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ABSTRACT The effects of pH on cotransporter kinetics were studied in renal proximal tubule cells. Cells were grown to
confluence on permeable support, mounted in an Ussing-type chamber, and permeabilized apically to small monovalent ions
with amphotericin B. The steady-state, dinitrostilbene-disulfonate-sensitive current (DI) was Na1 and HCO3

2 dependent and
therefore was taken as flux through the cotransporter. When the pH of the perfusing solution was changed between 6.0 and
8.0, the conductance attributable to the cotransporter showed a maximum between pH 7.25 and pH 7.50. A similar profile
was observed in the presence of a pH gradient when the pH of the apical solutions was varied between 7.0 and 8.0 (basal
pH lower by 1), but not when the pH of the basal solution was varied between 7.0 and 8.0 (apical pH lower by 1 unit). To
delineate the kinetic basis for these observations, DI-voltage curves were obtained as a function of Na1 and HCO3

2

concentrations and analyzed on the basis of a kinetic cotransporter model. Increases in pH from 7.0 to 8.0 decreased the
binding constants for the intracellular and extracellular substrates by a factor of 2. Furthermore, the electrical parameters that
describe the interaction strength between the electric field and substrate binding or charge on the unloaded transporter
increased by four- to fivefold. These data can be explained by a channel-like structure of the cotransporter, whose
configuration is modified by intracellular pH such that, with increasing pH, binding of substrate to the carrier is sterically
hindered but electrically facilitated.

INTRODUCTION

More than 80% of the filtered load of HCO3
2 in the mam-

malian kidney is reabsorbed in the proximal tubule, with the
remaining 20% reabsorbed by the more distal tubule seg-
ments. Thus the proximal tubule plays a major role in
maintaining acid-base balance. The proximal tubule epithe-
lium achieves this task by secreting protons into the lumen
and an equal number of base equivalents across the baso-
lateral plasma membrane into the peritubular medium. The
primary transporters involved in proximal tubular reabsorp-
tion of HCO3

2 are shown in Fig. 1. The principal pathway
for uphill movement of acid from cell to tubular fluid is via
the luminal membrane Na1/H1 exchanger (Aronson, 1983).
The major transport pathway for HCO3

2 exit across the
basolateral membrane is the Na-HCO3 cotransporter (Boron
and Boulpaep, 1983a; Alpern, 1985; Alpern and Chambers,
1986; Biagi and Sohtell, 1986). To maintain intracellular
Na1 and pH homeostasis, under conditions of high through
flux, Na1 and HCO3

2 reabsorption in these cells must be
regulated in a coordinated manner. Na1/H1 exchange ac-
tivity was found to be regulated by an internal H1 modifier
site in various tissues (Aronson et al., 1982; Boron and
Boulpaep, 1983b; Grinstein et al., 1984). Soleimani et al.
(1991) have suggested that H1 inhibits the binding of Na1

to the Na-HCO3 cotransporter, through binding to an allo-
steric site on the protein. Studying the effect of changing the

intra- and extracellular pH on the Na1-Na1 exchange rate
of the Na-HCO3 cotransporter in basolateral membrane
vesicles, they found it to be sensitive to changes in intra-
cellular but not to extracellular pH. They suggested an H1

allosteric binding site to explain their data, which is located
on the cytoplasmic side of the cotransporter protein. Al-
though that study provided important information on the
effect of pH on the Na1-Na1 exchange rate, this partial
transport mode may not be relevant to net transport of
NaHCO3, which is the physiologically important aspect of
the transport process. To address this issue we studied the
effects of pH on the net flux of NaHCO3 through the
cotransporter, as measured by electrical current across api-
cally permeabilized monolayers of proximal tubular cells.
The data were analyzed based on a kinetic model that we
recently published (Gross and Hopfer, 1998).

A number of transporters have been cloned and expressed
in oocytes of the amphibianXenopus(Parent et al., 1992;
Hager et al., 1995; Panayotova-Heiermann et al., 1995;
Boorer et al., 1996; Klamo et al., 1996; Mackenzie et al.,
1996, 1998; Eskandari et al., 1997; Forster et al., 1998).
While enabling researchers to characterize the different
transport modes and develop detailed mathematical models
of many transporters, theXenopusoocyte is an exogenous
expression system that lacks the native intracellular envi-
ronment and potential regulatory accessory proteins that
may be important determinants of the kinetic properties of
these transporters in their native state. Indeed, initial anal-
yses of the HCO3

2:Na1 stoichiometry of rat kidney clone of
the Na-HCO3 cotransporter (rkNBC) expressed inXenopus
oocytes, based on reversal potential, indicated a ratio of 2:1
(Muller-Berger et al., 1998). This stoichiometry is different
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from the 3:1 ratio measured in intact proximal tubule cells
(Yoshitomi and Fro¨mter, 1985; Gross and Hopfer, 1996).
Furthermore, it is insufficient to mediate HCO3

2 efflux in
intact proximal tubule cells at the existing membrane po-
tential of approximately260 mV (Yoshitomi and Fro¨mter,
1985; Coppola and Fro¨mter, 1994; Gross and Hopfer,
1995). To the best of our knowledge, the present study is
one of the few to present detailed kinetics of a cotransporter
in a native, intact epithelium.

MATERIALS AND METHODS

Cell culture

Experiments were carried out with the rat proximal tubular cell line
SKPT-0193 Cl.2 (Woost et al., 1996). The line is derived from microdis-
sected primary cultures of the S1 region of the proximal tubule. Passages
50 to 70 were used for the reported experiments. Cells were grown on
collagen-coated (20% bovine hoof collagen in 60% ethanol) Millicell-CM
filters (area5 0.6 cm2) in a 1:1 mixture of Dulbecco’s modified essential
medium and Ham’s F12, supplemented with 15 mM HEPES, 1.2 mg/ml
NaHCO3, 5 mg/ml insulin, 5mg/ml transferrin, 5 ng/ml epithelial growth
factor, 4mg/ml dexamethasone, and 10% fetal bovine serum. Typically,
3 3 105 cells were seeded and grown to confluence in 5 days. Light
microscopy showed a “cobblestone” appearance, which is typical for
epithelial cells.

Electrophysiology

Confluent cells have a low basal monolayer conductance of 0.5–1 mS/cm2,
indicating low ion permeability of tight junctions. This low baseline

conductance allows the detection of electrical signals from cellular trans-
porters that make only small contributions to the overall monolayer con-
ductance. Filters with cells were mounted horizontally in an Ussing-type
chamber (Analytical Bioinstrumentation, Cleveland, OH) equipped with
voltage and current electrodes. Only cell monolayers with an initial con-
ductance of 1 mS/cm2 or less were used in the experiments described here.
Electrophysiological measurements were made with a voltage-clamp mod-
ule (model 558-C-5; Bioengineering, University of Iowa, IA) controlled by
an IBM PC via the DATAQ software package (Dataq Instruments, Akron,
OH). Current and voltage were recorded with a strip chart recorder and in
parallel through an A/D converter on a microcomputer. The apical and
basolateral compartments of the Ussing chamber had a volume of 0.5 ml
each. The cells were perfused on each side of the monolayer separately
with a peristaltic pump at a rate of;2 ml/min. The chamber and all
solutions were maintained in a heated incubator, allowing control of CO2

pressure (PCO2) and temperature.
All solutions were first adjusted for pH with acetic acid and then

preequilibrated with CO2 at the appropriate PCO2 for 1 h. The pH of the
solutions was measured and adjusted again before the beginning of the
experiment and was measured once more at the end of each experiment.
The solutions were maintained at the appropriate PCO2 throughout the
entire experiment, and the pH was found to change by less than 0.1.
Experiments were carried out at 37°C. CO2 pressure was continuously
monitored with a CO2 monitor (Puritan-Bennett, Los Angeles, CA). For
composition of solutions, refer to the appropriate figure legends.

To measure the cotransporter-related current, cell monolayers were
permeabilized with 10mM apical amphotericin B as described previously
(Gross and Hopfer, 1996), and the 4,49-dinitrostilbene-2,29-disulfonic acid
(DNDS)-sensitive current was taken as flux through the cotransporter.
Current-voltage (I-V) relations were obtained by stepping the voltage
between2100 and1100 mV in 20-mV increments. The DNDS-sensitive
(DI-V) curves were obtained by first measuring anI-V curve in the absence
of DNDS and then after 10 min of basolateral perfusion of DNDS. All
reported currents, except for those in Fig. 2, are difference currents (DI);
DIsc refers to the difference current measured under short-circuit condi-
tions, driven by ion gradient(s).

Materials

Amphotericin B, bovine serum albumin, HEPES,D-glucose,N-methyl-D-
glucamine (NMDG), gluconic acid, and all salts were purchased from
Sigma Chemical Co. (St. Louis, MO). Acetic acid was from Fisher Scien-
tific. 4,49-Dinitrostilbene-2,29-disulfonic acid (DNDS) was obtained from
Pfaltz and Bauer (Waterbury, CT). Bovine hoof collagen was a generous
gift from Ethicon (Somerville, NJ).

Computer simulations

All fitting procedures were performed with the SCoPFit simulation pack-
age (SCoP Simulations, Berrien Springs, MI), as previously described
(Gross and Hopfer, 1998). The program uses the “principal axis” (praxis)
algorithm to automatically search for a global minimum in the error
function, by changing the initial value of each parameter by a predeter-
mined fraction (the maximum step). A multistage approach was employed,
in which the magnitude of the maximum step was progressively decreased
to fine-tune the search process. The algorithm also includes occasional
random jumps in the maximum step to avoid confinement to a local
minimum in the parameter space. Typically,;3000 iterations were per-
formed during which translocation, and binding/dissociation rate constants
were allowed to vary over a wide range, until a minimum in the error
function (x2) was reached.

Statistics

Experiments were conducted in quadruplicate. The data listed in Table 2
are means6 SE. The probability distribution for the reducedx2 (i.e., Pxn

2;

FIGURE 1 Schematic presentation of the cellular transport model on
which experiments were based. The Na-HCO3 cotransporter transports two
net negative charges. Apical application of amphotericin B functionally
“removes” the apical membrane for electrical measurements.
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Bevington, 1969) was used to assess the goodness of fit of model equations
to experimental data, wheren is the degree of freedom (i.e., number of data
points2 number of fitted parameters). To estimate the approximate infor-
mation content ofI-V curves, they were fitted by arbitrary polynomial
equations, and the best fit was determined by the minimumx2 (Bevington,
1969). The number of parameters of the best-fitted polynomial was as-
sumed to give a maximum for the number of parameters that could
unequivocally be determined for any kinetic model.

RESULTS

Experimental strategy

Fig. 1 illustrates the primary transporters involved in Na1

and HCO3
2 reabsorption in the proximal tubule (Emmett et

al., 1992). The transporters associated with electrical charge
movement are located in the basolateral plasma membrane.
These include the Na,K-ATPase and the Na1-HCO3

2 co-
transporter. To reveal cotransporter activity to external elec-
trodes, 10mM amphotericin B was added to the apical
solution of proximal tubule monolayers in an Ussing cham-
ber. Amphotericin B is a polyene ionophore that renders the
plasma membrane permeable to small monovalent ions
(Na1, K1, Cl2), but not to those with higher valences, such
as Ca21 (Kirk and Dawson, 1983). The increased perme-
abilization stays restricted for several hours to the plasma
membrane to which it was added. The property is a result of
a requirement for cholesterol and the relatively high cho-
lesterol content of the plasma membrane compared to in-
tracellular membranes (Kirk and Dawson, 1983). This pro-
tocol also allows to vary cytosolic Na1 and HCO3

2

concentrations in a controlled manner, because small ions
equilibrate between apical solution and cytosol. The use of
amphotericin B for these purposes is a common practice in
studies of epithelial transport (Kirk and Dawson, 1983;
Backman et al., 1992; Illek et al., 1993; Acevedo, 1994;
Gross and Hopfer, 1996, 1998). In a previous study, we
found that Na,K-ATPase and a spontaneously increasing
Cl2 conductance in the basolateral plasma membrane inter-
fered with the accurate determination of current through the

cotransporter. Therefore, contributions of these two trans-
porters to the electrical current were eliminated by solutions
that were K1-free (replaced byN-methyl-D-glucamine) and
Cl2-free (replaced by gluconate).

Dose-response for dinitrostilbenedisulfonate

The Na1-bicarbonate cotransporter is inhibited by stilbene-
disulfonates (Boron and Knakal, 1989). DNDS does not
interact covalently with proteins and is therefore a conve-
nient, reversible inhibitor for defining the DNDS-sensitive
current or conductance of the basolateral plasma membrane.
We had previously shown that this DNDS-sensitive current
is identical to the Na1- and HCO3

2-dependent current in
proximal tubule SKPT cells, provided K1- and Cl2-free
media are used, so that it can be taken as current through the
cotransporter. To better define the potency of DNDS, as an
inhibitor, a dose-response curve was established. Apically
permeabilized proximal tubule monolayers were perfused
on both sides with the same solution containing 10 mM Na1

and 18 mM HCO3
2, with current generated by applying a

voltage of260 mV across the monolayer. As shown in Fig.
2, ;75% of the current can be inhibited by 0.5 mM DNDS,
indicating that we had selected conditions in which a large
portion of the total conductance could be attributed to the
Na1-bicarbonate cotransporter. A detailed analysis of the
dose-response curve indicated aKi for DNDS of 0.11 mM
and maximum inhibition by 0.5 mM. A supramaximum
concentration of 1 mM DNDS was used in subsequent
experiments to define the DNDS-sensitive current.

Effects of pH on cotransporter current

To evaluate whether the cotransporter was affected by pH,
its activity was measured as a function of pH with identical
solutions on both sides. The pH was varied between 6.00
and 8.00, and cotransporter activity measured as DNDS-
sensitive current. The HCO3

2 concentration was kept con-

FIGURE 2 Dose-response relation-
ship for the inhibition of cotransporter
activity by DNDS. (A) Apically perme-
abilized cells were perfused with sym-
metrical solutions containing 10 mM
Na1 and 18 mM HCO3

2. To activate the
cotransporter,V was clamped to260
mV. DNDS was then added basolater-
ally at the indicated times and concen-
trations. (B) Percentage inhibition of
the maximum current by DNDS as de-
termined fromA. Maximum inhibition
is obtained at;0.5 mM DNDS. (Inset)
Dixon analysis of the data shown inB
yields aKi of 0.11 mM DNDS.
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stant, while the pH changed, by adjusting the CO2 concen-
tration as calculated from the Henderson-Hasselbalch
equation. Fig. 3A shows an analysis of current measured at
260 mV from this series of experiments. TheDI-pH profile
exhibits a maximum between 7.25 and 7.50. These results
suggest the presence of a pH-regulated site on one or both
sides of the basolateral plasma membrane.

To localize the pH effect, the apically permeabilized cell
monolayers were again perfused with solutions of varying
pH between 7.00 and 8.00. However, in contrast to the
initial evaluation, a pH gradient of 1 unit was established so
that only one side was exposed to the pH range between
7.00 and 8.00 and the pH on the other varied between 6.00
and 7.00. These experiments were based on the assumptions
that 1) CO2 rapidly equilibrates across the basolateral
plasma membrane, and 2) CO2, H1, and HCO3

2 are in
equilibrium according to the Henderson-Hasselbalch rela-
tion. In other words, CO2 movement across the membrane
and CO2 hydration/dehydration were assumed to be rapid
compared to H1 and HCO3

2 fluxes across the basolateral
plasma membrane. Consequently, a 10-fold H1 gradient
(difference of 1 pH unit) is associated with a 10-fold HCO3

2

gradient in the opposite direction.
To test the validity of the above assumptions, the reversal

potential of the cotransporter was measured for a 10-fold
HCO3

2 gradient. This reversal potential is given at 37°C by
the thermodynamic equivalent of the Nernst potential
(Gross and Hopfer, 1996),Erev 5 60/(m 2 1)log{([Na1]i

[HCO3
2]i

3)/([Na1]o[HCO3
2]o

3)}, where m is the number of
HCO3

2 anions cotransported with each Na1 cation. Fig. 4
shows the DNDS-sensitive current as a function of voltage
(DI-V) in the presence of a 10-fold HCO3

2 gradient, mea-
sured at several different pH values. The observed reversal
potential under these conditions was;80 mV, which cor-

responds tom 5 3.2. The measured reversal potential is
close to the expected value of 90 mV whenm 5 3.0. The
close agreement between expected and measured reversal
potential supports the assumption that pH and bicarbonate
gradients can be established and maintained across the
basolateral plasma membrane of epithelial monolayers that
have been permeabilized with amphotericin B on the apical
side.

The pH dependence of the DNDS-sensitive current at 0
mV (DIsc) in the presence of a pH gradient is shown in Fig.
3,B andC. A comparison of the data in Fig. 3,B andC, with
those in Fig. 3A indicates that the apical/cytosolic pH, but
not the basolateral pH, between 7.00 and 8.00, modulates
the kinetics of the Na-HCO3 cotransporter.

FIGURE 3 Effect of pH on DNDS-sensitive current under three different conditions. (A) pH of the apical and basolateral solutions was changed in a
symmetrical manner between pH 6.00 and pH 8.00. Currents were measured at260 mV. (B) A pH gradient of 1.0 (high on the apical side, low on the
basolateral side) was applied across the monolayer. The pH of the apical solution was varied between 7.00 and 8.00. Currents were measured at 0 mV (Isc).
(C) A pH gradient of 1.0 (high on the basolateral side, low on the apical side) was applied across the monolayer. The pH of the basolateral solution was
varied between 7.00 and 8.00. Currents were measured at 0 mV (Isc). Basolateral and apical solutions contained (in mM) 10 Na gluconate, 2.5 Ca gluconate,
1.1 Mg gluconate, 100 HEPES, 25D-glucose, 50 NMDG, 18 HCO3

2, and 0.1% BSA. Bicarbonate concentration of apical and basolateral solutions inA
was 18 mM. InB, bicarbonate concentration of apical solutions was 18 mM, and that of basolateral solution was 1.8 mM. In conditionC, bicarbonate
concentration of basolateral solutions was 18 mM, and that of apical solution was 1.8 mM. *P , 0.05, compared withDI at pH 7.5.

FIGURE 4 DNDS-sensitive current-voltage (DI-V) relationships of the
cotransporter under a 10-fold bicarbonate concentration gradient (higher on
the apical side). Solution compositions are as described in the legend to
Fig. 3 B.
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Cotransporter kinetics

The biphasic shape of the current-pH profile in Fig. 3,A and
B, suggests the presence of titratable sites on the cotrans-
porter that affect its conformation and kinetics. To evaluate
whether pH affected specific kinetic steps in the catalytic
cycle of the cotransporter, cotransporter current-voltage
(DI-V) curves were analyzed on the basis of a detailed
kinetic transport model that was described recently (Gross
and Hopfer, 1998). This model specifically takes into ac-
count the effects of membrane potential and of Na1 and
HCO3

2 concentrations on both sides of the membrane. It
consists of one transport loop linking six discrete states of
the carrier without assumptions about rate limiting or po-
tential-sensitive steps (Fig. 5). Interestingly, an analytical
expression could be derived from the model that describes
the steady-state current generated by the coupled flux of
Na1 and HCO3

2 through the cotransporter (Eq. 13) and can
consequently be used for fitting experimental data.

The model specifically takes into account the effects of
the membrane potential on ion binding and dissociation
reaction steps as well as on the translocation rates. Based on
Eyring’s theory of reaction rates (Eyring et al., 1949; Wood-
bury, 1971), the binding of Na1 and HCO3

2 is described as
a series of activated processes in which Na1 and HCO3

2 hop
across a series of symmetrical Eyring barriers. The energy
barrier for each step is modulated by the fraction of the
electrical field across the membrane that is sensed by this
step.

The modulation factor is given bye2zxu/2, wherez is the
valence of the carrier species corresponding to that step;x is
the corresponding fraction of the membrane potential
sensed by that step; andu is the reduced, dimensionless
membrane potential,u 5 FV/RT, whereV is the membrane
potential andF, R, and T have their usual meanings. A
detailed account of the model is given in Gross and Hopfer
(1998). The general forms of the apparent rate constants for

the model are given below:

f1 5 f 1
o@Na1#i

nexp~na9u/2!;

Binding of intracellular Na1 to the carrier (1)

b1 5 b1
oexp~ 2 na9u/2!;

Dissociation of intracellular Na1 from the carrier (2)

f2 5 f 2
o@HCO3

2#i
mexp~ 2 mb9u/2!;

Binding of intracellular HCO3
2 to the carrier (3)

b2 5 b2
oexp~mb9u/2!;

Dissociation of intracellular HCO3
2 from the carrier (4)

f3 5 f 3
oexp~~zdz 1 ndn 2 mdm!u/2!;

Translocation of the loaded carrier (inside3outside) (5)

b3 5 b3
oexp~ 2 ~zdz 1 ndn 2 mdm!u/2!;

Translocation of the loaded carrier (outside3inside) (6)

f4 5 f 4
oexp~ 2 mb0u/2!;

Dissociation of extracellular HCO3
2 from the carrier (7)

b4 5 b4
o@HCO3

2#o
mexp~mb0u/2!;

Binding of extracellular HCO3
2 to the carrier (8)

f5 5 f 5
oexp~na0u/2!;

Dissociation of extracellular Na1 from the carrier (9)

b5 5 b5
o@Na1#o

nexp~ 2 na0u/2!;

Binding of extracellular Na1 to the carrier (10)

f6 5 f 6
oexp~ 2 zdzu/2!;

Translocation of the unloaded carrier (outside3inside)

(11)

b6 5 b6
oexp~zdzu/2!;

Translocation of the unloaded carrier (inside3outside)

(12)

wherez is the valence of the empty carrier,n andm are the
number of Na1 and HCO3

2 ions being transported, anddn

anddm represent the fractions of the electric field through
which Na1 and HCO3

2 ions, respectively, move with trans-
port across the membrane.dz is the corresponding parameter
that describes the fraction of the electric field sensed by the
charge on the unloaded carrier as it traverses the membrane.
a9 anda0 represent the fraction of the electric field sensed
by the binding steps of cytoplasmic and extracellular, ba-
solateral Na1, respectively, anda9 1 a0 1 dn 5 1 (see also
Läuger and Jauch, 1986).b9 and b0 represent the corre-

FIGURE 5 A six-state ordered-binding transport model of the Na-HCO3

cotransporter. The binding of three HCO3
2 anions to the carrier is described

as a single, lumped step (see Gross and Hopfer, 1998, for details).
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sponding parameters for bicarbonate, withb9 1 b0 1 dm 5
1. It should be noted that no constraint or limit can be
written to describe the translocation of the chargez associ-
ated with the empty carrier. The reason for this lack of
constraint is that unlike the Na1 and HCO3

2 ions, the charge
z does not necessarily traverse the entire distance of mem-
brane thickness upon translocation of the substrates across
the membrane. The productzdz can thus assume any value.
Furthermore,z anddz cannot be determined separately. The
productzdz will thus be referred to as the “effective charge”
of the unloaded carrier.

The net current, generated by the flux of Na1 and HCO3
2

through the cotransporter, can now be expressed as the sum
of all possible translocation steps:

I 5 2 F$zdz~b6C1 2 f6C6! 1 ~zdz 1 n 2 m!~f3C3 2 b3C4!%
(13)

where Cx is the membrane density of the corresponding
carrier state. Only the empty (C1, C6) and fully loaded (C3,
C4) forms of the carrier were assumed to be able to trans-
locate across the membrane. This assumption is consistent
with the observations that no CO2-dependent DNDS-sensi-
tive current could be observed in the absence of Na1 (see
also Fig. 2 in Gross and Hopfer, 1998), and that no Na1-
dependent DNDS-sensitive current could be observed in the
absence of CO2. Equation 13 can be solved for anyCx in
terms of the 12 rate constants.

In a previous study, the HCO3
2 to Na1 stoichiometry was

determined as 3:1, based on the measured reversal potential
and thermodynamic considerations. These values were used
for the present kinetic analysis.

The numerical values of the rate constants and electrical
coefficients were determined for four pH values by fitting
measuredDI-V curves with Eq. 13. For each pH value, at
least sevenDI-V curves with different Na1 and HCO3

2

concentrations were fitted to a single set of parameters. The
numerical results of the fits are shown in Table 1. Repre-
sentative examples of primaryDI-V data and theoretical
curves based on the fits from Table 1 are shown in Fig. 6 for
different Na1 concentrations and Fig. 7 for different HCO3

2

concentrations.
Whereas the absolute values of the rate constants in Table

1 have no physical meaning because of an arbitrary assump-
tion about the membrane density of the cotransporter, the
ratio of rate constants provides valid kinetic information
about cotransporter function, within the usual limits of
kinetic models. Similarly, the electrical interaction coeffi-
cients can be given physical meaning. Table 2 summarizes
significant effects of pH on the ratios of binding to disso-
ciation constants (ro) for intracellular and extracellular Na1

and HCO3
2, as well as on the electrical modulation of

HCO3
2 and Na1 binding b anda, respectively.

Interestingly, the binding constants (ro) of Na1 and bi-
carbonate on both sides of the basolateral membrane de-

TABLE 1 Numerical values of fitted parameters obtained by fitting the I–V relations at each pH by Eq. 13

Parameter pH 7.00 pH 7.25 pH 7.50 pH 8.00 Sensitivity

zdz 0.4 1.3 1.4 1.5 20.2
a9 0.03 0.04 0.08 0.15 20.026
a0 0.03 0.04 0.08 0.15 10.024
b9 0.06 0.1 0.2 0.25 10.03
b_ 0.06 0.1 0.2 0.25 20.04
f 1

o (M21 s21) 64 65 57 47 10.58
b1

o (s21) 1.0 1.4 1.6 1.7 20.16
f 2

o (M23 s21) 2.0 z 107 1.9 z 107 1.5 z 107 1.3 z 107 10.22
b2

o (s21) 4.0 z 104 4.5 z 104 5.0 z 104 5.0 z 104 20.21
f 3

o (s21) 7.0 z 103 7.0 z 103 7.3 z 103 1.0 z 104 10.21
b3

o (s21) 2.5 z 103 2.5 z 103 4.2 z 103 5.0 z 103 20.18
f 4

o (s21) 1.5 z 103 1.7 z 103 1.9 z 103 2.0 z 103 10.19
b4

o (M23 s21) 1.4 z 106 1.3 z 106 1.2 z 106 1.0 z 106 20.16
f 5

o (s21) 1.1 1.3 1.6 1.7 10.34
b5

o (M21 s21) 65 61 53 50 20.09
f 6

o (s21) 0.5 0.5 0.3 0.3 10.24
b6

o (s21) 0.8 0.8 0.3 0.3 10.23
CT (pmol/cm2) 0.2 0.2 0.2 0.2
n 1 1 1 1
m 3 3 3 3
Pxn

2 .0.95 .0.95 .0.95 .0.95

Pxn
2 is the probability distribution for the reducedx2.

The information content of eachDI–V curve is equivalent to four parameters, as each curve could be best fitted by a cubic polynomial, with Pxn
2 . 0.99.

A minimum of five DI–V curves, under separate conditions of [Na1], [HCO3
2], is required to determine the value of all free 16 parameters at any pH value,

as the 0,0 intercept of four of the five curves represents duplicate information. However, in practice, seven to eight differentDI–V curves were used to
determine the kinetic parameters at each pH value.
The numerical values for the parametersCT, n, andm were kept fixed.
Sensitivity was measured at pH 7.50 and at260 mV by dividing the fractional change in current by a fractional change in parameter. The sensitivity of
b6

o was calculated as the difference between unity and the sum of the sensitivities of all other parameters.
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creased by a factor of;2 when the pH increased from 7.0
to 8.0. Furthermore, all electrical parameters [electrical
modules of Na1 (a) and of HCO3

2 (b) binding and effective
charge of the unloaded transporter (zdz)] increased by about
four- to fivefold (Table 1).

DISCUSSION

The kinetic model contains a relatively large number (i.e.,
16) of free parameters. Therefore, it was of interest whether
the steady-state current data from monolayers contained
enough information to obtain stable fits. That was appar-
ently the case because the fits were internally consistent and
described monotonic, nonrandom changes in the binding of

ions on both sides and in the electrical interaction coeffi-
cients,a, b, andzdz with pH. TheDI-V curves are nonlinear
at both high positive and high negative potentials and there-
fore contain considerable kinetic information. In addition,
the information of allDI-V curves at a given pH under
different conditions of [Na1] and [HCO3

2] were used for a
single set of parameters.

The estimated values for rate constants and electrical
parameters in the present study (Table 1) differ from those
obtained previously (corrected Table 2,Biophys J.76:1720,
1999). Are these differences statistically significant, and
how can they be explained? The experimental data in the
present study were obtained with identical solutions on both
sides of the monolayer, while transport was previously

FIGURE 6 Steady-state DNDS-
sensitive currents (DI) as a function
of voltage (V) at 2.5 mM (F), 5.0 mM
(E), 10 mM (f), and 20 mM (M)
Na1. The concentration of Na1 was
varied by replacing NMDG with Na
gluconate. The concentration of
HCO3

2 was 30 mM, and that of the
other components was as in Fig. 3.
Apical and basolateral solutions were
symmetrical. Lines through the data
points are model predictions (Eq. 13).

FIGURE 7 Steady-state DNDS-sensitive currents (DI) as a function of voltage (V) at 10 mM (F), 30 mM (E), and 57 mM (f) HCO3
2. The concentration

of all other components was as in Fig. 3. Lines through the data points are model predictions (Eq. 13).
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measured under zero-trans conditions for sodium. By defi-
nition, the data obtained under zero-trans conditions can
provide only very coarse estimates of the rate constants on
the trans side, because the zero-trans conditions make re-
actions on thetrans side virtually irreversible. Therefore,
fits (x2) of the zero-trans data were calculated using the
parameters estimated in this study as well as those in the
previous study, whereby the total transporter concentration
was treated as an adjustable parameter. An F-test analysis
indicates that, based on statistical criteria, the zero-trans
data are equally well fitted by both sets of rate constants and
electrical parameters; i.e., any difference is not statistically
significant (p , 0.05).

The results obtained in this study are particularly inter-
esting because a detailed kinetic scheme was used to explain
data obtained from the cotransporter in its native plasma
membranes and in cells with a native monolayer configu-
ration. They provide a crucial basis for comparison with
data from expression systems (Muller-Berger et al., 1998).
For several transporters now, discrepancies have been de-
scribed in their behavior between native and foreign envi-
ronments. For example, in the case of the Na1/H1 ex-
changer NHE3, the presence or absence of adapter proteins
influences the activation by protein kinase A (Yun et al.,
1998).

How can the kinetic model contribute to our ideas about
the physical behavior of the cotransporter? We propose a
carrier model for the Na-HCO3 cotransporter with “channel-
like” properties and a single binding site for each substrate
that is accessible from either the intracellular side or the
extracellular side (Fig. 8). The result that the binding con-
stants of the intracellular substrates decrease with increasing
pH, at about the same rate as the extracellular substrates,
supports the concept of a single, functional site for each
substrate. For example, this relationship could be explained
by a displacement of the binding site within the membrane,
so that it becomes less accessible for the binding of sub-
strates as the pH increases from 7.00 to 8.00. Furthermore,
the concomitant increase in the electrical interaction con-

stantsa andb with the decrease in the binding affinity of
these ions supports the idea of an access channel between
the bulk and the binding sites for HCO3

2 and Na1 that
becomes narrower and more difficult to traverse as the pH
increases. The electrical coefficientsb anda represent the
“electrical distance” between the membrane/water interface
and the corresponding ion binding sites on the protein,
expressed as a fraction of membrane thickness. Alterna-
tively, they may represent the attenuation of the mem-
brane’s electric field at the ions’ binding sites, due to the
high dielectric aqueous environment in the access channel
(Jordan, 1987). The increase in the electrical coefficients
may thus reflect the decrease in hydration of the access
channel as it becomes narrower at alkaline pH.

The increase in the value of the “effective charge” (zdz)
with increasing pH could potentially be explained by two
mechanisms: 1) An increase in the net positive charge on
the unloaded form of the carrier as the pH is increased. This
possibility seems very unlikely, though, as one would ex-
pect a decrease rather than an increase in the net charge due
to deprotonation of titratable amino acid groups on the
carrier protein. 2) Considering that the “effective charge” on
the unloaded form of the carrier moves in the membrane’s
electric field during the membrane translocation/reorienta-
tion step of the cotransporter, an increase in the interaction
strength between the moving charge and the electric field
would be manifested as an increase in the “effective
charge.” Such an increase in the interaction strength could
result from a decrease in hydration state of the carrier as the
pH is increased from 7.00 to 8.00.

TABLE 2 Effect of pH on the ratio of binding/dissociation
rate constants (r°) of the intracellular and extracellular
substrates, the electrical modulation of Na1 and HCO3

2

binding (a and b, respectively, at 260 mV), and the ratio of
membrane translocation rates of the loaded and unloaded
carrier (f°3/b°3 and f°6/b°6, respectively)

pH 7.00 pH 7.25 pH 7.50 pH 8.00

r°Nai 646 6 466 5 366 4 286 3
r°Nao 596 6 476 8 336 4 296 2
r°Bici 5006 52 4226 45 3006 34 2606 18
r°Bico 9336 94 7656 82 6326 62 5006 44
b* 1.5 6 0.2 2.06 0.3 3.96 0.5 5.46 0.6
a# 1.16 0.1 1.16 0.1 1.26 0.1 1.46 0.1
f°3/b°3 2.86 0.2 2.86 0.3 1.76 0.2 2.06 0.3
f°6/b°6 0.66 0.02 0.66 0.05 1.06 0.1 1.06 0.1

*bBic 5 exp(2mb9u/2)/exp(mb9u/2).
#aNa 5 exp(2na9u/2)/exp(na9u/2).

FIGURE 8 Schematic presentation of the proposed “gated channel”
model for the Na-HCO3 cotransporter. The cotransporter alternates be-
tween an “inward-facing” and an “outward-facing” conformation (top). In
the “inward-facing” conformation, the height of the Eyring energy barrier
for the binding of intracellular substrate (Ei) is lower than that for the
extracellular substrate (Eo) (bottom). As a result, the probability for the
binding of the intracellular substrates to the cotransporter is larger than that
for the extracellular substrates. The composite binding function of the
substrates exhibits a maximum at pH 7.50.
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Superficially, the biphasic profile of activation/inactiva-
tion of transport activity with pH (Fig. 3A) is similar to the
observed pH dependence of many hydrolytic enzymes. This
analogy is of interest because pH-dependent activation/
inactivation of enzymes is often well understood at the
molecular level. For example, titration of amino acid resi-
dues involved in enzyme catalysis within the active site can
be directly linked to rates of enzyme activity. Thus biphasic
behavior with pH can come about by titration of one mo-
lecular group that activates and another one that inactivates
(Chao and Graves, 1970; Ottolenghi, 1971). However, our
attempts to fit the pH dependence of overall transport ve-
locity (current), individual rate constants, or electrical pa-
rameters to a simple model involving titratable groups failed
to give satisfactory results. This probably reflects an indirect
and complex relationship between protonation of an amino
acid and the rate of transport. After all, transport involves
conformational changes of the transporter protein, and the
rates of these conformational changes are likely to be only
indirectly linked to the protonation state of specific amino
acid residues.
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