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ABSTRACT When two membranes fuse, their components mix; this is usually described as a purely diffusional process.
However, if the membranes are under different tensions, the material will spread predominantly by convection. We use
standard fluid mechanics to rigorously calculate the steady-state convective flux of lipids. A fusion pore is modeled as a toroid
shape, connecting two planar membranes. Each of the membrane monolayers is considered separately as incompressible
viscous media with the same shear viscosity, hs. The two monolayers interact by sliding past each other, described by an
intermonolayer viscosity, hr. Combining a continuity equation with an equation that balances the work provided by the tension
difference, Ds, against the energy dissipated by flow in the viscous membrane, yields expressions for lipid velocity, y, and
area of lipid flux, F. These expressions for y and F depend on Ds, hs, hr, and geometrical aspects of a toroidal pore, but the
general features of the theory hold for any fusion pore that has a roughly hourglass shape. These expressions are readily
applicable to data from any experiments that monitor movement of lipid dye between fused membranes under different
tensions. Lipid velocity increases nonlinearly from a small value for small pore radii, rp, to a saturating value at large rp. As a
result of velocity saturation, the flux increases linearly with pore radius for large pores. The calculated lipid flux is in agreement
with available experimental data for both large and transient fusion pores.

INTRODUCTION

The event that defines the fusion of two biological mem-
branes is the formation of a fusion pore: a structural pas-
sageway linking two formerly separated aqueous spaces.
Water-soluble materials move through this passageway; the
membrane lipids may also move from one membrane to the
other, but do so as a part of the pore walls themselves. The
composition of the fusion pore at the time of formation is in
dispute. Some hypothesize that the initial pore consists
exclusively of protein (Tse et al., 1993; Lindau and Almers,
1995). Others argue that lipid is an essential component of
the pore wall, along with protein (Zimmerberg et al., 1991;
Nanavati et al., 1992; Chernomordik et al., 1995, 1997;
Melikyan et al., 1995; Hernandez et al., 1996). If the initial
pore is composed solely of protein, lipid could not move
from one fusing membrane to the other until the pore
enlarged. On the other hand, if the initial pore is a combi-
nation of lipid and protein, lipid movement between mem-
branes could begin immediately upon pore formation, un-
less restricted by the proteins that contribute to pore
structure. In any case, the larger a pore grows, the more one
would expect lipid to move unhindered along the pore walls.

Diffusive movement of lipid along fusion pore walls has
been analyzed in detail (Rubin and Chen, 1990; Chen et al.,

1993). But if the two fusing membranes are under different
tensions, lipid flux will be predominately convective rather
than diffusive. There are experimental situations in which
fusing membranes are known to be under different tensions.
In the case of fusion of two planar membranes made from
different lipids (Chernomordik et al., 1987), the tension
difference is constant, it is independent of time, and it is
maintained by the Gibbs-Plateau borders that support each
planar membrane. When liposomes (Cohen et al., 1984) or
cells (Melikyan et al., 1995) are fused to planar membranes,
lipid will flow until the differences in tension that exist at
the moment of fusion pore formation are relieved. Gener-
ally, liposomes are induced to swell—increasing their mem-
brane tensions—to induce their fusion to planar membranes
(Cohen et al., 1984; Niles et al., 1996) or to promote
expansion of pores that form in the membrane shared by
hemifused liposomes and planar bilayers (Chernomordik et
al., 1995; Chanturiya et al., 1997). In some purely cellular
situations, membranes may also be under different tensions
as they fuse. In exocytotic fusion, careful measurements that
have tracked lipid movement during pore flickering—the
opening and closing of small pores—suggest that the exo-
cytotic granule membranes are under significantly more
tension than plasma membranes (Monck et al., 1990; Sol-
sona et al., 1998). It may be that tension-driven membrane
flow after fusion is more common than currently appreci-
ated: membrane tension, for example, appears to strongly
promote postfusion convective flow of Golgi membrane
into endoplasmic reticulum membrane (Sciaky et al., 1997).

In this study, we use the equations of fluid mechanics to
describe lipid flow through a fusion pore of constant size
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joining two membranes under different tensions. The cal-
culated flux agrees with measured values (Monck et al.,
1990; Melikyan et al., 1995). Experimentalists who wish to
analyze data of transfer of lipid dye observed during fusion
can use the graphs of Fig. 2, and Eqs. 20 and 21, which
describe lipid velocity and area flux, to calculate differences
in membrane tensions. This calculation requires reasonable
estimates of membrane viscosity and a knowledge of pore
radii, which can be obtained from simultaneous electro-
physiological measurements of fusion pore conductance.

STATEMENT OF THE PROBLEM

The geometry of the system

Consider two parallel planar membranes, each of thickness
2h, whose neutral surfaces (the interfaces between the two
monolayers) are separated by 2H (Fig. 1 A). A fusion pore
of toroidal shape (a half-circle revolved around thez axis)
connects the planar bilayers. The system is cylindrically
symmetrical about thez axis, which passes through the
center of the pore. We define the distance from thez axis to
the boundary between the toroidal and unbent planar sur-
faces as the pore radius,R. The radius of the narrowest
portion of the lumen of the pore isrp 5 R 2 (H 1 h). It is
obvious thatrp $ 0 andR $ (H 1 h). The radius of the
fusing objects is given byRm .. R. The symbolss1 ands2

designate tensions of single monolayers in the upper (1) and
lower (2) membranes (Fig. 1A). We consider the case when
the monolayers of a given membrane are under the same
tension, and the two bilayer tensions are different, 2s1 .
2s2, maintained as a constant at the circumferenceRm. The
geometry of the planar portions of the membranes is de-
scribed by cylindrical coordinates (r, z, u), where r is
measured relative to thez axis (Fig. 1B). For the toroidal
portion, we use the more specialized coordinates (u, w, r)
(Fig. 1, A andB). The r coordinate takes on values within
an intervalH 1 h . r . H 2 h. The anglew is confined
in the interval [2p/2, p/2] and is equal to zero on the
equatorial plane. The azimuthal angleu is defined in the
interval [0, 2p]. To calculate lipid flow induced by differ-
ences in membrane tension, we assume that a fusion pore
maintains its shape and dimension (i.e., all geometrical
parametersR, H, h as well as the tensionss1 ands2 remain
constant). For fusion systems in general (e.g., cell-cell fu-
sion or exocytotic fusion), for pore radiusR, much smaller
than the characteristic size of the fusing objects, the two
fusing membranes can be treated as planar and parallel to
each other, connected by a pore.

Fluid mechanical approach

In biological membranes, lipids form a continuous fluid
phase. The presence of proteins affects lipid dynamics
through changes in membrane viscosity. Artificial lipid
bilayers as well as cell membranes are essentially anisotro-
pic systems, with lipid mobility restricted to the plane of the

membrane. Lipid does not move normal to the plane of the
membrane, but within the plane flows as a liquid. Bilayer
membranes can be characterized as a mechanical continuum
with material properties such as an elastic modulus and
coefficient of viscosity (Evans and Skalak, 1980); volu-
metrically they are almost incompressible (Evans and Hoch-
muth, 1978; Nagle and Wilkinson, 1978).

In this paper we rigorously calculate the stationary con-
vective flux of lipids by using standard fluid mechanics: for
stationary convective flow, the work performed by the ten-
sion difference to cause lipid movement is balanced by the
dissipation of mechanical energy due to viscosity. Dissipa-
tion of energy that accompanies lipid flow occurs because

FIGURE 1 Schematic representation of a toroidal fusion pore connect-
ing two planar membranes, 1 and 2, at different tensions, 2s1 and 2s2, with
2s1 . 2s2. (A) Cross-sectional, side view of the system inz, x coordinates.
The bold solid lines represent membrane-solution interfaces. The surfaces
of constant lipid density (CLD) for each monolayer are shown as dashed
lines. The velocities defined on these surfaces,y9w and y0w, are shown by
arrows. The thin solid lines designate the interfaces between monolayers.
(B) Top view of the system iny, x coordinates. The walls of the toroidal
pore meet the planar membranes at radiusR. The radius of the narrowest
portion of the water-filled pore lumen is given byrp. Thus the toroidal part
of the membrane lies betweenrp andR. The coordinate systems (x, y, z),
(r, u, z), and (r, w, u) illustrated here are described in the main text and in
Appendix A.
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of two types of deformation: in-plane shear and relative
sliding of monolayers. Dissipation due to shear deforma-
tions in both the planar membrane and toroidal pore origi-
nates from lipid-lipid and lipid-protein interactions within
each monolayer. These intermolecular interactions are de-
scribed with a shear viscosity,hs. Dissipation due to relative
movement of monolayers arises from viscous friction be-
tween the monolayer leaflets as they slip past each other and
is described with a relative viscosity,hr. The viscous fric-
tion between a monolayer and the bathing aqueous solution
is negligibly small (see Discussion).

We calculate lipid flow by first solving the equations of
fluid mechanics within both the planar membranes and the
curved toroidal pore and then matching their solutions at the
boundaries where they join. For planar membranes, flow is
purely radial and for an incompressible viscous monolayer
is easily calculated (Deryaguin and Gutop, 1962; Deryaguin
and Prokhorov, 1981). The situation for a curved toroidal
membrane is more complicated. Within the inner monolayer
of a toroidal pore (Fig. 1A), the area available to a lipid
headgroup is greater than that available to the acyl chains. In
this monolayer, therefore, the region occupied by the head-
groups is expanded relative to the portion filled by the acyl
chains, which is compressed. The opposite consideration
pertains to the outer monolayer. This means that a curved
monolayer of finite thickness does not strictly have constant
density. Attempts to account for nonconstant density lead to
horrendous mathematical complexities. We avoided this
problem by choosing within each monolayer of the toroidal
pore a surface of constant lipid density (CLD) that matches
the lipid density (molecules/unit area) of the planar mem-
branes (Fig. 1A). This surface lies between the polar head-
groups and the hydrophobic acyl chains. By considering
surfaces of CLDs instead of monolayers of finite thickness,
the fluid mechanical problem is reduced to a two-dimen-
sional problem of the flow of an incompressible liquid along
these surfaces. We explicitly consider frictional interactions
between the two surfaces of the CLD. For calculational
concreteness, we assume that each surface of CLD is lo-
cated in the middle of its monolayer (i.e., atr 5 H 6 h/2)
and has a toroidal geometry within the fusion pore.

THEORY

Velocity distribution

The radial flow of lipid in the planar portions of the mem-
brane is obtained from the condition that membranes are
incompressible. We write this conservation of area as an
equation of continuity:

F9 5 2pr z y9r 5 const.9, F0 5 2pr z y0r 5 const.0 (1)

wherer is an arbitrary radius on the plane,F is area flux,
andyr is the velocity atr. The superscripts9 and0 denote the
surfaces of CLD of the inner and outer monolayers, respec-
tively. We rewrite Eq. 1 as

ry9r 5 Ry9, ry0r 5 Ry0 (19)

whereR is a pore radius (Fig. 1), andy9 andy0 are the linear
velocities of lipid in the two monolayers atr 5 R, the
junction of the toroidal pore and planar membranes. The
constantsy9 andy0 must be determined.

We use the same principle of continuity of area flux to
obtain lipid velocities on the toroidal surface of the pore.
For reasons of symmetry, only thew-component of the
velocity yw is nonzero (see Fig. 1A):

F9 5 2pr9y9w 5 const.9, F0 5 2pr0y0w 5 const.0 (2)

wherer9 5 R2 (H 1 h/2)cosw (Eq. A9 whenr 5 H 1 h/2)
is the radius of the surface of the CLD of the inner mono-
layer of the toroidal pore at anglew. For the outer CLD
surface we haver0 5 R 2 (H 2 h/2)cosw. It is convenient
to rewrite Eq. 2 in the form

r9y9w 5 Ry9, r0y0w 5 Ry0 (29)

wherey9 andy0 are the constants (linear velocities atr 5 R)
of Eqs. 19 and 29. These equations define the velocity
distributions in the planar and toroidal portions of outer and
inner monolayers:

y9,0r 5
y9,0R

r
planar part

y9,0w 5
y9,0R

R2 ~H 6 h/2!cosw
toroidal part

(3)

where1 and2 signs correspond to the inner (9) and outer
(0) monolayers, respectively. These equations are valid for
the upper (denoted 1, Fig. 1) and lower (2) membranes, but
an essential asymmetry should be noted. If the tension is
larger in the upper than in the lower membrane, 2s1 . 2s2,
lipid flows from the lower to the upper membrane. So that
lipid velocities have the same sign in membranes 1 and 2,
we assign a positive direction for flow toward thez axis in
membrane 2 and away from thez axis in the upper mem-
brane 1. In the toroidal pore, the velocityyw is directed from
w 5 2p/2 to w 5 p/2. Equation 3 shows thatyw achieves
a maximum value atw 5 0.

To obtain the velocity distributions everywhere in the
system, we need only to determine the two unknown pa-
rameters,y9 andy0. This is obtained rigorously by using a
local balance of force equation for each monolayer, valid
when flow has reached steady state. Balancing tension by
the opposing viscous forces yields two equations for the two
unknown constantsy9 and y0. These calculations are pre-
sented in Appendix B, where it is shown that forRm .. R,
the two monolayers move almost together in the planar
portions of the system, without relative sliding. That is, to a
reasonable approximation,y9r 5 y0r at anyr, and therefore

y9 5 y0 5 y (4)

The physical reason Eq. 4 holds is that if monolayers were
to slide past each other over the large area covered by the
planar membranes (R , r , Rm), the energy dissipation
would be enormously high. This would contradict the prin-
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ciple that entropy production is at a minimum for stationary
states (Prigogine, 1967). Minimum entropy production oc-
curs when monolayers only slide past each other within the
walls of the toroidal pore, a much smaller area than is
covered by the planar portions of the system.

The approximation of Eq. 4 significantly simplifies the
problem. The velocity distribution in the whole system is
defined by the single parametery, the lipid velocity atr 5
R (i.e., y 5 yr(R)). We find y by using the energy balance
equation for the whole membrane (which is computationally
more convenient than employing an equation of local force
balance). With the approximation of Eq. 4 we can rewrite
the velocity distribution, Eq. 3, in the simple form:

Inner monolayer

5 y9r 5
yR

r
planar part

y9w 5
yR

R2 ~H 1 h/2!cosw
toroidal part

(39)

Outer monolayer

5 y0r 5
yR

r
planar part

y0w 5
yR

R2 ~H 2 h/2!cosw
toroidal part

It is clear from Eq. 39 that at anyr, lipid velocities of both
monolayers are the same in the planar portions of the system
(y9r 5 y0r). But in the toroidal portion, lipid velocities in inner
monolayers are greater than in outer ones,y9w $ y0w, because
lipid traverses a longer pathway in the inner monolayer than
in the outer monolayer (Fig. 1A). At the junction between
the planar and toroidal portions,w 5 6p/2, r 5 R, the
values of all velocities coincide,yr(R) 5 y9w(6p/2) 5
y 0w(6p/2) 5 y, in accord with the original continuity
equations.

The energy balance condition for the entire membrane
system sets the work done by the tension forces per unit of
time, Ẇs, equal to the rate of energy dissipation,Ė:

Ẇs 5 Ė (5)

Evaluating and equating the functionsẆs and Ė deter-
mine y. This allows the area of lipid flux to be obtained.

The work of tension forces

The work per unit time produced by tension (force/unit
length) acting on the (1) upper bilayer and (2) lower bilayer
is equal to the product of the force acting on the membrane
boundary,r 5 Rm, of circumference 2pRm and the velocity
of the boundaryym. For the upper bilayer,

Ẇs1 5 2s1 z 2pRm z ym (6)

and for the lower bilayer,

Ẇs2 5 22s2 z 2pRm z ym (7)

The minus sign in Eq. 7 arises from the fact that for the case
s1 . s2, lipid in bilayer (2) moves in a direction opposite
that of the applied tension,s2.

We obtainym through the velocity distribution, Eq. 39:

ym 5
y z R

Rm
(8)

Combining Eqs. 6, 7, and 8, we obtain the total work
performed by tension forces per unit time:

Ẇs 5 Ẇs1 1 Ẇs2 5 4pRDsy (9)

where 2Ds 5 2s1 2 2s2.

Energy dissipation

We assume that only viscous forces dissipate energy. For
example, we consider bending of an element of a membrane
that enters the toroidal region a reversible elastic process
without an accompanying dissipation. The energy dissipa-
tion in the membrane per unit time,Ė, therefore consists of
three terms:

Ė 5 Ėsp 1 Ėst 1 Ėrt (10)

The first term refers to viscous dissipation due to shear
deformation within a single monolayer (s) in the planar (p)
portions of the membranes; the second term describes the
same process, but within the toroidal (t) pore. We refer to
dissipation due to friction within a monolayer as intramono-
layer dissipation. The third term denotes dissipation induced
by relative (r) motion of monolayers past each other in the
toroidal (t) pore, intermonolayer dissipation. As discussed,
monolayers do not slide past each other in the planar por-
tions (y9 5 y0), and hence there is no dissipation in this
region through friction between monolayers. But as there is
sliding between monolayers in the toroidal pore, it is im-
portant that each monolayer be considered separately.

As a direct consequence of the Navier-Stokes equations
of fluid mechanics, the energy dissipated when an incom-
pressible viscous fluid is deformed by shear can be written
as (Landau and Lifshitz, 1987)

Ės 5
1

2hs
O
j,k
Esjk

2 dS (11)

where hs is the two-dimensional shear (intramonolayer)
viscosity, sjk is the viscous stress tensor, and dS is the
element of the surface. Substituting dSandsjk in cylindrical
coordinates (Eqs. A4 and A5) into Eq. 11 yields for the
planar portions

Ėsp 5 16phsy
2 (12)
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The shear dissipation within the toroidal pore,Ėst, is also
determined by Eq. 11, with dSandsjk given by Eqs. A8 and
A10:

Ėst 5 8phsĨ~b!y2 (13)

where

Ĩ~b! 5 2E
2p/2

p/2 b2sin2w dw

~b 2 cosw!3, b 5
R

H
. (14)

Equation 13 was obtained under the assumption that bilayer
thickness 2h is small compared with the distance between
membranes 2H (h/H ,, 1). Ĩ(b) is a geometrical dimen-
sionless factor determined by the shape of the pore. The
expressions forĖsp (Eq. 12) andĖst (Eq. 13) are similar,
arising from the same physics, and differ only by the geo-
metrical factorĨ(b).

Energy dissipation due to relative motion of monolayers
in the toroidal pore,Ėst, is physically attributed to the
friction between the methyl-terminal portions of the acyl
chains of the phospholipids that arise when the two mono-
layers slide against each other. According to membrane
mechanics, such dissipation is described as (Evans and
Hochmuth, 1978)

Ėrt 5 mE~Dy!2dS (15)

where m is a friction coefficient andDy is the velocity
difference between the two monolayers at the interface over
which the integration is carried out. To obtain linear veloc-
ities, we calculate angular velocities,V(w), for each mono-
layer. For the surface of CLD of the inner monolayer,

V9~w! 5
y9w

H 1 h/2
(16)

V9(w) is a function ofy9w(w), in turn given by Eq. 39. A
similar expression holds for the outer monolayer:

V0~w! 5
y0w

H 2 h/2
(169)

The friction between monolayers can be formally de-
scribed as two surfaces of CLD sliding past each other. But
to provide a physical appreciation of this friction, we treat
lipid molecules as rigid rods that remain perpendicular to
the neutral surface of the bilayer (i.e., the interface between
the two monolayers) as they move along the toroid. For the
lipids-as-rods simplification, the angular velocities of each
monolayer (Eqs. 16 and 169) at their surface of interaction
(r 5 H) immediately yields linear velocitiesyw(r 5 H) at
this surface:

y9w~H! 5
y9w

H 1 h/2
z H, y0w~H! 5

y0w
H 2 h/2

z H (17)

The difference betweeny9w(H) and y0w(H) providesDy, as
needed in Eq. 15. Forh/H ,, 1, substituting the velocity
profiles of Eq. 39 into Eq. 17 allows the integration of Eq.
15 to be performed, yielding

Ėrt 5 8phr J~b!y2, hr 5 mh2 (18)

where

J~b! 5
1

4E
2p/2

p/2 b2~b 2 2 cosw!2

~b 2 cosw!3 dw (189)

is a dimensionless geometric factor, andhr 5 mh2 is a
two-dimensional relative viscosity. The monolayer thick-
ness,h, appears as a scaling parameter betweenhr andm as
a direct consequence of our conceptualization of lipids as
rods. But as the surfaces of CLDs are separated by a
distanceh, the scaling parameter is a general one, appearing
routinely in membrane mechanics (Evans and Hochmuth,
1978).

Ėsp (Eq. 12),Ėst (Eq. 13), andĖrt (Eq. 18) have the same
forms. Each term varies quadratically withy, differing only
in their geometrical “form factors.” The total energy of
dissipation is obtained by substituting Eqs. 12, 13, and 18
into Eq. 10:

Ė 5 8p@hsI~b! 1 hrJ~b!#y2, I~b! 5 2 1 Ĩ~b! (19)

The form factorI(b) describes the effect of the geometries
of the two planar membranes (the first term, 2) and the
toroidal pore (the second term,Ĩ(b)) as they contribute to
energy dissipation that occurs through shear viscosity.J(b)
is the geometrical factor contributed by the toroidal shape to
intermonolayer energy dissipation. The geometrical factors
I(b) (Eq. 14) andJ(b) (Eq. 18) are illustrated in Fig. 2 and
enumerated in Table 1 forH 5 10 nm andh 5 2 nm. Their
asymptotic forms forb .. 1 andb 3 1 are presented in
Table 2. I(b) monotonically decreases toward 2 (2 is the
contribution from the planar membranes) asb3 `. That is,
as the pore enlarges, it contributes progressively less to
shear dissipation (i.e.,Ĩ(b)3 0). The factorJ(b) is biphasic,
at first decreasing sharply for increasingrp, descending to a
minimum atb ' 2 (rp ' 5 nm) and then slowly increasing
with a constant slope ofp/4. I(b) . J(b) over the entire
range of pore radii, up torp ' 35 nm. For large pores, the
inequality reverses,J(b) . I(b). The energy dissipation rate
(Eq. 19) depends not only onI(b) and J(b), but on the
viscositieshs and hr as well. We consider the values of
shear and intermonolayer viscosities in the Discussion. This
allows us to evaluate the relative contributions of the two
processes to energy dissipation that determine lipid flux.

Lipid velocity and area flux

Substituting the expressions for the work performed by
tension (Eq. 99) and the energy dissipated by lipid flow (Eq.
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19) into the energy balance equation (Eq. 5), we obtain

4pRDsy 5 8p@hs z 2 1 hsĨ~b! 1 hrJ~b!#y2 (59)

This equation yields the parametery, the lipid velocity at
r 5 R:

y 5
DsR

2@hsI~R/H! 1 hrJ~R/H!#
(20)

Substituting this expression fory into Eq. 39 yields the
velocity distributions

yr 5
DsR2

2r@hsI~R/H! 1 hrJ~R/H!#
planar part (209)

y9w 5
DsR2

2@hsI~R/H! 1 hrJ~R/H!#
z

1

R2 SH 1
h

2Dcosw

y0w 5
DsR2

2@hsI~R/H! 1 hrJ~R/H!#
z

1

R2 SH 2
h

2Dcosw

toroidal part

The area flux for a bilayer, calculated atr 5 R, follows
directly from Eq. 20:

F 5
2pDsR2

@hsI~R/H! 1 hrJ~R/H!#
(21)

where the 2 in the numerator arises because there are two
monolayers per bilayer. We have thus arrived at equations
for y andF as a function of pore radiusR, intermembrane
distanceH, tension differenceDs, and the viscositieshs, hr.

Fig. 3, A andB, illustrates the dependence of velocity at
the junction between the planar membranes and the toroidal
pore,y(b), on pore size. Pore size is shown as bothb 5 R/H
and as the radius of the narrowest portion of lumen,rp. Fig.
3 A displaysy(b) over an extensive range of pore radii; Fig.
3 B exhibits this velocity at greater resolution for pores with
small radii. The corresponding figures for the flux,F(b), are
presented in Fig. 4,A andB. Bothy(b) andF(b) are plotted
on the left-hand ordinates for the parametersH 5 10 nm,
h 5 2 nm,Ds 5 0.1 dyn/cm, andhs 5 hr 5 1025 g/s. The
right-hand ordinates of both Figs. 3 and 4 show the dimen-
sionless combinationsyh/DsH andFh/DsH2. This allows
us to readily obtainy and F from Figs. 3 and 4 for any
values ofh, Ds, andH.

DISCUSSION

When fusing membranes are at different tensions, convec-
tive flow of lipid occurs through the wall of the fusion pore.
This flow is governed by the principle that in steady state,
the energy per unit time supplied by the tension is balanced
by the viscous dissipation caused by the flow. We calculated
flow by treating a membrane as a two-dimensional homo-
geneous continuum (Evans and Skalak, 1980). The ap-
proach of treating a membrane as a continuum is certainly
valid when distance scales are on the order of 0.1mm or
greater. However, equations that are strictly correct only in
macroscopic limits have long been successfully applied to
phenomena that occur over microscopic scales (Einstein,
1956). In the field of membrane fusion, macroscopic mem-
brane mechanics (Helfrich, 1973) has been of value when
applied to curved surfaces of 10-nm scale, such as pores or
stalks (Markin et al., 1984; Nanavati et al., 1992; Siegel,
1993).

In exocytotic secretion, as observed by electron micros-
copy, fusion is initiated by dimpling of membranes toward
each other (Chandler and Heuser, 1979; Ornberg and Reese,
1981; Knoll et al., 1991; Curran et al., 1993). Once formed,
fusion pores are long structures with nonuniform luminal
radii (Curran et al., 1993). Based on functional studies of
virus-induced fusion, even small flickering pores already
have a length greater than the thickness of a bilayer mem-
brane (Razinkov et al., 1998). A toroidal shape captures the
essential geometrical features of biological fusion pores—a
significant length with a narrow luminal region over part of
it. Choosing an explicit geometry to model pore shape
allows for rigorous calculations, which in turn leads to a

FIGURE 2 The dependence of the geometrical factorsI(b) andJ(b) on
the radius of the pore lumenrp and onb 5 R/H for H 5 10 nm. The dashed
line (ordinate5 2) is the geometric contribution that the planar membranes
makes to shear dissipation and is independent of the size of the pore.
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more intuitive understanding of the general qualitative fea-
tures of the process of lipid flow. The lipid velocityy (Eq.
20) and lipid area fluxF (Eq. 21) depend, in physically
understandable terms, on the tension difference,Ds, be-
tween the two fusing membranes and on their shear and
relative viscosities,hs andhr, as well as geometrical factors.
We consider appropriate values forhs and hr and then
discuss the contributions that shear deformation and inter-
monolayer friction make to energy dissipation in view of the
geometrical aspects of fusion pores. The underlying basis
for the functional dependence of lipid velocity and flux on
pore radius is also considered. Finally, we show that the
theoretical equations can account for the experimental data
currently available.

We have rigorously calculated the steady-state lipid flux
for fused lipid membranes under the conditions thatDs and
pore radiusR remain constant. We apply the equations to
biological membranes by using values ofhs andhr that are
appropriate for these membranes. In experimental practice,
sizes of fusion pores are never perfectly constant, although
they often tend to remain reasonably stable for extended
times before enlarging significantly. In any case, lipid
fluxes quickly reach steady state (instantaneously compared
to the video rates for which they are measured). The time,t,
needed for a tension difference to establish steady-state flux
can be estimated from the Navier-Stokes equation for an
incompressible liquid (Landau and Lifshitz, 1987) asrR2/h,
wherer is lipid density. Forh 5 1025 g/s,r 5 1025 g/cm2,
andR 5 100 nm,t 5 10210 s. For a compressible liquid,t
can be approximated as the time needed for sound (veloc-
ity ' 105 cm/s) to propagate over the entire object. For a
cell of radius 10mm, t ' 1028 s. The equations of this
study, assuming constant pore radius, therefore allow lipid
fluxes to be calculated at every instant, even if pore size
varies significantly (size determined from electrophysiolog-
ical measurements).

Membrane tension

The basis for tension in planar membranes is well under-
stood: lipids within the planar bilayer and the supporting

Gibbs-Plateau border have different chemical potentials,
creating a tension difference. Planar bilayer tensions lie in
the range of 0.2–4 dyn/cm, the precise number depending
on lipid and aqueous compositions (Tien, 1974; Cherno-
mordik et al., 1987). Biological membranes are also under
tension. Plasma membranes of eukaryotes have tensions
that arise from both interactions between constituents within
the plane of the membrane itself and from interactions
between the plasma membrane and cytoskeleton. But these
tensions are significantly less than for planar membrane: the
in-plane tension of a plasma membrane is only;1022

dyn/cm if the cell is not osmotically stressed (Dai and
Sheetz, 1995a), and hence the lateral lipid flow between
fused plasma membranes should be small. It also appears
that membranes of internal organelles are under tension, to
a greater degree than plasma membranes. From measured
redistribution of chimeras consisting of a membrane protein
and green fluorescent protein, it has been concluded that
movement of membrane protein between ER and Golgi is
due to convective flow, rather than diffusive movement,
with velocities on the order of 10mm/s (Sciaky et al., 1997).
Differences between chemical potentials of ER and Golgi
membranes are presumably responsible for tension differ-
ences. It would thus be expected that in many cellular
processes involving organelles, lipid movement could be
due to convective flow, rather than diffusive spread, as is
often assumed. For example, there is significant lipid flux
through fusion pores from plasma to granule membrane in
mast cell secretion (Oberhauser and Fernandez, 1993), im-
plying that the granules are under significant tension
(Monck et al., 1990).

Membrane viscosity

As lipid flow depends onhs andhr, their values are required
to compare the theoretical equations with available experi-
mental data. The values of shear viscosities reflect molec-
ular interactions and differ for different types of membranes
(lipid bilayers, lipid monolayers, and cell membranes);
these values lie in a very broad interval, 1027 g/s , hs ,
1023 g/s (Evans and Hochmuth, 1978). The surface viscos-
ity of a membrane can be converted to a three-dimensional
viscosity,h3 5 hs/h, and compared to viscosities of com-
mon substances. The largest surface viscosity value (1023

g/s) compares with the three-dimensional viscosity of ex-
tremely viscous materials such as waxes and butter (h3 5
104 poise, i.e., 104 g/s z cm). These large values are found in
experiments that deform extended portions of a cell mem-
brane. Such high values probably reflect additional forces

TABLE 1 The values of geometric factors I(b) and J(b) at different b 5 R/H and rp

b 1.2 1.3 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 5.0 10

rp (nm) 0 1 2 4 6 8 10 12 14 16 18 38 88
I(b) 31.77 19.34 13.95 9.18 7.07 5.89 5.15 4.64 4.27 3.99 3.77 2.84 2.23
J(b) 17.12 5.14 2.07 0.66 0.51 0.61 0.78 0.96 1.15 1.34 1.52 3.24 7.80

TABLE 2 Asymptotic expressions for the geometrical
factors I(b) and J(b)

b 2 1 ,, 1 b .. 1

I(b) p

Î2

1

~b 2 1!3/2
2

J(b) 3p

16Î2

1

~b 2 1!5/2

pb

4
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from macromolecular structures, such as interactions of
adhesion between cytoskeleton and membrane. The lower
end,hs ' 1027 g/s, is the measured microviscosity of the
hydrocarbon interior of a bilayer membrane (Azzi, 1975)
and corresponds toh3 ' 1 poise, the viscosity of olive oil.
The samehs’s were obtained by measuring electrically
induced expansion of pores in lipid bilayers formed in
n-decane (Sukharev et al., 1983); these values reflect all of

the molecular interactions within a monolayer, that is, due
to both lipids and organic solvent. Estimates ofhs for
biological membranes that are based on measurements of
lateral diffusion givehs ' 1026 to 1025 g/s (for reviews,
see Evans and Hochmuth, 1978; Saffman, 1976; Thomas
and Webb, 1990). As these viscosities characterize move-
ment of lipid within a cell membrane without deformation
of the membrane itself and account for both lipid-lipid and
lipid-protein friction, we consider these latter values ofhs to
be most descriptive of the in-plane lipid flow within cell
membranes.

FIGURE 3 The dependence of an average lipid velocityy on the radius
of the pore lumen,rp, and on the dimensionless pore radius,b 5 R/H. The
curve is plotted forH 5 10 nm,hs 5 hr 5 h 5 1025 g/s, andDs 5 0.1
dyn/cm. The left-hand ordinate givesy in absolute units, and the right-hand
ordinate gives velocity in dimensionless units. This allowsy to be readily
obtained for any values ofh, Ds, andH. (A) Velocity is shown over a large
range of pore radii. (B) Velocity is presented over the range of narrow
pores.

FIGURE 4 The dependence of lipid area fluxF on pore lumen radiusrp

and on the dimensionless pore radiusb 5 R/H. Curves are plotted for the
same values of parameters as in Fig. 3. Flux in is shown in dimensionless
units on the right-hand ordinate. (A) Flux for an extensive range of pore
radii. (B) Flux for narrow pores only.
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In contrast tohs, experimental data that determine the
relative viscosityhr are rather limited. A value ofhr for pure
lipid bilayers can be estimated from measurements of the
dynamics of enlargement of hemifusion diaphragms (Me-
likyan et al., 1985). Outer monolayers, after initial merger,
are pulled away from the site of hemifusion. This clearing of
outer monolayers from the site allows the inner monolayers
to come into direct apposition with each other, forming and
enlarging into a hemifusion diaphragm. The time depen-
dence of this expansion in area of the diaphragm,S(t), is
governed by tension and friction between monolayers.S(t)
is described by the equation (Kumenko et al., 1999)

S~t! 5 S0 1
4psh2

hr~2 ln~Rm/R0! 1 1!
t (22)

whereR0 is the radius of the diaphragm at the moment the
expansion is monitored andRm is the radius of the fusing
bilayer. A comparison of the actual initial slope, dS/dt, to
that obtained from Eq. 22 yields the viscosityhr. Experi-
mentally, the rate of area expansion of the diaphragm, dS/dt,
was 1.13 1024 cm2/s for phosphatidylethanolamine (PE)
(2s 5 1.2 dyn/cm) membranes and was 0.73 1024 cm2/s
for asolectin (AS) (2s 5 0.5 dyn/cm) membranes inn-
decane (Melikyan et al., 1985). When these values are
combined with the known geometrical parameters,R0 '
1022 cm andRm ' 1021 cm, Eq. 22 yields thathr ' 6 3
10210 g/s for PE andhr ' 4 3 10210 g/s for AS. This
two-dimensional viscosityhr scaled withh 5 2 nm yields
the three-dimensional viscosity,h3 ' 3 3 1023 g/cm z s,
rather close to the viscosity ofn-decane, 83 1023 g/cm z s.
This probably occurs because appreciable amounts ofn-
decane reside between the lipid monolayers (White, 1977).
The same analysis and experiments yield that the two-
dimensional viscosityhr for a “dry” solvent-free bilayer
formed from PE in squalene is almost two orders of mag-
nitude higher,;7 3 1028 g/s.

The frictional interactions between monolayer leaflets as
they slip past each other have also been studied by pulling
tethers out of lipid vesicles (Merkel et al., 1989; Evans et
al., 1992; Evans and Young, 1994; Raphael and Waugh,
1996). When normalized to a monolayer thickness ofh 5 2
nm,hr was found to be between;4 3 1027 g/s (Evans and
Young, 1994) and;1.8 3 1026 g/s (Raphael and Waugh,
1996). The higher values ofhr deduced for the vesicular
membrane than for bilayers inn-decane arise because of a
lack of the “lubricating”n-decane between the monolayer
leaflets of vesicles. Although the data indicate thaths may
be somewhat larger thanhr for purely lipidic bilayers, on
balance we can takehr ' hs, each in the range of 1025 to
1026 g/s. However, in some cases viscosity has been mea-
sured to be significantly larger: pulling microtethers out of
neuronal growth cone membranes yieldedh ' 2 3 1024 g/s
(Dai and Sheetz, 1995b). It is not clear why slippage of
monolayers past each other leads to such a high value of
viscosity. In our subsequent comparison of theory with

experiments, we assume thathr ' hs also holds for cell
membranes, within the interval 1025 to 1026 g/s.

We have ignored in our analysis the friction between
water and lipid at the water-membrane interface. We justify
this simplification, showing that this friction is negligible
for pores with either a wide or narrow lumen. For ease of
calculation, we treat a large pore’s wall as if its circumfer-
ence were straight rather than curved (in other words, as if
the circle that forms the lumen were cut open and the ends
separated so that they form the ends of a semicylinder). That
is, we approximate a large pore as a semicylinder of radius
H that joins two parallel semiinfinite planar membranes
separated by a distance 2H. The axis of this semicylinder
runs parallel to the planar membranes. At the surfaces of the
planar membranes the difference between the velocity of
water and lipid flow is zero, the “no-slip condition”; suffi-
ciently far from the surface the water velocity is zero, and
the difference in velocity is therefore the lipid velocityy,
given by Eq. 20. The solutions for the frictional force per
unit length,F (dyn/cm), are well known for a liquid moving
past both a flat plate and a cylinder (Landau and Lifshitz,
1987). Combining these two solutions, we obtain

F 5 1.3 z ÎhwrwRmy3 1
2phwy

ln~3.7~hw/Hyrw!!
(23)

where the first term corresponds to a planar part and the
second one to the semicylinder.hw is the dynamical vis-
cosity of water,rw is the water density, andRm is a char-
acteristic length of the system which, as an upper bound,
can be taken asRm ' 1 mm. To estimate the maximum
force F generated by lipid-water friction, we consider a
huge pore under a large tension difference, 1 dyn/cm. The
maximum lipid velocity is;5 mm/s (see Fig. 3) when the
membrane viscosity is at a minimum, 1026 g/s. Even for
this maximum velocity, both terms in Eq. 23,;1023 dyn/
cm, are much smaller than the tension difference of 1
dyn/cm. Therefore water-membrane friction gives a negli-
gibly small correction in the case of large pores.

For a small pore, both the velocity gradient of the water
and the momentum transfer to the pore wall are high. But as
the area of the pore wall is small, lipid-water friction is
negligible in this case as well. The frictional force for a unit
length of pore circumference,Fp (units dyn/cm), can be
estimated as

Fp < hw

­y

­r
2H < hw

y

rp
2H (24)

wherey is the characteristic lipid velocity. From Fig. 3B,
for a pore with a radius of;1 nm, y ' 1022 cm/s for
Ds ' 1 dyn/cm andh ' 1026 g/s. Equation 24 yieldsFp '
1023 dyn/cm,, 1 dyn/cm.

Comparison of energy dissipation due to shear
and relative viscosities

As steady-state lipid velocity and flux are set by energy
dissipation, it is useful to explicitly consider the two dissi-
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pative viscous processes. Under the assumptionhs 5 hr 5
h, the comparative contributions of the two processes to
overall energy dissipation are determined by the form fac-
tors I(b) andJ(b). Fig. 2 shows that over the entire range of
biologically interesting pore radii,rp , 35 nm, shear defor-
mation dominates relative friction in causing dissipation. If
hs . hr, the dominance becomes greater. The integrands of
I(b) and J(b) of Eqs. 14 and 189 (Fig. 5) characterize the
distribution of energy dissipation along the pore wall as a
function of the anglew.

For small pores (rp , 10 nm), shear dissipation essen-
tially arises in the toroidal region: the contribution toI(b)
from the planar membrane is 2 andI(b) .. 2. The origins
of shear deformation within the pore and planar membrane
are straightforward. Within the planar membrane, flow is
only radial, and shear occurs because any element of mem-
brane area becomes progressively shorter in the radial di-
rection as it moves further from the pore. Within the pore,
membrane undergoes shear deformation in regions where
the pore wall is curved. If a region of a pore wall is perfectly
cylindrical, membrane does not deform as it moves along
this portion of the wall, regardless of the size of the cylin-
drical lumen. In general, flow of an element of membrane
area parallel to the axis of symmetry occurs without shear
deformation; flow perpendicular to the axis results in max-
imum deformation. We can thus appreciate why shear dis-

sipation is distributed nonhomogeneously through the pore
wall (Fig. 5). In the center of the pore,w 5 0, the wall is
locally cylindrical, and henceI(b) 5 0. As material moves
away from the center of the pore, flow occurs progressively
more perpendicular to the symmetry axis and shear defor-
mation increases, accounting for the increases inI(b). But as
the element of membrane area moves further from the
symmetry axis, the deformation due to radial shortening
lessens. This competition in shear deformation between
radial and angular positioning of a membrane element leads
to maxima inI(b), symmetrically placed aroundw 5 0. For
a toroid, the maxima are atuwu ' 0.5; beyond this value
shear deformation gradually decreases to the level of the
planar membrane.

For relative viscosity, the integrand ofJ(b) reaches a
maximum at w 5 0, with relatively narrow dispersion,
demonstrating that dissipation due to monolayers slipping
past each other is concentrated in a narrow region near the
pore neck. Physically this occurs because, by the principle
of continuity, the same flux of lipid must pass through the
inner and outer monolayers for every anglew. The circum-
ferences of outer and inner monolayers (around the central
symmetry axis of the pore) are smallest at the narrow pore
neck. As a result, the difference in velocity and thus in
energy dissipation is greatest at the pore neck. The geomet-
ric factor J(b) is large for the smallest pores and decreases
as rp increases (Fig. 2, Table 1): the larger the pore, the
more the circumferences of the inner and outer monolayers
become comparable, and differences in monolayer veloci-
ties become smaller. This decrease inJ(b) with pore growth
is opposed by the fact that the sliding occurs along a larger
pore circumference, a circumference that increases linearly
with rp. When the pore enlarges sufficiently, beyondrp '
H, this latter effect begins to dominate (hence there is a
minimum in J(b)) andJ(b) increases roughly linearly with
pore radius.J(b) is greater thanI(b) after rp ' 30 nm, at
which stage pores have enlarged immensely.

If we view a fusion pore as a long cylinder connected to
each of the fused membranes at a region that curves back
into the plane of the membrane, we can qualitatively eval-
uate energy dissipation due to flow. Shear would not occur
within the cylindrical region, but would within the curved
portions (which we refer to as “dimples”). In contrast to the
pattern of shear deformation, intermonolayer friction would
occur predominantly within the cylindrical pore. That is, if
the neck of the pore were elongated, shear dissipation would
not be affected, but relative dissipation would be aug-
mented. In other words, pore geometries other than toroidal
should lead to similar energy dissipations for the same
lumen dimensions. Thus, Eqs. 20 and 21 for lipid velocity
and flux can be used to describe experimental data, even
though the true pore shape is not known.

Lipid velocity and area flux

Lipid velocity, y(b), levels (Fig. 3A) and the area flux,F(b),
increase linearly (Fig. 4A) with radius asb 3 `. The

FIGURE 5 Energy dissipation density along the pore wall. The dashed
curve is the integrand ofĨ (Eq. 14) and represents shear friction; the solid
curve is the integrand ofJ (Eq. 189) and provides the relative friction. The
values of these integrands as functions ofw allow the contribution of the
two forms of dissipation to be compared for any portion of membrane
within the pore. The curves are plotted forH 5 10 nm,h 5 2 nm, andb 5
1.2 (i.e.,rp 5 0).
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physical basis of these functions can be appreciated by
realizing that whenR .. H, dissipation is dominated by
intermonolayer friction (i.e.,J(b) . I(b) for extremely large
pores; Fig. 2). The rate of intermonolayer dissipation in-
creases linearly with radiusR but quadratically withy; the
rate of work done by tension increases linearly with both
radius andy. It follows immediately from the equality of
dissipation and rate of work done by tension that velocity is
independent of radius (equivalently, see Eq. 20 and the
asymptotic expression forJ(b) in Table 2). AsF 5 2pR z y,
a constanty meansF increases linearly withR for large
pores.

For small pores, lipid velocity increases in a greater than
linear manner with increases inrp (Fig. 3 B). However,
balancing the energy dissipated in the planar membranes by
the work performed by tension yields only a linear increase
in lipid velocity. The overall nonlinearity is due to geomet-
ric effects of the fusion pore (Table 2), which arise because
the curved pore wall induces shear dissipation, and a narrow
neck leads to significant relative, intermonolayer dissipation
(Figs. 2 and 5). Both dissipations should occur for small
pores, independent of the specific geometry. Hence, the
slope of the curve ofy versusrp (dy/drp) increases withrp

for small pores (Fig. 3B).
Lipid flux depends on the difference in tension between

the two membranes, 2Ds, regardless of the precise geome-
try of the pore. This is of practical importance: it is not
necessary to know how the tension difference drops along
the walls of the pore to calculate flux. As a consequence, a
simple equation, Eq. 21, can be used to describe experimen-
tal flux data.

A test of the physics of lipid movement

To determine whether the present model accurately de-
scribes lipid flow for homogeneous membranes that have
merged requires flux data for a system in which the param-
eters (h, R, andDs) have been measured. This has not yet
been done experimentally. But the validity of our picture of
the physics underlying lipid flow is testable. Two bulged
solvent-free planar bilayers with different percentages of
charged lipids could be hemifused, and the lipid flux be-
tween the merged monolayers could be determined accu-
rately by measuring the change in surface potential of the
nonhemifused portions of the planar membranes (Cherno-
mordik et al., 1987). The viscosity and tension of the bilayer
of each lipid composition would be obtained independently
by standard techniques (Chernomordik et al., 1987). A
straightforward modification of the present theory to the
case of lipid flow during hemifusion in a system whose
geometry was unambiguously known will provide a severe
test of our approach. However, we can immediately apply
the present theory to experiments for which lipid flux has
been measured through enlarged pores.

Comparison of the theory with experiment

Fluorescent lipid dye has not been observed to pass through
small fusion pores (less than;400 pS) connecting influenza
hemagglutinin (HA)-expressing cells to RBCs (Tse et al.,
1993; Zimmerberg et al., 1994). This apparent exclusion of
lipid has been taken as evidence that these pores are com-
posed solely of protein (Tse et al., 1993), implying that
hemifusion is not an intermediate step in membrane fusion.
However, the finding that fusion pore formation depends on
the constituent membrane lipids contradicts this conclusion
(Chernomordik et al., 1997, 1998). These latter findings
strongly support the view that lipids are intimately involved
in pore formation, rather than incorporating into the pore
after formation. All of the experimental findings could be
accounted for if both protein and lipid were intimately
involved not only in the formation, but also the structure, of
the initial pores. Multiple fusion proteins act cooperatively
to form a pore, and even if these proteins induce fusion
through a hemifusion mechanism, they may form a tight
ring of protein that significantly inhibits lipid flux (Hernan-
dez et al., 1996; Chernomordik et al., 1998). The theory of
convection does not apply to the case of small pores con-
necting HA-expressing cells to RBCs, for at least two rea-
sons. First, if a ring of protein inhibits lipid flux, the
membrane of the pore wall is heterogeneous, rather than
homogeneous. Second, as the in-plane tension of cell mem-
branes is small, their difference is negligible; the hindered
transport across the pore would be governed by passive
diffusion, not by convection. The theory of the present
paper can, however, be directly applied when differences
in membrane tension cause lipids to flow between fused
membranes.

When cells expressing the hemagglutinin of influenza
virus are fused to planar lipid bilayers, a substantial amount
of lipid flows from the cell to the planar membrane after full
pore enlargement (Melikyan et al., 1995). This flux was
measured by including the fluorescent dye octadecylrho-
damine in the planar membrane. After a fusion pore ex-
panded to large conductances, with a mean value of;500
nS (Melikyan et al., 1993) (i.e.,rp ' 500 nm), a dark spot
in fluorescence was observed at the site of the fusing cell.
Darkening occurred only after full pore enlargement. The
dark spot then expanded (up to a radius of;20 mm),
maintaining a rather sharp boundary. The darkening is ac-
counted for by the tension of the planar membrane as it pulls
on the membrane of the fused cell; unlabeled lipid in the cell
membrane flows into the planar membrane, thereby displac-
ing fluorescent lipid molecules with nonfluorescent ones.
Experimentally, the initial area flux is between 53 1026

and 7 3 1026 cm2/s (Razinkov, Melikyan, and Cohen,
unpublished data). This flux approaches zero after;2 s, in
accord with the tension of the cell membrane, after fusion,
drawn to that of the planar membrane. We compare Eq. 21
with the initial flux because we can estimate the initial value
of 2Ds. The initial in-plane tension of the cell membrane is
small, ;1022 dyn/cm; we take the tension of the planar
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membrane (PE/PC, 2:1) as 2s ' 1 dyn/cm (Chernomordik
et al., 1987). If we leths ' hr 5 h and introduceFm 5 F/2
as the area flux for one monolayer, we rewrite Eq. 21 as

h 5
pDsb2H2

Fm@I~b! 1 J~b!#

For H 5 10 nm,b 5 R/H 5 50 (i.e., a fully enlarged pore
of rp ' 500 nm), we obtain [I(b) 1 J(b)] 5 41 (Table 2).
The measuredFm 5 6 3 1026 cm2/s implies thath 5
1.5 3 1025 g/s, in reasonable accord with the expectation
that membrane viscosities lie within the interval 1026 to
1025 g/s.

In addition to the convective flux of the unlabeled lipid
from the cell into the planar membrane, the fluorescent dye
diffuses from the planar bilayer to cell membrane. Diffusion
will cause the front of darkening—which would be sharp if
only convection were present—to spread out with time.
This broadening of the front is given by (2Dt)1/2, whereD
is the diffusion constant of the lipid dye,;1028 cm2/s. The
observed spread of darkening occurs over a time course of
t ' 2 s (Razinkov, Melikyan, and Cohen, unpublished
data), and thus the diffusive spread is;2 mm, much smaller
than the radius of the enlarged dark area (;20 mm). That is,
diffusive flux is relatively small compared to convective
flux; the boundary of the dark spot remains relatively sharp.

The situation is quite different for small pores. Forrp '
1 nm (R 5 13 nm), theoretically the convective flux of the
dye (;5 mol% of lipid in the planar bilayer) is;4 3 105

molecules/s (Fig. 4B; using an area per lipid of 53 10215

cm2 to convert area flux in units of cm2/s to units of
molecules/s). To estimate the diffusive flux, we treat the
small fusion pore as a cylinder with radius 7 nm and length
l 5 2H 5 20 nm and obtain a diffusive flux of;4 3 105

molecules/s (i.e., the convective and diffusive fluxes are
comparable). This is in agreement with experiment (Me-
likyan et al., 1995): for small flickering pores, a darkening
of the planar membrane is not observed, but a brightening of
the cell occurs.

We can also apply our equations to the case of tension-
driven lipid flux between secretory granules and plasma
membrane in mast cell secretion (Monck et al., 1990; Ober-
hauser and Fernandez, 1993). From capacitance measure-
ments,;1.53 1029 cm2/s of plasma membrane (or 63 105

lipids/s) moves into granule membrane while a transient
fusion pore is open, suggesting that the tension of granules
is higher than that of plasma membrane. The total flux was
proportional to the time the transient pore remained open,
implying that the tension difference remained constant.
(The lipid flux in these experiments was about three orders
of magnitude less than for the case of cells fused with planar
membranes. This probably accounts, in large part, for the
fact that the difference in tension between plasma and
granule membranes does not relax to zero.) Based on con-
ductances expected of transient (flickering) fusion pores,
the pore radius can be estimated asrp ' 1 nm. Using Eq.
219, the geometrical factorsI(b), J(b) (Table 1), and viscos-

ity, h ' 1025 g/s (as determined from the measured lipid
flux between fused cells and planar membranes), we obtain
that the tension difference between granule and plasma
membrane,Ds, is ;0.1 dyn/cm. This indicates that the
granule membrane probably has significantly higher in-
plane tension than a plasma membrane. The membranes of
Golgi and ER also exhibit high tensions (Sciaky et al.,
1997); it may be that intracellular membranes generally
exhibit higher tensions than plasma membranes because of
differences in chemical potential.

In summary, the present theory provides a means for
understanding the physics of lipid flow through fusion
pores. While the specific compositions and geometric struc-
tures of fusion pores are not yet known, in this paper we
have derived equations that can be employed to interpret, in
a practical manner, experimentally obtained lipid fluxes
between membranes under different tensions.

APPENDIX A: THE COORDINATE SYSTEMS

To calculate the velocity distribution and rate of energy dissipation in the
planar portions of the membranes, we use cylindrical coordinates (r, u, z).
These coordinates are related to Cartesian coordinates (Fig. 1B) by

H x 5 r cosu
y 5 r sin u

z5 z
(A1)

Differential operators and the viscous stress tensor are transformed from
Cartesian to curvilinear coordinates through the Lame´ coefficients (Korn
and Korn, 1968)

Hi 5 ÎS­x

­iD
2

1 S­y

­iD
2

1 S­z

­iD
2

(A2)

In cylindrical coordinates,i 5 r, u, z. Substituting Eq. A1 into Eq. A2
yields

Hr 5 1, Hu 5 r, Hz 5 1 (A3)

An element of area is

dS5 du z r dr (A4)

The radial flow in the planar portions of the membranes depends onr only,
yu 5 0, yz 5 0, yr Þ 0. The components of the viscous stress tensor can be
written as

srr 5 2h
­yr

­r
, suu 5 2h

yr

r
, szz 5 sru 5 suz 5 srz 5 0

(A5)

The system of coordinatesr, w, u within the toroidal pore (Fig. 1) is

H x 5 ~R2 r cosw!cosu
y 5 ~R2 r cosw!sin u

z5 r sin w
(A6)

Substituting Eq. A6 into Eq. A2 fori 5 r, w, u, we obtain

Hr 5 1, Hw 5 r, Hu 5 R2 r cosw (A7)

For an element of area we have

Hr 5 1, Hw 5 r, Hu 5 R2 r cosw (A8)
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A radiusr(w) from thez axis of the pore to any point on the circumference
of the toroidal surface is

r~w! 5 R2 r cosw (A9)

For a velocity distributionyr 5 0, yw Þ 0, yu 5 0 (y 5 yw depends onw
only), the components of the viscous stress tensor have the form

srr 5 0, sww 5 2h
1

r

­yw

­w
,

suu 5 2h
ywsin w

R2 r cosw
, srw 5 sru 5 swu 5 0 (A10)

APPENDIX B: THE GENERAL EXPRESSIONS FOR
LIPID VELOCITY WITHOUT THE ASSUMPTION
THAT y* 5 y(

Energy dissipation

To justify the approximationy9 5 y0 used in the main body of the paper,
we present the exact expressions for each of the terms of the energy
dissipation in Eq. 10. We obtain these expressions from Eqs. 3, 11, and 15:

Ėst 5 2phsĨ~b!~y1
2 1 y2

2 ! (B1)

where

Ĩ~b! 5 2E
2p/2

p/2 b2sin2w dw

~b 2 cosw!3, b 5
R

H

y1 5 y9 1 y0, y2 5 y9 2 y0

Ėrt 5 2phrJ~b!y1
2 1 2phrFHh J6~b!y1y2 1

H2

h2 J2~b!y2
2 G

(B2)

and

J~b! 5
1

2E
0

p/2 b2~b 2 2 cosw!2

~b 2 cosw!3 dw

J6~b! 5 E
0

p/2 b2~b 2 2 cosw!2

~b 2 cosw!2 dw

J2~b! 5 2E
0

p/2 b2

b 2 cosw
dw

Ėsp 5 4phs~y1
2 1 y2

2 ! (B3)

In the case ofy9 Þ y0 an additional term appears because of the relative
friction between monolayers moving past each other within the planar
membranes:

Ėrp 5
4phr

h2 R2y2
2 ln

Rm

R
(B4)

By adding each of the individual terms for energy dissipation (Eqs.
B1–B4), we obtain the total energy dissipation rateĖ.

Lagrange’s equation with a dissipation
function, F

The fusion system is described by two time-dependent variablesy9 andy0
or, equivalently,y1 andy2 (see Eq. B1). The equations of motion can be
described by Lagrange’s equations with dissipation in the system (Gold-
stein, 1950), which in our notation has the form

­Ws

­l1,2
5

­F

­y1,2
, (B5)

where l1,2 are the generalized coordinates associated with the velocities
y1,2 (i.e., y1,2 5 dl1,2/dt), Ws is the work done by the tensions 2s1 and
2s2, andF is the dissipation function. Equation B5 reflects the fact that the
work performed by external forces is balanced by viscous dissipation. As
Ws does not explicitly depend on time, we obtain

Ẇs 5
dWs

dt
5

­Ws

­l1
y1 1

­Ws

­l2
y2 . (B6)

Directly calculatingẆs for the casey9 Þ y0 yields

Ẇs 5 2pRDs z y1 (B7)

and, hence, from Eqs. B6 and B7 we obtain

5
­Ws

­l1
5 2pRDs

­Ws

­l2
5 0

(B8)

The energy dissipation rateĖ and dissipation functionF are related by
2F 5 Ė (Goldstein, 1950), resulting in

F 5 p@hrI~b! 1 hsJ~b!#

1 phrFHh J6~b!y1y2 1
H2

h2 J̃2~b!y2
2 G (B9)

whereI(b) 5 2 1 Ĩ(b), J̃2(b) 5 J2(b) 1 2b2 ln(bm/b), bm 5 Rm/H.
From Eqs. B6, B8, and B9 we obtain

y1 5
DbH

@hrI~b! 1 hsJ~b!#@1 2 K~b!#
(B10)

where

K~b! 5
@J6~b!#2

4J2Fhr

hs
I~b! 1 J~b!G

and

y2 5 2
h

H
z

J6~b!

2J̃2~b!
y1 (B11)

Numerical calculation shows thatuK(b)u , 3 3 1022, allowing K(b) to be
neglected in the denominator of Eq. B10. Equation B10 therefore reduces
to

y1 5
DsbH

hrI~b! 1 hsJ~b!
. (B12)

Equation B11 fory2 can be simplified for the caseRm .. R (or bm .. b)
by noting that from the definition ofJ̃2(b) (Eq. B9), the second term
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dominates for largebm. Dropping the first term, i.e.,J̃2(b) ' 2b2 ln bm/b,
allows Eq. B11 to be written as

y2 <
h

H

1

ln~bm/b!

J6~b!

4b2 y1 (B13)

Numerical calculations show thatJ6(b)/4b2 , 0.4 for all b. TakingRm '
10 mm, h ' 2 nm, andH ' 10 nm, we obtain for 1 nm# rp # 100 nm

y2 < 2 3 1022 z y1 ,, y1 (B14)

Thus the contribution ofy2 to the dissipation functionF is negligible.
Assuming thaty9 5 y0 leads to a relative error iny1 of less than 2% if
Rm . 10 mm. In other words,y9 5 y0 5 y is an excellent approximation
for Rm .. R.
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