is clear from Eq. 3that at anyr, lipid velocities of both

monolayers are the same in the planar portions of the systefhe first term refers to viscous dissipation due to shear
(v = v}). Butiin the toroidal portion, lipid velocities in inner deformation within a single monolayer (s) in the planar (p)
monolayers are greater than in outer ongsz v/, because portions of the membranes; the second term describes the
lipid traverses a longer pathway in the inner monolayer tharfame process, but within the toroidal (t) pore. We refer to
in the outer monolayer (Fig. A). At the junction between dissipation due to friction within a monolayer as intramono-
the planar and toroidal portiongg = *=m/2, r = R, the layer dissipation. The third term denotes dissipation induced

values of all velocities coincidey(R) = v, (xm/2) = by relative (r) motion of monolayers past each other in the
vi(£m2) = v, in accord with the original continuity toroidal (t) pore, intermonolayer dissipation. As discussed,
equations. monolayers do not slide past each other in the planar por-

The energy balance condition for the entire membrandions (' = '), and hence there is no dissipation in this
System sets the work done by the tension forces per unit degion through friction between monolayers. But as there is

time, W,, equal to the rate of energy dissipatidh, sliding between monolayers in the toroidal pore, it is im-
portant that each monolayer be considered separately.
W, =E (5) As a direct consequence of the Navier-Stokes equations

of fluid mechanics, the energy dissipated when an incom-

Evaluating and equating the functiokl$, and E deter-  pressible viscous fluid is deformed by shear can be written
mine v. This allows the area of lipid flux to be obtained. as (Landau and Lifshitz, 1987)

E.= L > Joﬁds (11)

The work of tension forces 275 I
The work per unit time produced by tension (force/unit

length) acting on the (1) upper bilayer and (2) lower bilayer, s oty oy is the viscous stress tensor, an8 i the

is equal to the product of the force acting on the membrang e ment of the surface. Substitutin§@ndo;, in cylindrical
boundaryy = Ry, of circumference 2R, and the velocity  qqrginates (Eqs. A4 and A5) into Eq. 11 yields for the
of the boundary,,. For the upper bilayer, planar portions

where 7, is the two-dimensional shear (intramonolayer)

Wo1 = 207 * 2Ry * U, (6) Esp = 16mma” (12)
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The shear dissipation within the toroidal pokg, is also  The difference between/(H) and v,(H) providesAv, as
determined by Eq. 11, with®ando;, given by Egs. AB and needed in Eq. 15. FawH << 1, substituting the velocity
A10: profiles of Eqg. 3 into Eq. 17 allows the integration of Eq.

15 to be performed, yielding

(b — cosg)®

E., = 8mmd (b)v? (13) _
E.=8mn,J(b)?, m = uh? (18)
where
where
o ™2 p?sirte de R
|(b) =2 m, b= ﬁ (14) 1 [ bZ(b ) COSQD)Z
—al2 J(b) = 2 ———————5—do (18)

— !

Equation 13 was obtained under the assumption that bilayer
thickness B is small compared with the distance betweenis 5 dimensionless geometric factor, and = uh? is a

membranes @ (WH << 1). I(b) is a geometrical dimen- tyo-dimensional relative viscosity. The monolayer thick-
sionless_ factor determined by the shape of the pore. Thgessh, appears as a scaling parameter betwgemnd . as
expressions foEg, (Eq. 12) andE; (Eq. 13) are similar, 5 gjrect consequence of our conceptualization of lipids as
arising from the same physics, and differ only by the geoyods, But as the surfaces of CLDs are separated by a
metrical factorl (b). distanceh, the scaling parameter is a general one, appearing
Energy dissipation due to relative motion of monolayersygytinely in membrane mechanics (Evans and Hochmuth,
in the toroidal pore,Eg, is physically attributed to the 1978).
friction between the methyl-terminal portions of the acyl Esp (Eq. 12),E, (Eq. 13), andE,, (Eq. 18) have the same
chains of the phospholipids that arise when the two monoforms. Each term varies quadratically withdiffering only
layers slide against each other. According to membrang, their geometrical “form factors.” The total energy of

mechanics, such dissipation is described as (Evans anglssipation is obtained by substituting Egs. 12, 13, and 18
Hochmuth, 1978) into Eg. 10:

E -y J (A (15) E=8and(b) + ndb I(b)=2+T(b) (19)

The form factor (b) describes the effect of the geometries
where . is a friction coefficient andAv is the velocity ~Of the two planar membranes (the first term, 2) and the
difference between the two monolayers at the interface overoidal pore (the second terrf(b)) as they contribute to

which the integration is carried out. To obtain linear veloc-€nergy dissipation that occurs through shear viscos(by).
ities, we calculate angular velocitieQ(¢), for each mono- 1S the geometrical factor contributed by the toroidal shape to

layer. For the surface of CLD of the inner monolayer, intermonolayer energy dissipation. The geometrical factors
I(b) (Eqg. 14) and)(b) (Eq. 18) are illustrated in Fig. 2 and
, A enumerated in Table 1 fé4 = 10 nm andch = 2 nm. Their
V(g = H+ h/2 (16) asymptotic forms fob >> 1 andb — 1 are presented in

Table 2.1(b) monotonically decreases toward 2 (2 is the
Q'(¢) is a function ofv(¢), in turn given by Eq. 3 A contribution from the planar membranes)as> . That is,

similar expression holds for the outer monolayer: as the pore enlarges, it contributes progressively less to
, shear dissipation (i.el.(b) — 0). The factord(b) is biphasic,
() = Uy (16) at_first decreasing sharply for increasing descer_1ding tq a
H— h/2 minimum atb ~ 2 (r, ~ 5 nm) and then slowly increasing

The friction b | be f v d with a constant slope ofr/4. I(b) > J(b) over the entire
e friction between monolayers can be formally © range of pore radii, up to, ~ 35 nm. For large pores, the

scribed_ as two surfaces of CI__D_ sliding past_ez_ich other. Buitnequality reverses(b) > I(b). The energy dissipation rate
tp _prowde a phy5|ca_l _apprematlon of th!s friction, we treat(Eq_ 19) depends not only ok(b) and J(b), but on the
lipid molecules as rigid roc;ls that_remam_perpendlcular toviscositiesns and 1, as well. We consider the values of
the neutral surface of the bilayer (i.e., the mterfac_e betWee@.hear and intermonolayer viscosities in the Discussion. This
the two monolayers) as they move along the toroid. For th llows us to evaluate the relative contributions of the two

lipids-as-rods simplification, the a}ngular veloc?ties of _eaChprocesses to energy dissipation that determine lipid flux.
monolayer (Egs. 16 and I6at their surface of interaction
(p = H) immediately yields linear velocities,(p = H) at

this surface: Lipid velocity and area flux

! "

v, H, VI(H) = ¢ Substituting the expressions for the work performed by
H+h2 ' e H— hi2

ve(H) = tension (Eg. 9 and the energy dissipated by lipid flow (Eq.

H (17)
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The area flux for a bilayer, calculated at= R, follows
directly from Eq. 20:

2mAoR?

® = [ (RH) + 7, J(RH)]

(21)

where the 2 in the numerator arises because there are two
monolayers per bilayer. We have thus arrived at equations
for vand® as a function of pore radiug, intermembrane
distanceH, tension differencéo, and the viscositieg, 7,.

Fig. 3, A andB, illustrates the dependence of velocity at
the junction between the planar membranes and the toroidal
pore,u(b), on pore size. Pore size is shown as both R/H
and as the radius of the narrowest portion of lunrgnfig.

3 A displaysu(b) over an extensive range of pore radii; Fig.
3 B exhibits this velocity at greater resolution for pores with
small radii. The corresponding figures for the fldxb), are
presented in Fig. 4A andB. Bothv(b) and®(b) are plotted

on the left-hand ordinates for the parametdrs= 10 nm,

h = 2nm,Ac = 0.1 dyn/cm, and), = 0, = 10 ° g/s. The
right-hand ordinates of both Figs. 3 and 4 show the dimen-
sionless combinationsn/AcH and ®n/AcH?. This allows

us to readily obtairv and ® from Figs. 3 and 4 for any
values ofr, Ag, andH.

DISCUSSION

When fusing membranes are at different tensions, convec-

line (ordinate= 2) is the geometric contribution that the planar membranestjve flow of |ipid occurs through the wall of the fusion pore.

makes to shear dissipation and is independent of the size of the pore.

19) into the energy balance equation (Eqg. 5), we obtain

4mRAov = 8 n- 2 + nd(b) + 1, I(b) |2 ()

This equation yields the parameterthe lipid velocity at
r=R

B AoR
~ 2[nd (RH) + mI(RH)]

v

(20)

Substituting this expression far into Eq. 3 vyields the
velocity distributions

_ AoR2
U= [ (RIH) + o, J(RH)]  Planarpart (20
, AO’RZ 1
Ve = 2 nd (RIH) + 1, J(RH)] H
Ll (R = (R R— (H +2)coS<P
"o_ AURZ 1
Ve ™ 2md(RIH) + mJ(RH)] h
R- (H - 2>COS(p

toroidal part

This flow is governed by the principle that in steady state,
the energy per unit time supplied by the tension is balanced
by the viscous dissipation caused by the flow. We calculated
flow by treating a membrane as a two-dimensional homo-
geneous continuum (Evans and Skalak, 1980). The ap-
proach of treating a membrane as a continuum is certainly
valid when distance scales are on the order of @i or
greater. However, equations that are strictly correct only in
macroscopic limits have long been successfully applied to
phenomena that occur over microscopic scales (Einstein,
1956). In the field of membrane fusion, macroscopic mem-
brane mechanics (Helfrich, 1973) has been of value when
applied to curved surfaces of 10-nm scale, such as pores or
stalks (Markin et al., 1984; Nanavati et al., 1992; Siegel,
1993).

In exocytotic secretion, as observed by electron micros-
copy, fusion is initiated by dimpling of membranes toward
each other (Chandler and Heuser, 1979; Ornberg and Reese,
1981; Knoll et al., 1991; Curran et al., 1993). Once formed,
fusion pores are long structures with nonuniform luminal
radii (Curran et al., 1993). Based on functional studies of
virus-induced fusion, even small flickering pores already
have a length greater than the thickness of a bilayer mem-
brane (Razinkov et al., 1998). A toroidal shape captures the
essential geometrical features of biological fusion pores—a
significant length with a narrow luminal region over part of
it. Choosing an explicit geometry to model pore shape
allows for rigorous calculations, which in turn leads to a
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TABLE 1 The values of geometric factors /(b) and J(b) at different b = R/H and r,,

b 1.2 1.3 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 5.0 10
rp (NM) 0 1 2 4 6 8 10 12 14 16 18 38 88

I(b) 31.77 19.34 13.95 9.18 7.07 5.89 5.15 4.64 4.27 3.99 3.77 2.84 2.23
J(b) 17.12 5.14 2.07 0.66 0.51 0.61 0.78 0.96 1.15 1.34 1.52 3.24 7.80

more intuitive understanding of the general qualitative fea-Gibbs-Plateau border have different chemical potentials,
tures of the process of lipid flow. The lipid velocity(Eq.  creating a tension difference. Planar bilayer tensions lie in
20) and lipid area flux® (Eqg. 21) depend, in physically the range of 0.2—4 dyn/cm, the precise number depending
understandable terms, on the tension differente, be-  on lipid and aqueous compositions (Tien, 1974; Cherno-
tween the two fusing membranes and on their shear andhordik et al., 1987). Biological membranes are also under
relative viscositiesy, andm,, as well as geometrical factors. tension. Plasma membranes of eukaryotes have tensions
We consider appropriate values feg, and n, and then that arise from both interactions between constituents within
discuss the contributions that shear deformation and intethe plane of the membrane itself and from interactions
monolayer friction make to energy dissipation in view of the between the plasma membrane and cytoskeleton. But these
geometrical aspects of fusion pores. The underlying basitensions are significantly less than for planar membrane: the
for the functional dependence of lipid velocity and flux on in-plane tension of a plasma membrane is orlf0 2
pore radius is also considered. Finally, we show that thelyn/cm if the cell is not osmotically stressed (Dai and
theoretical equations can account for the experimental dat8heetz, 1995a), and hence the lateral lipid flow between
currently available. fused plasma membranes should be small. It also appears
We have rigorously calculated the steady-state lipid fluxthat membranes of internal organelles are under tension, to
for fused lipid membranes under the conditions thatand  a greater degree than plasma membranes. From measured
pore radiusk remain constant. We apply the equations toredistribution of chimeras consisting of a membrane protein
biological membranes by using valuesmfandnz, that are  and green fluorescent protein, it has been concluded that
appropriate for these membranes. In experimental practicenovement of membrane protein between ER and Golgi is
sizes of fusion pores are never perfectly constant, althougtue to convective flow, rather than diffusive movement,
they often tend to remain reasonably stable for extendedwith velocities on the order of 1@m/s (Sciaky et al., 1997).
times before enlarging significantly. In any case, lipid Differences between chemical potentials of ER and Golgi
fluxes quickly reach steady state (instantaneously comparetiembranes are presumably responsible for tension differ-
to the video rates for which they are measured). The timme, ences. It would thus be expected that in many cellular
needed for a tension difference to establish steady-state flyxrocesses involving organelles, lipid movement could be
can be estimated from the Navier-Stokes equation for amdue to convective flow, rather than diffusive spread, as is
incompressible liquid (Landau and Lifshitz, 1987)&&/m, often assumed. For example, there is significant lipid flux
wherep is lipid density. Fom = 10 °g/s,p = 10 >g/cn?,  through fusion pores from plasma to granule membrane in
andR = 100 nm,r = 10 °s. For a compressible liquid, mast cell secretion (Oberhauser and Fernandez, 1993), im-
can be approximated as the time needed for sound (velo@lying that the granules are under significant tension
ity ~ 10° cm/s) to propagate over the entire object. For a(Monck et al., 1990).
cell of radius 10um, 7 ~ 10" ¢ s. The equations of this
study, assuming constant pore radius, therefore allow lipid
qux_es t(_) b_e_ calculat_ed at every instant, even if pore Sizg, - brane viscosity
varies significantly (size determined from electrophysiolog-
ical measurements). As lipid flow depends omg andn,, their values are required
to compare the theoretical equations with available experi-
mental data. The values of shear viscosities reflect molec-
ular interactions and differ for different types of membranes
The basis for tension in planar membranes is well under{lipid bilayers, lipid monolayers, and cell membranes);

stood: lipids within the planar bilayer and the supportingthese values lie in a very broad interval, TQy/s < n4 <
102 g/s (Evans and Hochmuth, 1978). The surface viscos-

ity of a membrane can be converted to a three-dimensional
viscosity, n; = nJh, and compared to viscosities of com-
mon substances. The largest surface viscosity value3(10

Membrane tension

TABLE 2 Asymptotic expressions for the geometrical
factors I(b) and J(b)

b-1<1 b>1 g/s) compares with the three-dimensional viscosity of ex-
1(b) w1 2 tremely viscous materials such as waxes and buijgr<
\2 (b= 1)* 10% poise, i.e., 16g/s- cm). These large values are found in
JI(b) i;w o experiments that deform extended portions of a cell mem-
16201 4 brane. Such high values probably reflect additional forces
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FIGURE 4 The dependence of lipid area fidixon pore lumen radius,

and on the dimensionless pore radius: R/H. Curves are plotted for the
same values of parameters as in Fig. 3. Flux in is shown in dimensionless
units on the right-hand ordinateA) Flux for an extensive range of pore
radii. (B) Flux for narrow pores only.

FIGURE 3 The dependence of an average lipid velogion the radius
of the pore lumen,,, and on the dimensionless pore radins; R/H. The
curve is plotted foH = 10 nm,ng = m, = n = 10 ° g/s, andAc = 0.1
dyn/cm. The left-hand ordinate givesn absolute units, and the right-hand
ordinate gives velocity in dimensionless units. This allante be readily
obtained for any values af, Ao, andH. (A) Velocity is shown over a large
range of pore radii.B) Velocity is presented over the range of narrow

pores. the molecular interactions within a monolayer, that is, due

to both lipids and organic solvent. Estimates «f for

biological membranes that are based on measurements of
from macromolecular structures, such as interactions ofateral diffusion givens ~ 107 ° to 10 ° g/s (for reviews,
adhesion between cytoskeleton and membrane. The loweee Evans and Hochmuth, 1978; Saffman, 1976; Thomas
end,n, =~ 10~/ g/s, is the measured microviscosity of the and Webb, 1990). As these viscosities characterize move-
hydrocarbon interior of a bilayer membrane (Azzi, 1975)ment of lipid within a cell membrane without deformation
and corresponds tg; ~ 1 poise, the viscosity of olive oil. of the membrane itself and account for both lipid-lipid and
The samen.s were obtained by measuring electrically lipid-protein friction, we consider these latter valuesgfo
induced expansion of pores in lipid bilayers formed inbe most descriptive of the in-plane lipid flow within cell
n-decane (Sukharev et al., 1983); these values reflect all ahembranes.
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In contrast torn, experimental data that determine the experiments, we assume that ~ n. also holds for cell
relative viscosityn, are rather limited. A value of, for pure  membranes, within the interval 18to 10 ° g/s.
lipid bilayers can be estimated from measurements of the We have ignored in our analysis the friction between
dynamics of enlargement of hemifusion diaphragms (Mewater and lipid at the water-membrane interface. We justify
likyan et al., 1985). Outer monolayers, after initial merger,this simplification, showing that this friction is negligible
are pulled away from the site of hemifusion. This clearing offor pores with either a wide or narrow lumen. For ease of
outer monolayers from the site allows the inner monolayersalculation, we treat a large pore’s wall as if its circumfer-
to come into direct apposition with each other, forming andence were straight rather than curved (in other words, as if
enlarging into a hemifusion diaphragm. The time depenthe circle that forms the lumen were cut open and the ends
dence of this expansion in area of the diaphragt), is  separated so that they form the ends of a semicylinder). That
governed by tension and friction between monolay8. IS, we approximate a large pore as a semicylinder of radius

is described by the equation (Kumenko et al., 1999) H that joins two parallel semiinfinite planar membranes
separated by a distancéi2The axis of this semicylinder
Aaroh? runs parallel to the planar membranes. At the surfaces of the
St)=S+ 12 (R JRy) + 1)t (22)  planar membranes the difference between the velocity of

water and lipid flow is zero, the “no-slip condition”; suffi-

whereR, is the radius of the diaphragm at the moment theC|ently far from the surface the water velocity is zero, and

0= ) . . : the difference in velocity is therefore the lipid velocity
expansion is monitored arfid,, is the radius of the fusing . . .
bilayer. A comparison of the actual initial slopeJidk, to given by Eq. 20. The solutions for the frictional force per

that obtained from Eq. 22 yields the viscosity. Experi- unit length,F (dyn/cm), are well known for a liquid moving

i ) past both a flat plate and a cylinder (Landau and Lifshitz,
mentally, the [&fe of area expansion of the dlaphra}@idtd 1987). Combining these two solutions, we obtain
was 1.1x 10 * cné/s for phosphatidylethanolamine (PE)
(20 = 1.2 dyn/cm) membranes and was X710 cné/s 2y
for asolectin (AS) (& = 0.5 dyn/cm) membranes in-

In(3.7(mw/Hupy))
decane (Melikyan et al., 1985). When these values are '
combined with the known geometrical parametdR, ~ Where the first term corresponds to a planar part and the

1072 cm andR,, ~ 10°% cm, Eq. 22 yields that, ~ 6 X sec_ond one to thg semicylindet,, is the dyna_m|cal vis
_10 ) ) cosity of water,p,, is the water density, ang,, is a char-
10~ g/s for PE andn, =~ 4 X 10 ~~ g/s for AS. This - .

. . . . . . acteristic length of the system which, as an upper bound,
two-dimensional viscosity;, scaled withh = 2 nm vyields can be taken aR, ~ 1 mm. To estimate the maximum
the three-dimensional viscosity; =~ 3 X 10 ° g/lcm- s - g ;

N ' force F generated by lipid-water friction, we consider a
rather close to the viscosity ofdecane, 8< 10 3 g/cm- s. g y b '

Thi babl b bl 5 of huge pore under a large tension difference, 1 dyn/cm. The
IS probably oCCUrS because appreciable amounts- ot 4y m lipid velocity is~5 mm/s (see Fig. 3) when the

decane reside between the lipid monolayers (White, 1977)membrane viscosity is at a minimum, 10g/s. Even for

T.he same angly5|§ and exp(irlm'(’ents yield that .the WOfhis maximum velocity, both terms in Eq. 23,103 dyn/
dimensional viscosityn, for a “dry” solvent-free bilayer

_ _ cm, are much smaller than the tension difference of 1
f‘?rmed from PE in squ_aslene is almost two orders of mag‘dyn/cm. Therefore water-membrane friction gives a negli-
nitude higher,~7 X 10 ° g/s.

. : . gibly small correction in the case of large pores.
The frictional interactions between monolayer leaflets as™ £ 4 small pore, both the velocity gradient of the water

they slip past each other have also been studied by pulling,q the momentum transfer to the pore wall are high. But as
tethers out of lipid vesicles (Merkel et al., 1989; Evans eto grea of the pore wall is small, lipid-water friction is
al., 1992; Evans and Young, 1994; Raphael and Waugheqjigible in this case as well. The frictional force for a unit

1996). When normalized to a monolayegthicknesbefz length of pore circumferences, (units dyn/cm), can be
nm, n, was found to be between4 X 10" " g/s (Evans and  ggtimated as

Young, 1994) and~1.8 X 10 ° g/s (Raphael and Waugh,
1996). The higher values of, deduced for the vesicular
membrane than for bilayers imdecane arise because of a
lack of the “lubricating”’n-decane between the monolayer
leaflets of vesicles. Although the data indicate thamay
be somewhat larger tham, for purgly lipidic bilayers, on Ao ~ 1 dyn/cm andy ~ 10~ g/s. Equation 24 yields,, ~
balance we can takg, ~ 7 each in the range of 10 to 102 dyn/cm << 1 dyn/cm.

10~ © g/s. However, in some cases viscosity has been mea-
sured to be significantly larger: pulling microtethers out of
neuronal growth cone membranes yieldge 2 X 10 % g/s
(Dai and Sheetz, 1995b). It is not clear why slippage o
monolayers past each other leads to such a high value &s steady-state lipid velocity and flux are set by energy
viscosity. In our subsequent comparison of theory withdissipation, it is useful to explicitly consider the two dissi-

F =13 \nupuRat® + (23)

Jv v
Fpz T]WaZH = T]WFPZH (24)

wherev is the characteristic lipid velocity. From Fig. B
for a pore with a radius of~1 nm, v ~ 10 2 cm/s for

Comparison of energy dissipation due to shear
fand relative viscosities
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pative viscous processes. Under the assumpiion n, = sipation is distributed nonhomogeneously through the pore
m, the comparative contributions of the two processes tavall (Fig. 5). In the center of the pore, = 0, the wall is
overall energy dissipation are determined by the form faciocally cylindrical, and hencé&b) = 0. As material moves
torsl(b) andJ(b). Fig. 2 shows that over the entire range of away from the center of the pore, flow occurs progressively
biologically interesting pore radir, < 35 nm, shear defor- more perpendicular to the symmetry axis and shear defor-
mation dominates relative friction in causing dissipation. If mation increases, accounting for the increase@in But as
ns > m,, the dominance becomes greater. The integrands dhe element of membrane area moves further from the
I(b) and J(b) of Egs. 14 and 18(Fig. 5) characterize the symmetry axis, the deformation due to radial shortening
distribution of energy dissipation along the pore wall as alessens. This competition in shear deformation between
function of the anglep. radial and angular positioning of a membrane element leads
For small poresr, < 10 nm), shear dissipation essen-to maxima inl(b), symmetrically placed around = 0. For
tially arises in the toroidal region: the contribution i) a toroid, the maxima are ap| ~ 0.5; beyond this value
from the planar membrane is 2 ah) >> 2. The origins shear deformation gradually decreases to the level of the
of shear deformation within the pore and planar membran@lanar membrane.
are straightforward. Within the planar membrane, flow is For relative viscosity, the integrand dfb) reaches a
only radial, and shear occurs because any element of memaaximum ate = 0, with relatively narrow dispersion,
brane area becomes progressively shorter in the radial ddemonstrating that dissipation due to monolayers slipping
rection as it moves further from the pore. Within the pore,past each other is concentrated in a narrow region near the
membrane undergoes shear deformation in regions whemgore neck. Physically this occurs because, by the principle
the pore wall is curved. If a region of a pore wall is perfectly of continuity, the same flux of lipid must pass through the
cylindrical, membrane does not deform as it moves alongnner and outer monolayers for every angleThe circum-
this portion of the wall, regardless of the size of the cylin-ferences of outer and inner monolayers (around the central
drical lumen. In general, flow of an element of membranesymmetry axis of the pore) are smallest at the narrow pore
area parallel to the axis of symmetry occurs without sheaneck. As a result, the difference in velocity and thus in
deformation; flow perpendicular to the axis results in max-energy dissipation is greatest at the pore neck. The geomet-
imum deformation. We can thus appreciate why shear disric factor J(b) is large for the smallest pores and decreases
asr, increases (Fig. 2, Table 1): the larger the pore, the
more the circumferences of the inner and outer monolayers
50 become comparable, and differences in monolayer veloci-
- ties become smaller. This decreasd(in) with pore growth
is opposed by the fact that the sliding occurs along a larger
= "Relative” integrand pore circumference, a circumference that increases linearly

40 - with r,. When the pore enlarges sufficiently, beyand~
I H, this latter effect begins to dominate (hence there is a
- minimum in J(b)) and J(b) increases roughly linearly with
] pore radius.J(b) is greater thari(b) afterr, ~ 30 nm, at

30 | which stage pores have enlarged immensely.
™ If we view a fusion pore as a long cylinder connected to
\ each of the fused membranes at a region that curves back
into the plane of the membrane, we can qualitatively eval-
\ uate energy dissipation due to flow. Shear would not occur
within the cylindrical region, but would within the curved
\ portions (which we refer to as “dimples”). In contrast to the
pattern of shear deformation, intermonolayer friction would
\ occur predominantly within the cylindrical pore. That is, if
~ the neck of the pore were elongated, shear dissipation would
‘ an L L . not be affected, but relative dissipation would be aug-
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 mented. In other words, pore geometries other than toroidal
should lead to similar energy dissipations for the same
o, radians lumen dimensions. Thus, Egs. 20 and 21 for lipid velocity
and flux can be used to describe experimental data, even

FIGURE 5 Energy dissipation density along the pore wall. The dashedhough the true pore shape is not known.

curve is the integrand df(Eq. 14) and represents shear friction; the solid

curve is the integrand af (Eq. 18) and provides the relative friction. The

values of these integrands as functionspadllow the contribution of the  Lipid velocity and area flux

two forms of dissipation to be compared for any portion of membrane _ . . .

within the pore. The curves are plotted fér= 10 nm,h = 2 nm, ancb = Lipid velocity, v(b), levels (Fig. 3A) and the area fluxp(b),
1.2 (i.e.,r, = 0). increase linearly (Fig. 4A) with radius asb — «. The

20; "Shear"
L integrand/

10 +
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physical basis of these functions can be appreciated b@omparison of the theory with experiment
realizing that wherR >> H, dissipation is dominated by
intermonolayer friction (i.e J(b) > I(b) for extremely large
pores; Fig. 2). The rate of intermonolayer dissipation in-
creases linearly with radiuR but quadratically withv; the

Fluorescent lipid dye has not been observed to pass through
small fusion pores (less thar400 pS) connecting influenza
hemagglutinin (HA)-expressing cells to RBCs (Tse et al.,
S . . 1993; Zimmerberg et al., 1994). This apparent exclusion of
rate_ of work done by t_ensmn_lncreases linearly W'_th bOthIipid has been taken as evidence that these pores are com-
rqdu_Js Qndu. It follows immediately from_the equality pf _posed solely of protein (Tse et al., 1993), implying that
dissipation and rate of work done by tension that velocity isyemifysion is not an intermediate step in membrane fusion.
independent of radius (equivalently, see Eq. 20 and theyqever, the finding that fusion pore formation depends on
asymptotic expression fa(b) in Table 2). AsP = 2R v, {he constituent membrane lipids contradicts this conclusion
a constanty means® increases linearly wittR for large  (chernomordik et al., 1997, 1998). These latter findings
pores. strongly support the view that lipids are intimately involved
For small pores, lipid velocity increases in a greater thany pore formation, rather than incorporating into the pore
linear manner with increases i, (Fig. 3 B). However,  after formation. All of the experimental findings could be
balancing the energy dissipated in the planar membranes Recounted for if both protein and lipid were intimately
the work performed by tension yields only a linear increasénvolved not only in the formation, but also the structure, of
in lipid velocity. The overall nonlinearity is due to geomet- the initial pores. Multiple fusion proteins act cooperatively
ric effects of the fusion pore (Table 2), which arise becausgo form a pore, and even if these proteins induce fusion
the curved pore wall induces shear dissipation, and a narrothrough a hemifusion mechanism, they may form a tight
neck leads to significant relative, intermonolayer dissipatiorring of protein that significantly inhibits lipid flux (Hernan-
(Figs. 2 and 5). Both dissipations should occur for smalldez et al., 1996; Chernomordik et al., 1998). The theory of
pores, independent of the specific geometry. Hence, theonvection does not apply to the case of small pores con-
slope of the curve ob versusr, (dv/drp) increases wittr, necting HA-expressing cells to RBCs, for at least two rea-
for small pores (Fig. B). sons. First, if a ring of protein inhibits lipid flux, the
Lipid flux depends on the difference in tension betweenmembrane of the pore wall is heterogeneous, rather than
the two membranes A%, regard|ess of the precise geome- homogeneous. Second, as the in-plane tension of cell mem-
try of the pore. This is of practical importance: it is not branes is small, their difference is negligible; the hindered
necessary to know how the tension difference drops alon§f@nsport across the pore would be governed by passive
the walls of the pore to calculate flux. As a consequence, &iffusion, not by convection. The theory of the present

simple equation, Eq. 21, can be used to describe experimeR@P€r can, however, be directly applied when differences
tal flux data. in membrane tension cause lipids to flow between fused

membranes.
When cells expressing the hemagglutinin of influenza
virus are fused to planar lipid bilayers, a substantial amount
A test of the physics of lipid movement of lipid flows from the cell to the planar membrane after full
To determine whether the present model accurately dd20re enlargem_ent (I\_/Iehkyan et al., 1995). This flux was
. . measured by including the fluorescent dye octadecylrho-
scribes lipid flow for homogeneous membranes that have

merged requires flux data for a system in which the paramgamme in the planar membrane. After a fusion pore ex-

. anded to large conductances, with a mean value 500
eters . R, andA(_r) have been measu_re_d. This ha_s not yelﬁs (Melikyan et al., 1993) (i.er,, ~ 500 nm), a dark spot
been done experimentally. But the validity of our picture of

he physi derlving livid flow i ble. Two bulged in fluorescence was observed at the site of the fusing cell.
the physics underlying lipid flow is testable. Two buige Darkening occurred only after full pore enlargement. The

solvent-free planar bilayers with different percentages Ofdark spot then expanded (up to a radius 020 wm),
charged lipids could be hemifused, and the lipid flux be-aintaining a rather sharp boundary. The darkening is ac-
tween the merged monolayers could be determined acCy,nted for by the tension of the planar membrane as it pulls
rately by measuring the change in surface potential of they, the membrane of the fused cell; unlabeled lipid in the cell
nonhemifused portions of the planar membranes (Chemadnembrane flows into the planar membrane, thereby displac-
mordik et al., 1987). The viscosity and tension of the bilayering fluorescent lipid molecules with nonfluorescent ones.
of each lipid composition would be obtained independentlyexperimentally, the initial area flux is between>s 10~°

by standard techniques (Chernomordik et al., 1987). Agand 7 X 10°° cm?/s (Razinkov, Melikyan, and Cohen,
straightforward modification of the present theory to theunpublished data). This flux approaches zero aftérs, in
case of lipid flow during hemifusion in a system whose accord with the tension of the cell membrane, after fusion,
geometry was unambiguously known will provide a severedrawn to that of the planar membrane. We compare Eq. 21
test of our approach. However, we can immediately applywith the initial flux because we can estimate the initial value
the present theory to experiments for which lipid flux hasof 2A¢. The initial in-plane tension of the cell membrane is
been measured through enlarged pores. small, ~10 2 dyn/cm; we take the tension of the planar
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membrane (PE/PC, 2:1) as2~ 1 dyn/cm (Chernomordik ity, n ~ 10" ° g/s (as determined from the measured lipid
etal., 1987). If we let)s ~ n, = n and introduceb,, = ®/2  flux between fused cells and planar membranes), we obtain
as the area flux for one monolayer, we rewrite Eq. 21 as that the tension difference between granule and plasma
membrane Ao, is ~0.1 dyn/cm. This indicates that the
_ mAab’H? granule membrane probably has significantly higher in-
7@, [1(b) + Ib)] plane tension than a plasma membrane. The membranes of
Golgi and ER also exhibit high tensions (Sciaky et al.,
ForH = 10 nm,b = R/H = 50 (i.e., a fully enlarged pore 1997); it may be that intracellular membranes generally
of r, ~ 500 nm), we obtaini[b) + J(b)] = 41 (Table 2). exhibit higher tensions than plasma membranes because of
The measuredb,,, = 6 X 10 ¢ cnmé/s implies thaty = differences in chemical potential.
1.5 X 10 ° g/s, in reasonable accord with the expectation In summary, the present theory provides a means for
that membrane viscosities lie within the interval 0o understanding the physics of lipid flow through fusion
10° g/s. pores. While the specific compositions and geometric struc-
In addition to the convective flux of the unlabeled lipid tures of fusion pores are not yet known, in this paper we
from the cell into the planar membrane, the fluorescent dydave derived equations that can be employed to interpret, in
diffuses from the planar bilayer to cell membrane. Diffusiona practical manner, experimentally obtained lipid fluxes
will cause the front of darkening—which would be sharp if between membranes under different tensions.
only convection were present—to spread /out with time.
This broadening of the front is given by2)'/?, whereD
is the diffusion constant of the lipid dye;10 8 cm?/s. The APPENDIX A: THE COORDINATE SYSTEMS
observed spread of darkening occurs over a time course ab calculate the velocity distribution and rate of energy dissipation in the
T~ 2S (Razinkov, |\/|e|ikyan, and Cohen, unpub|ishedplanar portions of the membranes, we use cylindrical coordinatés %).
data), and thus the diffusive spreac-i& um, much smaller These coordinates are related to Cartesian coordinates (Bjgbg
than the radius of the enlarged dark are2Q um). That is, X =T COSO
diffusive flux is relatively small compared to convective { y=rsino (A1)
flux; the boundary of the dark spot remains relatively sharp. 7=7
The situation is quite different for small pores. Fgr~
1 nm R = 13 nm), theoretically the convective flux of the Diffe_rential opgr_ators and th_e viscous stress tensor are t_ransformed from
dye (~5 mol% of lipid in the planar bilayer) is-4 X 10° gr?(;t?(i?: tfggté;vmnear coordinates through the Lamoefficients (Korn
molecules/s (Fig. 8; using an area per lipid of % 10 *° '
cn? to convert area flux in units of cffs to units of \/<8x>2+ (ay)z (az)z

molecules/s). To estimate the diffusive flux, we treat the H; = o Ji ER (A2)

small fusion pore as a cylinder with radius 7 nm and length

| = 2H = 20 nm and obtain a diffusive flux of-4 x 10° In cylindrical coordinatesi = r, 6, z Substituting Eq. Al into Eq. A2

molecules/s (i.e., the convective and diffusive fluxes are’®'4

comparable). This is in agreement with experiment (Me- H =1, H,=r, H,=1 (A3)

likyan et al., 1995): for small flickering pores, a darkening _

of the planar membrane is not observed, but a brightening di" &lément of area is

the cell occurs. dS=do-r dr (Ad)
We can also apply our equations to the case of tension- _ _ _

driven lipid flux between secretory granules and plasmérhe radial flow in the planar portions of the membranes dependaly,

. . = 0,v, = 0, v, # 0. The components of the viscous stress tensor can be
membrane in mast cell secretion (Monck et al., 1990; Ober=¢. "2~ =™ P

written as

hauser and Fernandez, 1993). From capacitance measure-

ments,~1.5 x 10~ ° cm?/s of plasma membrane (or6 10° oy Y

- . ; ; Or=2N—--, Op=2N—_, 0,;=04y=04z=0,=0
lipids/s) moves into granule membrane while a transient ar r

fusion pore is open, suggesting that the tension of granules (A5)
is higher than that of plasma membrane. The total flux Waﬁ'he system of coordinatgs ¢, 6 within the toroidal pore (Fig. 1) is

proportional to the time the transient pore remained open,

implying that the tension difference remained constant. x= (R — pcosg)coso
(The lipid flux in these experiments was about three orders y=(R— pcosg)sino (A6)
of magnitude less than for the case of cells fused with planar Z=psing

membranes. This probably accounts, in large part, for th
fact that the difference in tension between plasma an
granule membranes does not relax to zero.) Based on con- H,=1, H,=p, Hy=R-—-pcose (A7)
ductances expected of transient (flickering) fusion pores
the pore radius can be estimatedrgs~ 1 nm. Using Eq.

21', the geometrical factorgb), J(b) (Table 1), and viscos- H,=1, H,=p, Hy=R-—pcose (A8)

gubstituting Eqg. A6 into Eq. A2 for = p, ¢, 6, we obtain

Eor an element of area we have
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A radiusr(¢) from thez axis of the pore to any point on the circumference Lagrange’s equation with a dissipation

of the toroidal surface is

r(p) = R— pcosg (A9)
For a velocity distribution;, = 0, v, # 0, v, = 0 (v = v, depends orp
only), the components of the viscous stress tensor have the form

1ov,

0- R 1
pde

pp

=0, o0,=27

e

v,Sin ¢

TR pooser O Ow T 0w =0 (AL0)

APPENDIX B: THE GENERAL EXPRESSIONS FOR
LIPID VELOCITY WITHOUT THE ASSUMPTION
THAT v' =

Energy dissipation

To justify the approximation’ = v’ used in the main body of the paper,

function, F

The fusion system is described by two time-dependent variablesdv’

or, equivalentlypy, andv_ (see Eg. B1). The equations of motion can be
described by Lagrange’s equations with dissipation in the system (Gold-
stein, 1950), which in our notation has the form

oW,  oF
o, o, _

, (BS)

wherel, _ are the generalized coordinates associated with the velocities
v, _ (i.e.,v, _ =d . _/dt), W, is the work done by the tensions2and

20,, andF is the dissipation function. Equation B5 reflects the fact that the
work performed by external forces is balanced by viscous dissipation. As
W, does not explicitly depend on time, we obtain

W_dwt,_aw,, L W, -
o= dt ol Ut el U (B6)

Directly calculatingW,, for the cases’ # ' yields

W, = 27RAc - v, (B7)

we present the exact expressions for each of the terms of the energy ]
dissipation in Eq. 10. We obtain these expressions from Egs. 3, 11, and 1:d, hence, from Egs. B6 and B7 we obtain

Eq= 2mnd (D)W} +17) (B1)
where
- 2 12sirte d R
=2 —o o b=r
(b — cose) H
—7l2
v,=v+V, v=v-—-V

| H . H?
E. = 2mJ(b)v2 + 27, h J*(b)v,v_ + I J (b2

(B2)
and
1 (™ b%b — 2 cose)?
Jb) = ZJ “(b—cose)® ¢
0
. |™Pb—2cose)’
J=(b) = J W ¢
0
2 b2
J (b) = ZJ m dQD
0
Esp = 4mf +172) (B3)

In the case o’ # v an additional term appears because of the relativeNumericaI calculation shows th¢(b)| < 3 X 1072
friction between monolayers moving past each other within the plana

membranes:

A,
e = h2

R

szz,ln ﬁ

(B4)

oW,
= 2mRAo
al,

oW,
al_

(B8)
0

The energy dissipation rate and dissipation functior are related by
2F = E (Goldstein, 1950), resulting in

F = a{nl(b) + nJ(b)]

H He .
+ T, FJ—(b)vpu, + WJ (b)v? (B9)

wherel(b) = 2 + T(b), I=(b) = J7(b) + 2b? In(b,/b), b,, = R./H.
From Egs. B6, B8, and B9 we obtain

AbH

P i) + ndOTL - KB 10
where
+ 2
) n[a (b)]
4\]_[77S 1(b) + J(b)}
and
=170 (B11)

H 23 () "

, allowing K(b) to be

rnegle(:ted in the denominator of Eq. B10. Equation B10 therefore reduces

to

AobH

RICEE ) (B12)

Uy

By adding each of the individual terms for energy dissipation (Egs.Equation B11 for_ can be simplified for the cadg,, = R (or b,, > b)

B1-B4), we obtain the total energy dissipation rite

by noting that from the definition ofi~(b) (Eq. B9), the second term
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dominates for largé,,. Dropping the first term, i.eJ~(b) =~ 2b% In b, /b, Einstein, A. 1956. A new determination of molecular dimensioims.
allows Eq. B11 to be written as Translation in Investigations on the Theory of the Brownian Movement.
R. Firth, editor. Dover Publications, New York. 36—62.
h 1 J*(b) B13 Evans, E. A., and R. M. Hochmuth. 1978. Mechanochemical properties of
Vo= Sy v membranesCurr. Top. Membr. Transpl0:1-62.
Hin(b/b) 407 Ut (B13) P fL

Evans, E. A., and R. Skalak. 1980. Mechanics and Thermodynamics of

Numerical calculations show thdf (b)/4b® < 0.4 for allb. TakingR,, ~ Biomembranes. CRC Press, Boca .Raton, FL. 1__25_4' ) )
10 um, h ~ 2 nm, andH ~ 10 nm, we obtain for 1 nne r, = 100 nm Evans, E. A., and A. Young. 1994. Hidden dynamics in rapid changes in
' ' ' P bilayer shapeChem. Phys. Lipidsz3:39-56.
v=2X102% v, < v, (B14) Evans, E. A., A. Young, R. E. Waugh, and J. Song. 1992. Dynamic
coupling and nonlocal curvature elasticity in bilayer membrame$he
- cimati : : i Structure and Conformation of Amphiphilic Membranes. R. Lipowsky,
Thus the contribution ob_ to the dissipation functior is negligible. . ; h )
Assuming thaty = 1 leads to a relative error in, of less than 2% if D. Richter, and K. Kremer, editors. Springer-Verlag, Berlin. 148-153.
R,, > 10 um. In other wordsp’ = ' = vis an excellent approximation Goldstein, H. 1950. Classical Mechanics. Addison-Wesley, Reading, MA.
for R, > R Helfrich, W. 1973. Elastic properties of lipid bilayers: theory and possible
experimentsZ. Naturforsch.C28:693-703.
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