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ABSTRACT Cell metabolism is able to respond to changes in both internal parameters and boundary constraints. The time
any system variable takes to make this response has relevant implications for understanding the evolutionary optimization of
metabolism as well as for biotechnological applications. This work is focused on estimating the magnitude of the average time
taken by any observable of the system to reach a new state when either a perturbation or a persistent variation occurs. With
this aim, a new variable, called characteristic time, based on geometric considerations, is introduced. It is stressed that this
new definition is completely general, being useful for evaluating the response time, even in complex transitions involving
periodic behavior. It is shown that, in some particular situations, this magnitude coincides with previously defined transition
times but differs drastically in others. Finally, to illustrate the applicability of this approach, a model of a reaction mediated
by an allosteric enzyme is analyzed.

INTRODUCTION

Cell metabolism is a complex network of biochemical re-
actions that is continuously interacting with its environ-
ment. Thus, it can be viewed as a dynamic system that is
able to adapt its behavior to changes in both the internal
parameters (kinetic constants or enzyme concentrations)
and the boundary constraints (input source of material or
concentration of external metabolites). This adaptation oc-
curs in a period of time that depends on the intrinsic prop-
erties of the system, mainly the design of the pathway
(stoichiometric properties) and kinetic factors. Moreover,
this period of time must also depend on both the current
state of the system—the initial state and the boundary
constraints—and the kind of perturbation it undergoes.

Getting a wide knowledge of the response time (in a
general sense, the time spent to respond to a stimulus) has
important implications. Within an evolutionary context, this
study may allow us to obtain important clues to how cell
metabolism has evolved. Response time is a key feature of
living beings that is frequently critical in the struggle for
life. It is decisive, for example, for predators to capture prey
and for prey to escape from predators. In a more general
sense, response time is a variable that determines a kind of
behavior, and so it must agree with each particular ecolog-
ical niche. A logical hypothesis is that every aspect of the
macroscopic behavior of a species must have a closely
related molecular design behind it. This includes, of course,
response time. In effect, Lupia´ñez et al. (1996), exploring

the transition from aerobic to anaerobic glycolysis, as the
metabolic support of the flight promptness in several birds,
showed that long-distance flying birds—which have, how-
ever, a slow start—have a long metabolic response time,
whereas the sprinters—characterized by a quick macro-
scopic start—showed a short metabolic response time.
Thus, according to natural selection, the response time of
present-day metabolic routes might be strongly adapted to
its functionality, and thus macroscopic behaviors must re-
flect microscopic transition times.

From a biotechnological viewpoint, a suitable knowledge
of the response time could allow the control and regulation
of cell metabolism (for instance, by changing either the
kinetic properties or the design of the pathway). If cells are
considered as factories of bioproducts (Bailey, 1991), the
main consequence would be the possibility of improving
this function. Nevertheless, the complexity of metabolic
behavior (Goldbeter, 1996) makes it difficult, in many in-
stances, to measure the response time. There are similar con-
siderations regarding the time for drug action in metabolism.

The theory of the response time has been developed by
several researchers for the last 20 years (Heinrich and
Rapoport, 1975; Easterby, 1973, 1981, 1986; Mele´ndez-
Hevia et al., 1990, 1996; Torres et al., 1991; Cascante et al.,
1995, 1996; Heinrich and Schuster, 1996; Llore´ns et al.,
1997, among others). It is noteworthy, however, that despite
its obvious importance, this subject remains at present vir-
tually unexplored. As far as we know, only a few direct
empirical determinations of metabolic response times have
been described (Torres et al., 1990; Torres and Mele´ndez-
Hevia, 1992; Lupia´ñez et al., 1996). Transition times in
human erythrocyte by kinetic modeling have also been
assayed (Rapoport and Heinrich, 1975; Werner and Hein-
rich, 1985). A possible reason for the little attention paid to
this key feature could be the lack of a general agreement on
the theory. In fact, the proposed definitions of a represen-
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tative time of transition have differed from each other,
depending on the initial and final state, and in general they
have been defined for very restrictive boundary constraints
and transitions. This aspect clearly causes uncertainty in
undertaking experimental work.

Then, a question arises: Is it possible to find a physical
magnitude, theoretically well supported and experimentally
measurable, that is useful for the study of the time a system
variable takes to achieve any transition from a state A to
another state B, regardless of what they are, and indepen-
dently of the boundary constraints? In this work we shall
prove that the answer is positive, which leads to a com-
pletely general definition for the characteristic time of a
transition.

THEORETICAL FRAMEWORK

In most models, both experimental and theoretical, time is
treated as a parameter. However, to make a theory of
temporal transitions (i.e., to investigate how transitions de-
pend on system parameters as kinetic constants or enzyme
concentrations), we need to deal with time as a function.
The problem of evaluating the transition time and studying
its properties is difficult for two main reasons: Mathemati-
cally, approaching to the final state is asymptotic, and it
requires an infinite time. From an experimental point of
view, it is always difficult to decide how close to the steady
state the system variable is. To overcome these difficulties,
historically the question of how to measure a time repre-
sentative of the transition in metabolic pathways has been
tried through different approaches.

Hess and Wurster (1970) analyzed experimentally an
irreversible metabolic system of two reactions under satu-
rating conditions of the first enzyme. They called the inter-
section point of the asymptote of the progress curve (re-
cording the concentration of the end product with time) with
the time axis thetransient time, assuming the system was
initially empty. They showed that it corresponds to the
reciprocal of the eigenvalue from the theoretical model of
this system.

Easterby (1973) extended this analysis to multienzyme
sequences under similar constraints (irreversibility and sat-
urating conditions of the first enzyme). He proved that each
enzyme has a transient time, and that the overall transient
time is given by the sum of the individual transients. More-
over, each transient time can be obtained through the ratio
between the stationary concentration of theith intermediate,
x# i, and the flux at steady state,J#, i.e.,

ti
E 5

x# i

J#
(1)

Later, Hearon (1981a) proved that in linear systems the
transient time corresponds to an average time. In subsequent
papers, this definition has been extended to 1) reversible
reactions, even when the differential equations describing
the progress curve are not readily amenable to analytical

solution (Easterby, 1981); 2) transitions between steady
states (Easterby, 1981); 3) systems in which the input of
source material varies with time (Easterby, 1986); and 4)
systems evolving under constant affinity constraints
(Lloréns et al., 1997). It has also been shown that under
constant input flux, the transient time corresponds to the
time a molecule needs to cross the reaction chain at steady
state, which has been referred to as transit time (Easterby,
1981; Hearon, 1981b; Mora´n et al., 1997).

An alternative way of calculating the transition time,
initially formulated for the concentrations of chemical re-
actants, was introduced by Heinrich and Rapoport (1975). If
dx(t) is the instantaneous deviation of a metabolite concen-
tration, x(t), from the steady-state value,x#, i.e., dx(t) 5
x(t) 2 x#, then its transition time is given by

tx
H 5

*0
` tdx~t!dt

*0
` dx~t!dt

(2)

As the authors pointed out, to have a well-defined magni-
tude, the sign ofdx must not change during the transition.
This definition takes also into account the overall features of
the temporal evolution of the variable by weighting the time
with dx(t). Although in particularly simple linear systems
(e.g., A ^ B) the approaches mentioned above yield the
same result, in more complex situations they lead to mea-
surements that are clearly divergent. In fact, as will be
shown below, none of the referred times are representative
of important transitions, and furthermore, these magnitudes
are not defined in complex situations.

A third direction in evaluating transition times was sug-
gested by Easterby (1973) and later by Storer and Cornish-
Bowden (1974) and Torres et al. (1991). They defined a
magnitudet99, which measures the time a variable takes to
reach 99% of its steady-state value. This magnitude can be
used to compare transition times of different systems (re-
gardless of their nature and constraints). However, its eval-
uation is prone to high experimental error because of the
asymptotic shape (for long times) of the evolution profile.
Moreover, t99 could not be really representative of the
transition (in fact, it is not difficult to find similar transitions
that differ appreciably in the value oft99). Thus an average
estimate for the response time seems more convenient.

The previous exposition points out the existence of a
broad interest in studying the time biological systems take
to undergo transitions. Furthermore, all of these definitions
refer to particular transitions and constraints and fail when
they are applied to other kinds of transitions, as will be
commented on in the following sections. To solve this
controversy, here we shall propose a general definition to
characterize the response time of any system variable.

A POSSIBLE SOLUTION:
A GEOMETRIC DEFINITION

A deep characterization of the time associated with any
transition requires the definition of a magnitude that can be
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handled both experimentally and theoretically. Because
transitions between states can be described by the evolution
profile of the variable of interest (output flux, metabolite
concentration, etc.), the characteristic time of the transition
must contain some average information of the overall pro-
cess, also making possible the comparison between differ-
ent types of transitions.

As shown in Fig. 1, in which three hypothetical transi-
tions appear, valuable information on the time that a vari-
able f takes to reach the stationary regime can be obtained
from a quantification of the area between the evolution
curve of the variable under study and its final state. How-
ever, by the simple consideration of this area, the curvec1,
which is clearly faster than curvec3, would have a higher
response time. Therefore, to get a correct measure of this
time, the area must be conveniently normalized. The nor-
malization factor in these curves is the global variation of
the variable, i.e.,f# 2 f(0). This normalized area will be
referred to as thecharacteristic timeof the transition,Tc.

Thus the problem is reduced to determining which is the
correct area to be computed in each case, as well as finding
the criteria of normalization.

In the following subsections, the characteristic timeTc

will be calculated for different kinds of transitions that have
previously been analyzed in the literature. The variables
commonly measured are the output flux,Jout, and the input
flux of the pathway,Jin. It is assumed that both variables are
monotonous functions, which means that the signs of their
derivatives do not change during the evolution. In all of
these cases the area and the normalization factor can be
straightforwardly found. However, as will be discussed
later, when flux is not monotonous, the relationship between
the area and the normalization factor is not so obvious (see,
for instance, Fig. 5).

Transition from rest under constant input flux

Many biochemical systems can be supposed to work under
a constantJin. In this situation, it is interesting to analyze the
transition time of the output flux of the pathway,Jout. Under
special conditions, and assuming that initially the concen-
tration of every intermediate is null (transitions from rest)
(Hess and Wurster, 1970; Easterby, 1973), the temporal
evolution of Jout has a shape similar to those depicted in
Fig. 1.

To illustrate the evaluation of the characteristic time of
the transition, consider the curve labeledc1. As commented
on in the previous paragraph, the area to be taken into
account for the estimation ofTc should be the hatched one,
i.e.,

A 5 lim
t3`

SJint 2 E
0

t

JoutdtD (3)

But, at any timet from the initiation of the transition, mass
conservation requires

Jin 5 O
i51

n dxi~t!

dt
1 Jout~t! (4)

and integrating over the time,

Jint 2 E
0

t

Joutdt 5 O
i51

n

xi~t! (5)

From this expression it becomes clear that, if the system
achieves a stationary regime, the areaA corresponds to the
mass accumulated at steady state,s# 5 limt3` (i51

n xi(t). If
A is normalized by the variation of flux as a consequence of
the transition, i.e.,Jin 5 Jout(`) 2 Jout(0), the characteristic
time that results is

Tc 5
s#

Jin
5 tE (6)

FIGURE 1 Comparison of the temporal evolution to the steady state of
three hypothetical systems. Three evolution curves of a hypothetical vari-
able, f, are shown:c1, c2, and c3. A measure of the time taken by each
variable to achieve a steady-state value can be obtained through the
quotient of the area enclosed between the final state and the evolution
curve, and the overall variation off in each transition. It can be seen that
the hatched area, which corresponds to curvec1, is smaller than that
corresponding toc2 (dotted curve), whereas the two transitions lead to the
same variation inf. It means that the characteristic time ofc1, Tc(1), is lower
than that corresponding toc2, Tc(2). With respect toc3, although its area
(shadowed area) is smaller than that of the other two, the quotient between
this area and the change inf, Tc(3), is lower than that corresponding toc2

and greater than the one corresponding toc1. This reasoning leads to the
conclusion

Tc(1) , Tc(3) , Tc(2)

It is worth remarking that these kinds of curves are obtained in systems
evolving from rest under a constant input flux,Jin, when the output flux,
Jout, is analyzed. In this case the area corresponds to the mass accumulated
at steady state,s# , and the overall variation in the variable under study to
Jin 5 Jout(`) 2 Jout(0). Then,Tc 5 s# /Jin, as defined by Easterby (Eq. 6).
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Therefore, in systems under this kind of constraint, the
characteristic time of the output flux corresponds to the
transient time defined by Easterby,tE. In addition, as was
already pointed out by this author, the transient time (and
so, the characteristic time) is given by the intersection of the
asymptote to the progress curve (i.e., the integral of the
output flux) and the time axis (Easterby, 1973).

Transition between steady states under constant
input flux

Under physiological conditions, transitions from rest rarely
occur. In practical situations, metabolism responds to vari-
ations in the environment by changing its steady state,
characterized by particular values of the intermediate con-
centrations and fluxes, to another state (that, in the case of
temporal perturbations, could be the previous one). In Fig.
2 A, curve 1 represents a transition between a steady statea,
characterized by a stationary fluxJ#a, and a stateb, in which
the final flux isJ#b. The area representative of the transition
is the hatched one, which, as before, is given by

A 5 lim
t3`

SJ#bt 2 E
0

t

JoutdtD (7)

Again using mass balance equations, and assuming that at
time t 5 0 the system is at statea, it is possible to prove that

this area coincides with the difference between the mass
accumulated at the steady stateb (s# b) and that correspond-
ing to the statea (s# a). In this case, as can clearly be seen in
Fig. 2 A, the normalization factor is the difference in flux
between the two states, which yields the following expres-
sion for the characteristic time:

Tc 5
s# b 2 s# a

J#b 2 J#a

(8)

It is important to remark that now this time differs from the
one proposed by Easterby for transitions between steady
states (Easterby, 1981),tab 5 (s# b 2 s# a)/J#b. A careful
inspection of Fig. 2A shows that, in this case, considering
J#b as the height of the transition leads to an underestimation
of the response time (but the result could also be an over-
estimation, whenJ#b , uJ#b 2 J#au). Actually, the higherJ#b is,
the lower the value obtained fortab. To illustrate this fact,
let us compare transition 1 with transition 2 (Fig. 2A). They
represent qualitatively similar transitions, but 2 starts from
rest and 1 starts from the stationary statea. Strikingly, the
resultingt0b (i.e.,tE for transition 2) would be much higher
thantab for transition 1, whereas their characteristic times
evaluated through Eq. 8 are equal.

It should be noted that in those situations in whichJ#a 5
J#b (as occurs with temporal perturbations), Eq. 8 is not
valid, because in those cases the derivative ofJout changes

FIGURE 2 (A) Transition between two steady states under a constant input flux restriction. Curve 1 shows the output flux of a system that evolves from
a steady statea, characterized by a stationary fluxJ#a, to a steady stateb, with a final flux J#b. In this caseJ#b . J#a, but the calculation ofTc is equally valid
for the opposite situation, i.e., whenJ#a . J#b. As in Fig. 1, timeTc is obtained through the ratio between the hatched area and the difference of fluxesJ#b 2
J#a. As was discussed in the text, this time must correspond to the characteristic time of curve 2, which is qualitatively similar to curve 1. It can be seen
that the transient time defined by Easterby,tab, is higher for curve 2 than for curve 1, which seems to be contradictory. (B) Geometric determination of
Tc from the progress curve of a transition between steady states under constant input flux. Mass that enters (Sin 5 Jint) and leaves the system (Pout 5 *0

t

Joutdt) is plotted versus time.Tc is obtained as the time at which the asymptote to the progress curve of statea, ra: J#at, intersects that corresponding to state
b, rb: J#bt 2 (s# b 2 s# a). Notice the difference betweenTc and Easterby’s transient time,tab.
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its sign (i.e.,Jout is not monotonous). This situation will be
analyzed later.

As in the previous subsection, the characteristic time can
be geometrically obtained from the progress curve shown in
Fig. 2 B. In fact, Tc corresponds to the solution of the
following equation (see Eq. 8):

J#at 5 J#bt 2 ~s# b 2 s# a! (9)

where J#at is the straight line asymptotic to the progress
curve of statea, andJ#bt 2 (s# b 2 s# a) is that corresponding
to stateb. Therefore, the characteristic time can be geomet-
rically obtained as the intersection point of the two asymptotes.

Transition from rest under constant
affinity constraints

When a metabolic pathway, with a given equilibrium con-
stant for the conversion of the initial substrate into the final
product, evolves under a constant concentration of these
metabolites, is said that it is constrained to work at constant
affinity. In this case, both the input and output fluxes,Jin

andJout, respectively, are reversible and variable with time.
Fig. 3 A shows their typical profile. Because initially the
system is empty, a negative local affinity appears in the last
reaction and mass enters from the product, which is trans-

duced in a negative value ofJout at the beginning (Llore´ns
et al., 1997). The evolution of the input flux has already
been discussed for systems under variable input of material
and irreversible output (the special case of infinite affinity)
(Hearon, 1981b; Easterby, 1986; Torres et al., 1991). Again,
the areas enclosed between each curve and the final state
will be chosen to estimate the corresponding characteristic
time:

Ain 5 lim
t3`

SE
0

t

Jindt 2 J#tD
(10)

Aout 5 lim
t3`

SJ#t 2 E
0

t

JoutdtD
whereJ# is the steady-state flux. It has been proved that these
areas,Ain and Aout, can be associated with the stationary
masses accumulated because of the variable input,s# in, and
the variable output,s# out, respectively (Torres et al., 1991;
Cascante et al., 1995). The overall mass at steady state is
given by s# 5 s# in 1 s# out. The normalization factor corre-
sponds to the difference between the steady-state flux and
the value of the fluxes at time zero. Thus the expressions for

FIGURE 3 (A) Temporal evolution of a system evolving from rest under a constant affinity constraint. Input and output fluxes (Jin andJout) are plotted
versus time. Because both velocities are variable, it is possible to define a characteristic time for each one,Tc(in) andTc(out). For the estimation ofTc(in),
the area to be considered is labeledAin (which corresponds to the mass accumulated at steady state because of the variable input,s# in), and the normalization
factor isJin(0) 2 J# (the overall variation in the input flux). Then,Tc(in) 5 s# in/(Jin(0) 2 J#). Similarly, Tc(out) is obtained as the ratio between the area labeled
Aout (which corresponds tos# out, i.e., the mass accumulated in the steady state because of the variable output) andJ# 2 Jout(0). Therefore,Tc(out) 5 s# out/(J# 2
Jout(0)). Notice the difference between these magnitudes and previously defined transition times,tin 5 s# in/J# andtout 5 s# out/J#. (B) Geometric determination
of Tc from the progress curve of a system evolving under a constant affinity restriction. Mass entering (Sin 5 *0

t Jint) and leaving (Pout 5 *0
t Joutdt) the system

is plotted versus time. As can be seen,Tc(in) is the time at which the asymptote toSin, rs: J# int 1 s# in, intersects the straight line with a slope equal to the
initial value of the input flux,r0

s: Jin(0)t. In a similar way,Tc(out) is given by the intersection of the asymptote toPout, rp: J#outt 2 s# out, and the straight line
r0
p: Jout(0)t.
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the characteristic times ofJin andJout are, respectively,

Tc(in) 5
s# in

Jin~0! 2 J# (11)

Tc(out) 5
s# out

J# 2 Jout~0!

It must be stressed that, in systems evolving under this
kind of constraint, other transient times associated with both
the input and output flux were previously defined (Easterby,
1986; Torres et al., 1991; Cascante et al., 1995),tin 5 s# in/J#

and tout 5 s# out/J#. However, it is clear from Fig. 3A that
neithertin nor tout informs us about the average time of the
corresponding transitions, because the normalization factor
used in both cases (J#) is not adequate.

Following geometric considerations, now each character-
istic time can be obtained from the progress curve of the
respective velocity as the time at which its asymptote inter-
sects the straight line whose slope equals the initial value of
the velocity (see Fig. 3B).

A mathematical expression for the
normalized area

Although Eqs. 6, 8, and 11 for the characteristic time may
look different, a careful inspection shows that all of them
can be deduced from the general definition,

Tc 5

E
0

`

t
df

dt
dt

E
0

` df

dt
dt

(12)

In fact, when the functionf analyzed corresponds to the
output flux,Jout, and the system evolves from rest under a
constant input, integration by parts of Eq. 12 leads to Eq. 6.
Similarly, when transition starts from a statea, Eq. 12
reduces to Eq. 8. And finally, when the constraint imposed
on the system is of constant affinity, bothTc(in) andTc(out)

(Eq. 11) are obtained iff is considered to beJin andJout in
Eq. 12, respectively.

It is worth mentioning that this definition can be used to
estimate the characteristic time for any variable of the
system (individual reaction velocities, concentration of me-
tabolites, etc.). The only requirement forTc to give accurate
information on the transition time is thatf must be a mo-
notonous (increasing or decreasing) function of time. In
addition, df/dt must be integrable over the interval [0,a], for
all a . 0. The question of the convergence of the improper
integrals involved in the definition ofTc can be solved by
attending to the mass conservation law. For instance, when
f is a reaction rate, the convergence of Eq. 12 is ensured,
because its numerator is always a fraction of the mass
accumulated in the system at steady state, which must be

finite to accomplish the mass balance at the stationary state.
On the contrary, an infinite value ofTc would indicate that
the system does not reach a steady regime.

The characteristic time so defined is the subject of three
complementary interpretations:

1. For systems with linear kinetics evolving from rest
under constant input of substrate, Hearon proved that the
transient timet is given by a linear combination of the
reciprocal of the eigenvalues of the system (all of them are
strictly negative real numbers, because chemical (or bio-
chemical) reaction models are considered; Hearon, 1981b).
Under these assumptions the characteristic time coincides
with the transient time, and thenTc 5 2(i51

n 1/li.
In general, if f is a monotonous function that can be

expressed by a linear combination of real exponential func-
tions, f(t) 5 (i51

n aie
lit, with lk , 0 for all k, then it can

easily be shown that the characteristic time reads

Tc 5 2
Oi51

n ai/liOi51
n ai

(13)

Therefore, the characteristic time has the meaning of a
preexponentially weighted average time. This magnitude
has already been used to measure the features of other types
of transitions, e.g., decay of excited states (Carraway et al.,
1991).

2. If f is viewed as the distribution of mass of a line of
infinite length, then Eq. 12 is formally identical to the
expression commonly used to calculate the center of mass
of the line, with a density distribution given byr(x) 5
dm/dx, which is

^x& 5

E
0

`

x
dm

dx
dx

E
0

` dm

dx
dx

.

Accordingly, the characteristic time has the meaning of the
hypothetical time at which the whole transition is concentrated.

3. Complementarily, ifh(t) 5 f(t)/(f# 2 f(0)) is considered
as a distribution function, which is typical in statistics, the
characteristic time

Tc 5 ^t& 5 E
0

`

t
dh

dt
dt

may be interpreted as the first moment or average of the
probability distribution, thus sharing the meaning of mean
time of the transition.

GENERALIZATION TO COMPLEX TRANSITIONS

Contrary to the profiles shown in Figs. 1–3, metabolic
systems often present more complex dynamics. In fact,
transitions involving critical damping, damped oscillations,
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or even sustained oscillations can be found under any kind
of external constraint (Chance et al., 1964; Pye and Chance,
1966; for a review see Goldbeter, 1996). In these cases, the
sign of df/dt changes during the transition, and then the
previous definition of the characteristic time is no longer
valid, because negative weighted times appear. Neverthe-
less, as will be proved in the next subsections, there is a
straightforward way of generalizing the previous definition
(Eq. 12) to these complex transitions.

Critically damped transitions

The simplest complex transition involving changes in the
sign of the derivative is the critically damped transition. The
curve labeled 1 in Fig. 4A shows the evolution of a variable
with this sort of dynamics. To find an explicit expression for
its characteristic time, let us consider the hypothetical tran-
sition represented by curve 2. Untilt 5 t1, its evolution
profile is identical to the critically damped transition (curve
1). From this time to infinity, both transitions are mirror
images with respect to the axis,M, parallel to the time axis.
It can be assumed that if two transitions have a symmetry
axis parallel to the time axis, then their characteristic times
must be equal. Therefore, the evaluation ofTc for curve 2
yields a straightforward way of defining the characteristic
time for critically damped transitions.

Because the sign of df/dt does not change during the
transition of curve 2, Eq. 12 can be applied to evaluate its

FIGURE 4 (A) Temporal evolution of a system variable with critical
damping. Curve 1 shows the output signal (f) of a system that evolves
toward the stationary state with critical damping. Fromt 5 0 until t 5 t1,

the derivative off is positive. Fromt 5 t1 to infinity, this derivative is
negative. To estimate the characteristic time of this observable, curve 2 will
be considered. This curve is identical to 1 untilt 5 t1. From this time to
infinity, it is its mirror image with respect to the axisM, parallel to the time
axis. Thus we have obtained a curve whose characteristic time will be equal
to that corresponding to curve 1, but now the derivative of profile 2 is
always positive, a necessary condition for Eq. 12 to be applied (see text).
The areas to be taken into account in the calculation ofTc will be the
hatched ones,A1 1 A2, whereas the normalization factor will be the
asymptotic state of curve 2,f*. (B) Decomposition of the evolution profile
depicted as curve 1 inA. The sum of the nondecreasing functionsg andh,

g~t! 5 H f ~t! if 0 # t # t1
f ~t1! if t $ t1

and

h~t! 5 H 0 if 0 # t # t1
f ~t1! 2 f ~t! if t $ t1

yields functionf. Because bothg and h are monotonous functions, their
respective characteristic times can be obtained through Eq. 12 asTc

g 5
B1/f(t1) andTc

h 5 B2/(f(t1) 2 f#). Therefore, the characteristic time off can
be defined as the weighted average ofTc

g and Tc
h (see Eq. 20). (C)

Geometric evaluation ofTc andtE for the transition described inA, for f 5
Jout. Progress curves corresponding to transitions 1 and 2 of partA when
f 5 Jout are depicted. The difference betweenTc andtE is due to the process
of inversion of those parts of the curve with negative derivative, as
discussed in the text. To evaluate the characteristic time, the absolute value
of df/dt must be taken into account, which yields an asymptotic behavior
with greater (as in the example) or equal slope. In general,Tc can be greater
than, equal to, or lower thantE.
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characteristic time. In this case, the area that informs us
about the transition is that enclosed between the asymptotic
state (which will be referred to asf*) and the evolution of
curve 2 (hatched areain Fig. 4 A). This total area has two
contributions:A1, the area enclosed from 0 to the timet1, at
which df/dt(t) 5 0 (which corresponds with the maximum in
the curve), i.e.,

A1 5 f * t1 2 E
0

t1

f ~t!dt (14)

and the rest of the area,A2, from t1 to infinity, which can be
easily calculated as

A2 5 lim
t3`

S~t 2 t1!f * 2 E
t1

t

@2f~t1! 2 f~t!#dtD (15)

In both expressions,f* 5 2f(t1) 2 f#, wheref# is the steady-
state value achieved by the functionf. Then, the character-
istic time of damped transitions from rest responds to the
expression

Tc 5
A1 1 A2

f *
(16)

Notice that now the normalization factor is not given by the
real change in the variable under study,f#. Using integration
by parts, the numerator of this equation can be rewritten as

A1 1 A2 5 lim
t3`

S2f#t 1 2f ~t1!t1 2 E
0

t1

f ~t!dt 1 E
t1

t

f ~t!dtD
5 lim

t3`
Sf ~t1!t1 2 E

0

t1

f ~t!dt

2 Ff#t 2 f ~t1!t1 2 E
t1

t

f ~t!dtGD
5 lim

t3`
SE

0

t1

t
df

dt
dt 2 E

t1

t

t
df

dt
dtD

5 lim
t3`

SE
0

t

tUdf

dtUdtD

(17)

In a similar way, the denominator can be expressed as

f * 5 lim
t3`

SE
0

t1 df

dt
dt 2 E

t1

t df

dt
dtD 5 lim

t3`
SE

0

t Udf

dtUdtD (18)

resulting in the following equation for the characteristic
time:

Tc 5

E
0

`

tUdf

dt
Udt

E
0

` Udf

dt
Udt

(19)

Therefore, a mathematical expression for the characteristic
time of critically damped transitions can be found simply by
considering the absolute value of the derivative of the
function under study. The consideration of the absolute
value is not unexpected, because the evaluation ofTc re-
quires the estimation of all periods of time, independently of
the sign of df/dt. In other words, the weight function must
always be positive. The situation described here is similar to
the problem of calculating the time a mechanical pendulum
takes to reach the equilibrium state (independently of the
direction of its movement, the time always increases). Ob-
viously, the use of Eq. 12 would yield to an underesti-
matedTc.

As occurs with monotonous transitions, the convergence
of the improper integrals involved in the definition ofTc

(Eq. 19) is automatically ensured because of the mass con-
servation law. Iff is a velocity, it can be shown that, because
the mass accumulated in the steady state,s# , is always finite
when the system achieves a stationary regime, then the area
A2 is also finite. Therefore,Tc must be finite.

Another alternative interpretation of Eq. 19 comes from
the theory of distribution functions. The variablef can be
always decomposed as a sum of nondecreasing functions,
i.e., f 5 g 2 h, where

g~t! 5 H f ~t! if 0 # t # t1
f ~t1! if t $ t1

h~t! 5 H 0 if 0 # t # t1
f ~t1! 2 f ~t! if t $ t1

Because bothg andh are increasing functions of time, their
characteristic times can be calculated by using Eq. 12. As
Fig. 4B shows,Tc

g 5 B1/f (t1) andTc
h 5 B2/(f (t1) 2 f#). Now,

the characteristic time off can be defined as the weighted
average of the characteristic times of the increasingg andh,
Tc

g andTc
h:

Tc
f 5

f ~t1!Tc
g 1 ~f ~t1! 2 f#!Tc

h

2f ~t1! 2 f#
(20)

As can easily be checked, this expression coincides with Eq.
16 and, therefore, with the definition given in Eq. 19.

Fig. 4 C illustrates the difference between the character-
istic time Tc and Easterby’s definition,tE. In this example
the value obtained fortE is lower than that corresponding to
Tc, but the opposite situation can also be found. This fact
can be understood by noting that the characteristic time
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takes into account the massmis au jeuduring the transition,
whereastE only considers the mass accumulated at steady
state, which is always lower than or equal to the former.
Nevertheless, the normalization factor that enters the ex-
pression fortE is lower than the respective value forTc (i.e.,
f# # f*), which explains why the quotient between them can
be lower than, equal to, or greater than the characteristic
time.

It is important to remark that the same definition (Eq. 19)
also applies to transitions from any statea to any stateb. In
particular, temporal perturbations can be treated as a par-
ticular case of critically damped transitions in which the
final state is the original one, and thusTc can be obtained
from Eq. 19.

Damped oscillations

The evolution of a system variable that reaches the steady
state through damped oscillations is shown by curve 1 of
Fig. 5. To look for the correct expression for the character-
istic time, we follow the same reasoning as that applied in
the previous section. Now the curve must be inverted in
every place where df/dt is negative, that is, between each
maximum and its next minimum. This yields curve 2 in Fig.
5. Because the curve oscillates infinitely approaching the
steady state, the number of terms in which the overall area
must be decomposed tends to infinity. As discussed in the
previous subsection, both transitions 1 and 2, have identical

characteristic times. Thus we define

Tc 5
A*

f*
(21)

where, again,f* is the asymptotic state obtained after in-
version of the evolution curve, andA* is the area enclosed
between this asymptotic state and the inverted curve. It can
be deduced that (see Appendix)

A* 5 E
0

`

tUdf

dt
Udt

(22)

f* 5 E
0

` Udf

dt
Udt

and then, the characteristic time responds again to Eq. 19.
For these complex situations, the problem of showing the

range of convergence of Eq. 21 cannot be straightforwardly
solved. Now, in the determination ofTc an infinite sum of
areas (a series of real numbers) is involved. Then the
improper integrals that appear in Eq. 22 converge if and
only if this series converges. In general, it can be stated that
to have a finite characteristic time, df/dt must tend to zero
faster than 1/t2 as t approaches infinity. This condition is
always satisfied whenf is a combination of negative expo-
nentials, as are the solutions of linear ordinary differential
equations. It is worth remarking that an infinite value ofTc

would mean either that the system does not reach a steady
regime or that this approximation is tremendously slow (see
section Evaluation of the Characteristic Time in a Reaction
Model Involving an Allosteric Enzyme, below).

Sustained oscillations

The evolution of an observablef that evolves toward a limit
cycle f# is represented in Fig. 6A. Although the final state is
nonstationary (df#/dt Þ 0), it is still possible to compute the
characteristic time of the transition of any variable,f, by
analyzing the evolution off 2 f#. The resulting curve is
represented in Fig. 6B, and, as can be seen, it is completely
analogous to the curve that evolves under damped oscilla-
tions to a steady state. Therefore, Eq. 19 can be extended to
these kinds of systems only by taking into account the
function f 2 f# instead off:

Tc 5

E
0

`

tUd@f 2 f##

dt
Udt

E
0

` Ud@f 2 f##

dt
Udt

(23)

However, contrary to Eq. 19, now the function of timef#

appears in the expression ofTc.

FIGURE 5 Temporal evolution of a system variable with damping.
Curve 1 represents the evolution of a variablef toward the steady state
through damped oscillations. As the estimation ofTc requires the mono-
tonicity of f, its profile must be inverted in every place in which df/dt is, for
instance, negative. This process leads to curve 2. Following the same
reasoning as that applied in Fig. 4, the characteristic time of this system can
be obtained through the ratio between the hatched area andf*, Tc 5 A*/ f*
(see Appendix).
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It must be remarked that, in one-step linear reaction
schemes forced with a periodic input, the characteristic time
corresponds to the reciprocal of the real part of the eigen-
value. This fact shows the existence of a relationship be-
tweenTc and the eigenvalues of the system, even when the
absolute value of df/dt is used.

EVALUATION OF THE CHARACTERISTIC TIME IN
A REACTION MODEL INVOLVING AN
ALLOSTERIC ENZYME

With the aim of analyzing the applicability ofTc to meta-
bolic systems in which complex dynamics appear, the PFK
model of Goldbeter and collaborators (Goldbeter and Lefe-
ver, 1972; Goldbeter and Nicolis, 1976, Goldbeter, 1996) is
studied. This model describes the phosphorylation of fruc-
tose 6-P through the action of the enzyme phosphofructoki-
nase in glycolysis. This reaction has been proved to be the
main cause of the oscillatory behavior of this pathway.

The dimensionless equations that account for the dynam-
ics of the system are

da

dt
5 v 2 wf~a, g!

(24)
dg

dt
5 qwf~a, g! 2 kg

where a and g denote the normalized concentrations of
substrate (ATP or fructose 6-phosphate) and product (ADP
or fructose 1,6-bisphosphate), respectively;v denotes the
constant input rate of substrate,w is related to the maximum
rate of the enzyme PFK, andk is the constant output rate of

product. The parameterq can be interpreted as a scale factor
that appears from the relationship between the dissociation
constants for the enzyme with respect to the substrate and
product.

Provided a dimeric enzyme, and when the association of
the substrate to its inactive form is neglected, the functionf
is given by the following expression:

f~a, g! 5
a~1 1 a!~1 1 g!2

L 1 ~1 1 a!2~1 1 g!2 (25)

whereL is the allosteric constant of the enzyme.
As has been well illustrated by the authors (Goldbeter and

Lefever, 1972; Goldbeter and Nicolis, 1976), this system
presents a very rich dynamic behavior depending on the
values of the parameters. As a matter of fact, all of the
transitions analyzed in the previous section (monotonous,
damped, oscillatory) appear in this model. In particular, the
injection rate of substrate,v, has often been used as the
bifurcation parameter (keeping the rest of the parameters
constant). For instance, for the setupw 5 4 s21, q 5 1, L 5
5 3 106, k 5 0.1 s21, the following bifurcation diagram has
been found (Goldbeter, 1996) (see Table 1): for low values
of v, the system presents an asymptotically stable steady
state. In particular, when 0, v # 0.078, this state is an
asymptotically stable node, changing to an asymptotically
stable one-tangent node for 0.078, v # 0.082. In the
interval 0.082, v # 0.1083, the system presents an as-
ymptotically stable focus. For larger values ofv the fixed
point becomes unstable through a Hopf bifurcation, and a
periodic orbit surrounding it appears, i.e., a limit cycle
(0.1083, v # 1.486). The amplitude and period of this

FIGURE 6 (A) Temporal evolution toward a limit cycle. The thicker curve shows the temporal evolution of an output signal,f, to a limit cycle, f#,
represented by the thinner curve. (B) Damped convergence of the functionf 2 f#. The thinner curve shows the evolution off 2 f# versus time. This evolution
profile represents the approximation of the output signal,f, to the limit cycle,f#, and is qualitatively identical to that shown in Fig. 5. This makes it possible
to follow the same reasoning and to obtainTc as the ratio between the hatched areaA* and the normalization factor (f 2 f#)*.
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orbit depend on the value ofv. Finally, in the interval
(1.486, 4.00) the system again has a unique fixed point that
is either an asymptotically stable focus (1.486, v # 3.00)
or an asymptotically stable node in the interval (3.00, v #
4.00) (concretely, a one-tangent node for 3.00, v # 3.85
and a simple node for 3.85, v # 4.00).

Although this model has been deeply analyzed and its
application to the glycolytic pathway broadly admitted, as
far as we know, there is no work devoted to the study of the
response time of this enzymatic reaction scheme. In this
section, the characteristic time will be estimated for differ-
ent values of the bifurcation parameter. It is assumed that at
initial time, when an injection of substrate is applied, the
system is completely empty, i.e., the system undergoes a
transition from rest. Fig. 7 shows the resulting values forTc.
As can be seen, the characteristic time can be obtained
under any kind of dynamic behavior. Moreover, this mag-
nitude is a continuous function of the injection velocity,v,
although bifurcations node-focus and focus-node exist.
However, it tends to infinity near the Hopf bifurcation
points,A–B andB–C. This fact is a direct consequence of
the appearance of centers at these bifurcation points (so that
the real parts of the eigenvalues approach zero). The infinite
increase of the characteristic time for values ofv near 4 s21

is due to the existence of a limit in the capacity of the
system. As a matter of fact, whenv . 4, the system does not

achieve a stationary regime because more matter enters than
can be processed by the enzymes.

Finally, it is worth comparing the values obtained for the
transient time defined by Easterby (tE) and the characteris-
tic time (Tc). As was stated in previous sections, in those
ranges where the system presents a monotonous conver-
gence to a node, which occurs in the intervals (0, 0.078) and
(3.85, 4.00), the two definitions coincide. However, in the
intervals (0.078, 0.082) and (3.00, 3.85), they differ, al-
though the attractor is still a node (critically damped ap-
proximation to the fixed point). As can be seen in Fig. 7, in
the ranges in which the global attractor of the system is a
focus ((0.082, 0.1083) and (1.486, 3.00)),tE is lower than
Tc. For the limit cycle regime (0.1083, 1.486), Easterby’s
definition is no longer valid. However, for large values oft,
an average transit time can be defined as^t& 5 (1/T)*t

t1T

t(t)dt, wheret(t) 5 s(t)/v. The comparison withTc shows
an important difference between the two magnitudes, as the
average of Easterby’s definition decreases monotonically,
even in the bifurcation pointA–B.

DISCUSSION

In this paper we have studied the response time of general
metabolic systems. With this aim, an average time called

TABLE 1 Dynamic behavior of the PFK model as a function
of the input rate v

Bifurcation parameter Phase plane

Dynamic
behavior starting

from rest

0 , v # 0.078 Fig. 1

0.078, v # 0.082 Fig. 4A

0.082, v # 0.1083 Fig. 5

0.1083, v # 1.486 Fig. 6A

1.486, v # 3.00 Fig. 5

3.00, v # 3.85 Fig. 4A

3.85, v # 4.00 Fig. 1

FIGURE 7 Estimation ofTc and tE in a reaction step mediated by an
allosteric enzyme. The characteristic time is evaluated for the model
described by Eq. 24. The parameters used arew 5 4 s21, q 5 1, L 5 5 3
106, andk 5 0.1 s21. Depending on the value of the input flux,v, different
dynamic behaviors can be found (see Table 1). Notice howTc tends to
infinity near the Hopf bifurcation pointsA–B and B–C, because the real
part of the eigenvalues tends to zero. The inset shows the interval 0, v #

0.1083, in which the system converges to a fixed point (node or focus) and,
thus, where Easterby’s definition can be applied. The qualitative difference
between the two magnitudes,Tc (represented by a continuous line) andtE

(shown by a discontinuous line), can be seen.
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characteristic time, denoted asTc, has been defined. When
the variable of interest,f, is monotonous, this magnitude
takes into account the area between the evolution curve of
the variablef and its value at the steady state,f#. Nonetheless,
in more complex situations (in which the sign of df/dt
changes with time) the characteristic time is related to an
area defined by the global trajectory of the observable and
a hypothetical state,f*. Such an area must be normalized by
a factor that depends on the final state and the initial
conditions. In this way,Tc is dependent on the characteris-
tics of the system dynamics and must be considered a
function instead of a parameter. It must be pointed out that,
from an intuitive geometric definition, a general mathemat-
ical expression has been obtained. Thus, although a differ-
ent expression forTc can be deduced in each kind of
transition (see Eqs. 6, 8, 11, 12, and 19), all of them
correspond to the general Eq. 23, valid for any variable
(fluxes, metabolite concentrations, etc.) and for systems
evolving under any type of boundary constraint (constant
input flux, constant affinity, etc.), undergoing any kind of
transition (from rest, from any statea to any stateb, relax-
ation after a perturbation, etc.) and achieving any kind of
final regime, either stationary or oscillatory.

To show the applicability of this definition to calculation
of the characteristic time of biochemical systems, a theo-
retical model of a reaction step mediated by an allosteric
enzyme (Goldbeter and Lefever, 1972; Goldbeter and Nico-
lis, 1976) has been studied. It has been shown that, depend-
ing on the rate of injection of substrate,v, the model
displays a large variety of behaviors, from stable focus to
limit cycles (see Table 1). Despite this complexity, Eq. 23
has been used to compute the characteristic time for all
values ofv (see Fig. 7). Two major comments are worth
mentioning again. First, except at those points where a Hopf
bifurcation occurs, the characteristic time depends continu-
ously on the input ratev. Second, the results present a clear
divergence of the characteristic time with respect to other
magnitudes previously defined. In particular, in those situ-
ations in which the system variable is not monotonous, the
difference with Easterby’s definition comes from the fact
that the definition of the characteristic time takes into ac-
count the relationship between the total mass processed by
the system and the total trajectory covered by the variable
during the transition.

The characteristic time,Tc, can be obtained as a limit of
partial characteristic times:

Tc 5 lim
a3`

Tc~a! (26)

where

Tc~a! 5

E
0

a

tUd

dt
@f 2 f##Udt

E
0

a Ud

dt
@f 2 f##Udt

(27)

As can be seen, the normalization factor changes, depending
on the interval off analyzed ([0,a] in this case). This fact
leads us to conclude that the characteristic time is not,
strictly speaking, an additive function. On the contrary, the
contribution toTc of any part of the curve must be weighted
with the contribution of this partial transition with respect to
the whole transition (see subsection Damped Oscillations).
In practice, when a partial timeTc(a) is measured, the
information contained in the global curve for times higher
thana is being neglected, and then the contribution of this
partial curve to the transition is different from that when the
whole profile is considered. This means that, as occurs with
some magnitudes in statistics, the partial characteristic time
changes as more data are taken into account.

The definition of the characteristic time must be seen as
an extension of the transient time introduced by Easterby for
systems under constant input flux (Easterby, 1973), which,
together with the transition time defined by Heinrich and
Rapoport (1975), has been commonly used to measure the
response time of metabolic reactions. This work has shown
that they have a similar physical meaning, as both magni-
tudes are weighting the time with a function representative
of the variable under study (implicitly, df/dt in Easterby’s
time, and, explicitly,f 2 f# in the definition proposed by
Heinrich and Rapoport). This aspect was already pointed
out for linear systems in the early 1980s by Hearon (1981a).

The question of which function (either df/dt or f 2 f#) must
be chosen for evaluatingTc has been solved by attending to
two main criteria: first, it is well known from statistics that
when information about a certain probability distribution is
required, the weighting function is always its derivative,
i.e., the density function. Thus the first moment of the
distribution, the analog toTc, as well as higher moments are
calculated. Second, by using df/dt as the density function,
we are weighting the time accordingly with the rate of
variation during the transition, thus stressing the temporal
range where most of the transition occurs. On the contrary,
averaging withf 2 f# as the density function mainly weights
the initiation period of the transition.

It is reasonable to expect that response times must be
under enzymatic control. As is usually done, a control
coefficient that measures the fractional change inTc due to
a fractional change in one enzyme,Ei, can be defined as

CEi

Tc 5
­Tc

­Ei

Ei

Tc
5

­ ln Tc

­ ln Ei
(28)

As was proved by Acerenza et al. (Acerenza and Kacser,
1990), assuming a linear relationship between reaction rates
and total enzyme concentrations, a simultaneous change in
all of the enzymatic concentrations by the same factor will
only change the time scale of the system (see also Mele´n-
dez-Hevia et al., 1996). Thus it can be concluded thatTc is
a homogeneous function of degree21 with respect to the
enzyme concentration, and then the summation theorem,(i

CEi

Tc 5 21, holds. A practical consequence of this fact is
that, under the above assumptions, the characteristic time of
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any variable is scalable. Therefore, it can be used to com-
pare experimental profiles obtained under different condi-
tions, such as different enzyme concentrations.

It is important to note that the summation theorem has
been stated for control coefficients of Easterby’s transient
time (Meléndez-Hevia et al., 1990) as well as of the tran-
sition time of Heinrich and Rapoports (1975). However, in
light of the results presented in this article, the study of the
distribution of control coefficients in metabolic pathways
working under constraints different from constant input flux
(Meléndez-Hevia et al., 1990, 1996; Cascante et al., 1996)
should be revised.

The interpretation ofTc as the average of a function
makes it possible to define another interesting magnitude,
the standard deviation aroundTc, referred to ass. This
parameter is given by

s5 1E0

`

~t 2 Tc!
2Ud@f 2 f##

dt
Udt

E
0

` Ud@f 2 f##

dt
Udt 2

1/2

(29)

and yields a certain measure of the width of the density
function ud[f 2 f#]/dtu. Therefore, it gives information about
the shape of the evolution profile of the variableuf 2 f#u. A
value ofs near zero would indicate that the response is of
the type once for all, whereas a high value ofs would
correspond to a smooth transition. Obviously, it is also
possible to define higher order moments. Among them,
perhaps the most interesting is the third moment, also called
skewness,Kw, which informs us about the asymmetry of the
progress curve, that is, about the way in which the processes
of initiation and asymptotic relaxation of the transition
occur.

At a macroscopic level, the response time of an organism
can be an important aspect of its adaptation to the surround-
ings and therefore of its survival. Also from a biotechno-
logical viewpoint, it could be desirable to minimize the
response time (i.e., after administration of drugs, or to
obtain cellular products). But even the shape of the response
may be of interest. Thus different values of the triplet (Tc, s,
Kw) would imply different strategies of response. This study
automatically leads to a problem of multicriteria optimization.

Because the evaluation ofTc only needs the knowledge of
the “output” of the system, this magnitude can be used to
evaluate the temporal transition of any device, experimental
or theoretical, without knowing its structure. In other words,
this means that the system can be considered a black box
that responds to either external or internal perturbations by
changing its output. A characteristic time exists not only for
linear reaction chains, but also for pathways of any com-
plexity (i.e., metabolic networks). In this sense, it must be
remarked that, by analyzing output signals, some important
clues about the structure of metabolism can be obtained

(Arkin et al., 1997). Work in this direction is currently being
done.

APPENDIX

This appendix is devoted to proving that the quotient betweenA* and f*,
given in Eq. 21, is equivalent to the general definition ofTc (Eq. 19), even
for transitions with damped oscillations (see Fig. 5).

The numerator of Eq. 19 is given by

E
0

`

t Udf

dt
Udt 5 O

n50

`

~21!nE
tn

tn11

t
df

dt
dt (A1)

with t0 5 0. Integrating by parts, each of the integrals of the right-hand
summation can be expressed as

E
tn

tn11

t
df

dt
dt 5 f ~tn11!tn11 2 f ~tn!tn 2 E

tn

tn11

f~t!dt (A2)

resulting in

E
0

`

tUdf

dtUdt

5 lim
N3`

H2 O
n51

N21

~21!n11f~tn!tn 1 ~21!N11f~tN!tN

1 O
n50

N21

~21!n11 E
tn

tn11

f~t!dtJ (A3)

The asymptotic value off obtained after inversion of the evolution curve in
those intervals in which df/dt is negative readsf* 5 limN3` f*N 5 limN3`

(k51
N lk, wherelk 5 (21)k11[(f(tk) 2 f(tk21)], andtk are the times such that

df/dt(tk) 5 0. Thus,f*N 5 2f(0) 1 (21)N11f(tN) 1 2 (k51
N21 (21)k11f(tk).

The overall area contained between the straight-linef* t and the inverted
curve is

A* 5 lim
N3`

A*N 5 lim
N3`

O
k51

N

Ak (A4)

whereAk is thekth area. It can be proved by induction that

Ak 5 @f ~0! 1 f * #~tk 2 tk21! 2 2 O
n51

k21

~21!n11f ~tn!~tk 2 tk21!

1 ~21!kE
tk21

tk

f ~t!dt (A5)

for all k 5 1, 2, . . . Therefore, theNth area can be written as

A*N 5 ~f * 2 f *N!tN 1 2 O
n51

N21

~21!n11f ~tn!tn 1 ~21!Nf ~tN21!tN

1 O
n51

N21

~21!n E
tn21

tn

f ~t!dt (A6)
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Comparing Eq. A6 and Eq. A3,

UA*N 2 O
n50

N21

~21!n E
tn

tn11

t
df

dt
dtU 5 ~f * 2 f *N!tN (A7)

Because in practicef *N3 f * faster thantN3 ` asN tends to infinity, then

lim
N3`

~f * 2 f *N!tN 5 0 (A8)

Therefore,

A* 5 E
0

`

tUdf

dt
Udt (A9)

In a similar way, it can be seen that

E
0

` Udf

dtUdt 5 lim
N3`

H O
n51

N21

~21!n11E
tn21

tn df

dt
dtJ

5 lim
N3`

H O
n51

N21

~21!n11@f~tn! 2 f~tn21!#J 5 f* (A10)

Therefore, the quotient betweenA* and f* leads to Eq. 19.
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