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ABSTRACT Cell metabolism is able to respond to changes in both internal parameters and boundary constraints. The time
any system variable takes to make this response has relevant implications for understanding the evolutionary optimization of
metabolism as well as for biotechnological applications. This work is focused on estimating the magnitude of the average time
taken by any observable of the system to reach a new state when either a perturbation or a persistent variation occurs. With
this aim, a new variable, called characteristic time, based on geometric considerations, is introduced. It is stressed that this
new definition is completely general, being useful for evaluating the response time, even in complex transitions involving
periodic behavior. It is shown that, in some particular situations, this magnitude coincides with previously defined transition
times but differs drastically in others. Finally, to illustrate the applicability of this approach, a model of a reaction mediated
by an allosteric enzyme is analyzed.

INTRODUCTION

Cell metabolism is a complex network of biochemical re-the transition from aerobic to anaerobic glycolysis, as the
actions that is continuously interacting with its environ- metabolic support of the flight promptness in several birds,
ment. Thus, it can be viewed as a dynamic system that ishowed that long-distance flying birds—which have, how-
able to adapt its behavior to changes in both the internadver, a slow start—have a long metabolic response time,
parameters (kinetic constants or enzyme concentrationsyhereas the sprinters—characterized by a quick macro-
and the boundary constraints (input source of material ogcopic start—showed a short metabolic response time.
concentration of external metabolites). This adaptation ocThus, according to natural selection, the response time of
curs in a period of time that depends on the intrinsic proppresent-day metabolic routes might be strongly adapted to
erties of the system, mainly the design of the pathwayjts functionality, and thus macroscopic behaviors must re-
(stoichiometric properties) and kinetic factors. Moreover,flect microscopic transition times.
this period of time must also depend on both the current From a biotechnological viewpoint, a suitable knowledge
state of the system—the initial state and the boundaryf the response time could allow the control and regulation
constraints—and the kind of perturbation it undergoes.  of cell metabolism (for instance, by changing either the
Getting a wide knowledge of the response time (in akinetic properties or the design of the pathway). If cells are
general sense, the time spent to respond to a stimulus) h@gnsidered as factories of bioproducts (Bailey, 1991), the
important implications. Within an evolutionary context, this main consequence would be the possibility of improving
study may allow us to obtain important clues to how cellthis function. Nevertheless, the complexity of metabolic
metabolism has evolved. Response time is a key feature @fenavior (Goldbeter, 1996) makes it difficult, in many in-
living beings that is frequently critical in the struggle for gtances, to measure the response time. There are similar con-
life. Itis decisive, for example, for predators to capture preysigerations regarding the time for drug action in metabolism.
and for prey to escape from predators. In a more general The theory of the response time has been developed by
sense, response time is a variable that determines a kind @fyeral researchers for the last 20 years (Heinrich and
behavior, and so it must agree with each particular eC°|09Rapoport, 1975; Easterby, 1973, 1981, 1986; Metz-

ical niche. A logical hypothesis is that every aspect of theyeyig et al., 1990, 1996; Torres et al., 1991; Cascante et al.,
macroscopic behavior of a species must have a closelxg%, 1996: Heinrich and Schuster, 1996: [ fweet al.,
related molecular design behind it. This includes, of coursey gg7. among others). It is noteworthy, however, that despite
response time. In effect, Lupiiaz et al. (1996), exploring s ohvious importance, this subject remains at present vir-
tually unexplored. As far as we know, only a few direct
empirical determinations of metabolic response times have
Received for publication 17 August 1998 and in final form 9 April 1999. hean described (Torres et al., 1990; Torres and Mide-
qure,S? 'epgm req;esé?oéziczr- UFr:ié\*/’;CriSSiggdMgg‘;?r?dteazzag:m'\:;‘é?iddﬂevia, 1992; Lupigez et al., 1996). Transition times in
F:c%lljt?c;cili’e Cnijepr?ciag Qnicas,’Ciudad UniversitarFiJa, 28040 Madrid, ‘human erythrocyte by kme,tlc_ modeling have also bepfn
Spain. Tel.: 34-9-1394-4255; Fax: 34-9-1394-4159; E-mail: paco@solea@Ssayed (Rapoport and Heinrich, 1975; Werner and Hein-
quim.ucm.es. rich, 1985). A possible reason for the little attention paid to
© 1999 by the Biophysical Society this key feature could be the lack of a general agreement on
0006-3495/99/07/23/14  $2.00 the theory. In fact, the proposed definitions of a represen-
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tative time of transition have differed from each other,solution (Easterby, 1981); 2) transitions between steady
depending on the initial and final state, and in general thetates (Easterby, 1981); 3) systems in which the input of
have been defined for very restrictive boundary constraintsource material varies with time (Easterby, 1986); and 4)
and transitions. This aspect clearly causes uncertainty isystems evolving under constant affinity constraints
undertaking experimental work. (Lloréns et al., 1997). It has also been shown that under
Then, a question arises: Is it possible to find a physicakonstant input flux, the transient time corresponds to the
magnitude, theoretically well supported and experimentallytime a molecule needs to cross the reaction chain at steady
measurable, that is useful for the study of the time a systematate, which has been referred to as transit time (Easterby,
variable takes to achieve any transition from a state A tdl981; Hearon, 1981b; Monaet al., 1997).
another state B, regardless of what they are, and indepen- An alternative way of calculating the transition time,
dently of the boundary constraints? In this work we shallinitially formulated for the concentrations of chemical re-
prove that the answer is positive, which leads to a comactants, was introduced by Heinrich and Rapoport (1975). If
pletely general definition for the characteristic time of a §,(t) is the instantaneous deviation of a metabolite concen-

transition. tration, x(t), from the steady-state valug, i.e., §,(t) =
X(t) — X, then its transition time is given by
THEORETICAL FRAMEWORK y J5 18, (t)dt @)
T = o o 7o ar
In most models, both experimental and theoretical, time is Jo 8yt

treated as a pgramgter. prevgr, to make a 'theory O,&s the authors pointed out, to have a well-defined magni-
temporal transitions (i.e., to investigate how transitions de-

ond on svstem parameters as kinetic constants or enz tude, the sign ob, must not change during the transition.
P y P ynﬁis definition takes also into account the overall features of

concentrations), we need to deal with time as a funCtlonthe temporal evolution of the variable by weighting the time

The problem of evaluating the transition time and studymgwith 5,(). Although in particularly simple linear systems

its properties is difficult for two main reasons: Mathemati- (e.g. A = B) the approaches mentioned above yield the
caIIy., approqchn_g tq the final state is as_ymptonc, gnd Itsame result, in more complex situations they lead to mea-
requires an infinite time. From an experimental point of

view, it is always difficult to decide how close to the Steadysurements that are clearly d|verge.nt. In fact, as will b.e
state, the system variable is. To overcome these difficulties:ShQWn below, none of the referred times are represeptatwe
historically the question of how to measure a time repre-Of |mportan't trangﬂons, and furthgrmore, these magnitudes
sentative of the transition in metabolic pathways has beeral1re noF def'lned. n gomplex S.ItuatIOI’IS.' L

A third direction in evaluating transition times was sug-

tried through different approaches. ested by Easterby (1973) and later by Storer and Cornish-

. Hess_ and Wurstgr (1970) analyzed egpenmentally ABowden (1974) and Torres et al. (1991). They defined a
irreversible metabolic system of two reactions under satu-

; - . . magnitudetys, Wwhich measures the time a variable takes to
rating conditions of the first enzyme. They called the inter- 9 99

. . reach 99% of its st - value. This magnit n
section point of the asymptote of the progress curve (re-eaC 99% of its steady-state value S magnitude can be

. ; o .._used to compare transition times of different systems (re-
cording the concentration of the end product with time) with P y (

the time axis tharansient time assuming the system was gardless of their nature and constraints). However, its eval-
. ion is pron high experimental error f th
initially empty. They showed that it corresponds to theuato s prone to high experimental error because of the

. ) ; symptotic shape (for long times) of the evolution profile.
:ﬁgpsr;;?rsf the eigenvalue from the theoretical model Of?/Ioreover, tog could not be really representative of the

. : . transition (in fact, it is not difficult to find similar transitions
Easterby (1973) extended this analysis to multlenzquhat differ appreciably in the value &fy). Thus an average
sequences under similar constraints (irreversibility and Satéstimate for the response time seems more convenient

urating conditions of the first enzyme). He proved that each The previous exposition points out the existence of a

enzyme has a transient time, and that the overall transierE;[ . . . : . .
T o ) road interest in studying the time biological systems take
time is given by the sum of the individual transients. More- ying g y

. . . o undergo transitions. Furthermore, all of these definitions
over, each transient time can be obtained through the rati 9

between the stationary concentration of ifieintermediate efer to particular transitions and constraints and fail when
o y < ' they are applied to other kinds of transitions, as will be
%, and the flux at steady statd, i.e.,

commented on in the following sections. To solve this
controversy, here we shall propose a general definition to
(1) characterize the response time of any system variable.

T =

| X1

Later, Hearon (1981a) proved that in linear systems th .

transient time corresponds to an average time. In subsequ%tgggﬂg#glgoéggﬁ%o'q

papers, this definition has been extended to 1) reversible

reactions, even when the differential equations describind\ deep characterization of the time associated with any
the progress curve are not readily amenable to analyticalansition requires the definition of a magnitude that can be
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handled both experimentally and theoretically. Becaus&hus the problem is reduced to determining which is the
transitions between states can be described by the evolutiaorrect area to be computed in each case, as well as finding
profile of the variable of interest (output flux, metabolite the criteria of normalization.
concentration, etc.), the characteristic time of the transition In the following subsections, the characteristic tifie
must contain some average information of the overall prowill be calculated for different kinds of transitions that have
cess, also making possible the comparison between diffepreviously been analyzed in the literature. The variables
ent types of transitions. commonly measured are the output fldy,, and the input

As shown in Fig. 1, in which three hypothetical transi- flux of the pathway,J);,. It is assumed that both variables are
tions appear, valuable information on the time that a vari-monotonous functions, which means that the signs of their
ablef takes to reach the stationary regime can be obtainederivatives do not change during the evolution. In all of
from a quantification of the area between the evolutionthese cases the area and the normalization factor can be
curve of the variable under study and its final state. How-straightforwardly found. However, as will be discussed
ever, by the simple consideration of this area, the cafye later, when flux is not monotonous, the relationship between
which is clearly faster than curve,, would have a higher the area and the normalization factor is not so obvious (see,
response time. Therefore, to get a correct measure of thier instance, Fig. 5).
time, the area must be conveniently normalized. The nor-
malization factor in these curves is the global variation of
the variable, i.e.f — (0). This normalized area will be Transition from rest under constant input flux

referred to as theharacteristic timeof the transition,T.. Many biochemical systems can be supposed to work under
a constandg;,. In this situation, it is interesting to analyze the
transition time of the output flux of the pathwajg,,. Under
special conditions, and assuming that initially the concen-
tration of every intermediate is null (transitions from rest)
(Hess and Wurster, 1970; Easterby, 1973), the temporal
A evolution of J,, has a shape similar to those depicted in
Fig. 1.

To illustrate the evaluation of the characteristic time of
the transition, consider the curve labelgdAs commented
on in the previous paragraph, the area to be taken into
— account for the estimation @f. should be the hatched one,
he ie.,

-

f, t
A=lim [ J.t— JJou[dt 3)

0

t—oo

v But, at any timet from the initiation of the transition, mass
conservation requires

time
FIGURE 1 Comparison of the temporal evolution to the steady state of " dXi(t)
three hypothetical systems. Three evolution curves of a hypothetical vari- Jn = E dt + Joult) (4)
able,f, are shownc,, ¢,, andc;. A measure of the time taken by each i=1

variable to achieve a steady-state value can be obtained through the
quotient of the area enclosed between the final state and the evolutioand integrating over the time,
curve, and the overall variation 6fin each transition. It can be seen that
the hatched area, which corresponds to cutyeis smaller than that t
corresponding te, (dotted curvg, whereas the two transitions lead to the Jit— J
same variation ifi. It means that the characteristic timeogf T, ,), is lower

than that corresponding @, T, With respect tocs, although its area

(shadowed aregis smaller than that of the other two, the quotient between . . . .
this area and the change finT,, is lower than that corresponding ¢ From this expression it becomes clear that, if the system

and greater than the one correspondingtoThis reasoning leads to the achieves a stationary regime, the afeeorresponds to the
conclusion mass accumulated at steady states lim,_,,, =", x;(t). If
Ais normalized by the variation of flux as a consequence of

the transition, i.e.Ji, = Joud®) — Jou(0), the characteristic
It is worth remarking that these kinds of curves are obtained in systemgime that results is
evolving from rest under a constant input fluk,, when the output flux,
Jous 1S @nalyzed. In this case the area corresponds to the mass accumulated
at steady statey, and the overall variation in the variable under study to T. = =4 (6)
Jin = Joul®) — Jou(0). Then, T, = a/J,,, as defined by Easterby (Eq. 6). Jin

Joudt = 2 %() (5)

o i=1

Tey < Ter) < Ten
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Therefore, in systems under this kind of constraint, thethis area coincides with the difference between the mass
characteristic time of the output flux corresponds to theaccumulated at the steady statés,) and that correspond-
transient time defined by Easterby,. In addition, as was ing to the state (). In this case, as can clearly be seen in
already pointed out by this author, the transient time (andrig. 2 A, the normalization factor is the difference in flux
so, the characteristic time) is given by the intersection of thébetween the two states, which yields the following expres-
asymptote to the progress curve (i.e., the integral of thesion for the characteristic time:
output flux) and the time axis (Easterby, 1973).

7,2 "%
Transition between steady states under constant Jb—Ja
input flux

®)

) ) - N It is important to remark that now this time differs from the
Under physiological conditions, transitions from rest rarely jno proposed by Easterby for transitions between steady
occur. In practical situations, metabolism responds to varigiieg (Easterby, 1981}, = (5, — 5.3, A careful
ations in the environment by changing its steady stat€jgpection of Fig. 24 shows that, in this case, considering
characterized by particular values of the intermediate onj g the height of the transition leads to an underestimation
centrations and fluxes, to another state (that, in the case @ ihe response time (but the result could also be an over-
temporal perturbations, could be the previous one). In Figestimation, whed, < [J, — 3). Actually, the highed, is,
2 A, curve 1 represents a transition between a steadyatate ihe |ower the value obtained for,, To illustrate this fact,
characterized by a stationary fluy, and a stat®, in which 6t ys compare transition 1 with transition 2 (FigAR They
the final flux is J,. The area representative of the transition .o nresent qualitatively similar transitions, but 2 starts from
is the hatched one, which, as before, is given by rest and 1 starts from the stationary statéStrikingly, the
X resultingry, (i.e., 7 for transition 2) would be much higher
j Jo,dt ©) than 7, for transition 1, whereas their characteristic times
evaluated through Eq. 8 are equal.
It should be noted that in those situations in whigh=
Again using mass balance equations, and assuming that &f (as occurs with temporal perturbations), Eq. 8 is not
timet = 0 the system is at stage it is possible to prove that valid, because in those cases the derivativd gfchanges

t—>0

0

A B

I

c
(=]
- — = | Transition
< J,-d, 1 A s
= \ <
N\ 8
AN 2 =
N o
v J,-J,
\ 4
time time

FIGURE 2 (@) Transition between two steady states under a constant input flux restriction. Curve 1 shows the output flux of a system that evolves from

a steady state, characterized by a stationary fldy, to a steady statie, with a final flux J,. In this casel, > J,, but the calculation oT is equally valid
for the opposite situation, i.e., whdg > J,. As in Fig. 1, timeT, is obtained through the ratio between the hatched area and the difference ofJfjuxes

J.. As was discussed in the text, this time must correspond to the characteristic time of curve 2, which is qualitatively similar to curve 1. It can be seen

that the transient time defined by Easterhy, is higher for curve 2 than for curve 1, which seems to be contradictBjyGéometric determination of
T, from the progress curve of a transition between steady states under constant input flux. Mass thagentelst( and leaves the systerRd,, = [§
Jo.dt) is plotted versus timeT, is obtained as the time at which the asymptote to the progress curve ofgtatdt, intersects that corresponding to state
b, r,: J,t — (o, — o). Notice the difference betweéF, and Easterby’s transient time,,
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its sign (i.e.,J,,: IS not monotonous). This situation will be duced in a negative value df , at the beginning (LIones
analyzed later. et al., 1997). The evolution of the input flux has already
As in the previous subsection, the characteristic time cameen discussed for systems under variable input of material
be geometrically obtained from the progress curve shown imnd irreversible output (the special case of infinite affinity)
Fig. 2 B. In fact, T, corresponds to the solution of the (Hearon, 1981b; Easterby, 1986; Torres et al., 1991). Again,

following equation (see Eg. 8): the areas enclosed between each curve and the final state
- L will be chosen to estimate the corresponding characteristic
Jt=Jt — (o, — 7)) ) time:

where Jt is the straight line asymptotic to the progress
curve of statea, andJt — (o, — 0,) is that corresponding i ‘J dt — 3t
to stateb. Therefore, the characteristic time can be geomet- An = Iim in

rically obtained as the intersection point of the two asymptotes. e \70 (10)
Transition from rest under constant .= ‘
affinity constraints Aoy = lim | Jt J Joudt

t—x 0

When a metabolic pathway, with a given equilibrium con-

stant for the conversion of the initial substrate into the finalwherelJis the steady-state flux. It has been proved that these
product, evolves under a constant concentration of thesareas,A;,, and A,,, can be associated with the stationary
metabolites, is said that it is constrained to work at constantnasses accumulated because of the variable iapytand
affinity. In this case, both the input and output fluxds, the variable outputy,,, respectively (Torres et al., 1991;
andJ,,,, respectively, are reversible and variable with time.Cascante et al., 1995). The overall mass at steady state is
Fig. 3 A shows their typical profile. Because initially the given byo = &;, + 0, The normalization factor corre-
system is empty, a negative local affinity appears in the lassponds to the difference between the steady-state flux and
reaction and mass enters from the product, which is tranghe value of the fluxes at time zero. Thus the expressions for

o S.
» 2 s 1%y "
© o 4
I= 1,7
- _ bt Tc(ln)l,
= J0)-J S| -
~ (8] , I
= 4
s 1
s
— , i
K S~ ,
s
_ s
J ,/
,
s
’
va
T-4.40) time [—; " time
\ ’
\ ,
/|'p
Tc(olh&/
7\
s
y l re

FIGURE 3 () Temporal evolution of a system evolving from rest under a constant affinity constraint. Input and output Jju=es!{, ) are plotted
versus time. Because both velocities are variable, it is possible to define a characteristic time for eagh,paed T, For the estimation of .,

the area to be considered is labekggd(which corresponds to the mass accumulated at steady state because of the varialitg Jnpod the normalization
factor isJ,,(0) — J (the overall variation in the input flux). Thefi,g, = 6:n/(Jin(0) — J). Similarly, T.uy is Obtained as the ratio between the area labeled
A (Which corresponds ta,,, i.e., the mass accumulated in the steady state because of the variable outdut) 3Rd0). ThereforeT ouy = Toud(d —
Jou(0)). Notice the difference between these magnitudes and previously defined transitionrfjrees;,/J and,, = o,/J. (B) Geometric determination

of T, from the progress curve of a system evolving under a constant affinity restriction. Mass erigringy{ J,.t) and leaving R, . = [} J..dt) the system

is plotted versus time. As can be se@g, is the time at which the asymptote 8, r% J,;t + a;,, intersects the straight line with a slope equal to the
initial value of the input fluxr3: J,,(O)t. In a similar way, T, is given by the intersection of the asymptotePig,, r: J,,& — 74, and the straight line

8 JoudO)t.
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the characteristic times o, andJ,,, are, respectively, finite to accomplish the mass balance at the stationary state.
_ On the contrary, an infinite value @f, would indicate that
T Oin the system does not reach a steady regime.
e(in) J.(0) —3J (11) The characteristic time so defined is the subject of three
complementary interpretations:
Tout 1. For systems with linear kinetics evolving from rest
Tetouy = m under constant input of substrate, Hearon proved that the

transient timer is given by a linear combination of the

It must be stressed that, in systems evolving under thiseciprocal of the eigenvalues of the system (all of them are
kind of constraint, other transient times associated with bottstrictly negative real numbers, because chemical (or bio-
the input and output flux were previously defined (Easterby chemical) reaction models are considered; Hearon, 1981b).
1986; Torres et al., 1991; Cascante et al., 1995)= 7;,/J  Under these assumptions the characteristic time coincides
and 7, = 0,,/J. However, it is clear from Fig. 3\ that  with the transient time, and thef, = —X{L; 1/A;.
neitherr,, nor 7., informs us about the average time of the In general, iff is a monotonous function that can be
corresponding transitions, because the normalization factaxpressed by a linear combination of real exponential func-
used in both caseg))(is not adequate. tions, f(t) = =", a,eM", with A, < O for all k, then it can

Following geometric considerations, now each charactereasily be shown that the characteristic time reads
istic time can be obtained from the progress curve of the N
respective velocity as the time at which its asymptote inter- T -_ Dy alk (13)
sects the straight line whose slope equals the initial value of ¢ T

the velocity (see Fig. B). Therefore, the characteristic time has the meaning of a

preexponentially weighted average time. This magnitude

A mathematical expression for the has already been used to measure the features of other types
normalized area of transitions, e.g., decay of excited states (Carraway et al.,
1991).

Although Egs. 6, 8, and 11 for the characteristic time may
look different, a careful inspection shows that all of them; -
can be deduced from the general definition,

If f is viewed as the distribution of mass of a line of
infinite length, then Eqg. 12 is formally identical to the
expression commonly used to calculate the center of mass

. of the line, with a density distribution given by(x) =
L dmvdx, which is
dt
T,=" (12) * dm
& dt 0
0 x) =
*dm
In fact, when the functiorf analyzed corresponds to the f &dx
output flux, J,,, and the system evolves from rest under a 0

cgn§tant input, integra.ti.on by parts of Eq. 12 leads to Eq. 6Accordingly, the characteristic time has the meaning of the
Similarly, when transm_on starts from a staﬁe_Eq. 12 hypothetical time at which the whole transition is concentrated.
reduces to Eq. 8. And finally, when the constraint imposed ~ 5 Complementarily, in(t) = f(t)/(f — f(0)) is considered

on the system is _Of con.stant afﬁmty, bothyr and TC<°_Ut) as a distribution function, which is typical in statistics, the
(Eq. 11) are obtained ifis considered to b&, andJo,in  h4racteristic time

Eq. 12, respectively.

It is worth mentioning that this definition can be used to = dgh
estimate the characteristic time for any variable of the T.=()= J tadt
system (individual reaction velocities, concentration of me- 0

tabolites, etc.). The only requirement firto give accurate

information on the transition time is thatmust be a mo- May be interpreted as the first moment or average of the
notonous (increasing or decreasing) function of time. InProbability distribution, thus sharing the meaning of mean
addition, d/dt must be integrable over the interval [@, for ~ time of the transition.

all « > 0. The question of the convergence of the improper

mtegrqls involved in the def|n|t|o_n of. can bg solved by GENERALIZATION TO COMPLEX TRANSITIONS
attending to the mass conservation law. For instance, when

f is a reaction rate, the convergence of Eq. 12 is ensured;ontrary to the profiles shown in Figs. 1-3, metabolic
because its numerator is always a fraction of the massystems often present more complex dynamics. In fact,
accumulated in the system at steady state, which must keansitions involving critical damping, damped oscillations,
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FIGURE 4 @) Temporal evolution of a system variable with critical
damping. Curve 1 shows the output signfl ¢f a system that evolves
toward the stationary state with critical damping. From O until t = t,,

or even sustained oscillations can be found under any kind
of external constraint (Chance et al., 1964; Pye and Chance,
1966; for a review see Goldbeter, 1996). In these cases, the
sign of d/dt changes during the transition, and then the
previous definition of the characteristic time is no longer
valid, because negative weighted times appear. Neverthe-
less, as will be proved in the next subsections, there is a
straightforward way of generalizing the previous definition
(Eq. 12) to these complex transitions.

Critically damped transitions

The simplest complex transition involving changes in the
sign of the derivative is the critically damped transition. The
curve labeled 1 in Fig. A shows the evolution of a variable
with this sort of dynamics. To find an explicit expression for
its characteristic time, let us consider the hypothetical tran-
sition represented by curve 2. Until= t;, its evolution
profile is identical to the critically damped transition (curve
1). From this time to infinity, both transitions are mirror
images with respect to the axid, parallel to the time axis.
It can be assumed that if two transitions have a symmetry
axis parallel to the time axis, then their characteristic times
must be equal. Therefore, the evaluationTpffor curve 2
yields a straightforward way of defining the characteristic
time for critically damped transitions.

Because the sign offfdit does not change during the
transition of curve 2, Eq. 12 can be applied to evaluate its

the derivative off is positive. Fromt = t, to infinity, this derivative is
negative. To estimate the characteristic time of this observable, curve 2 will
be considered. This curve is identical to 1 umti# t,. From this time to
infinity, it is its mirror image with respect to the axi4, parallel to the time
axis. Thus we have obtained a curve whose characteristic time will be equal
to that corresponding to curve 1, but now the derivative of profile 2 is
always positive, a necessary condition for Eg. 12 to be applied (see text).
The areas to be taken into account in the calculatio ofvill be the
hatched onesA;, + A,, whereas the normalization factor will be the
asymptotic state of curve 2. (B) Decomposition of the evolution profile
depicted as curve 1 iA. The sum of the nondecreasing functignandh,

f(t) fo=st=t
9(t)={f(t1) iti=t,

and

0 fost=t
h(t):{f(tl)—f(t) =t

yields functionf. Because botly and h are monotonous functions, their
respective characteristic times can be obtained through Eq. 12 as
B,/f(t,) and T = B,/(f(t,) — T). Therefore, the characteristic time fofan

be defined as the weighted average T and T (see Eq. 20). @)
Geometric evaluation 6f, and = for the transition described i, for f =

Joue Progress curves corresponding to transitions 1 and 2 offpatien

f = J,.are depicted. The difference betwekrand+= is due to the process

of inversion of those parts of the curve with negative derivative, as
discussed in the text. To evaluate the characteristic time, the absolute value
of df/dt must be taken into account, which yields an asymptotic behavior
with greater (as in the example) or equal slope. In gen&talan be greater
than, equal to, or lower tharF.
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characteristic time. In this case, the area that informs usesulting in the following equation for the characteristic
about the transition is that enclosed between the asymptotiime:
state (which will be referred to &%) and the evolution of

curve 2 patched aredn Fig. 4 A). This total area has two “|df
contributions:A,, the area enclosed from 0 to the tityeat t a‘dt
which d/dt(t) = 0 (which corresponds with the maximum in 0
/ Te=—1"— (29)
the curve), i.e., = 1 of
j ot
0

A, = F*t, — J (ot (14)

o Therefore, a mathematical expression for the characteristic

time of critically damped transitions can be found simply by
considering the absolute value of the derivative of the
function under study. The consideration of the absolute
value is not unexpected, because the evaluatioii ak-
quires the estimation of all periods of time, independently of
the sign of d/dt. In other words, the weight function must
always be positive. The situation described here is similar to
the problem of calculating the time a mechanical pendulum
takes to reach the equilibrium state (independently of the

In both expressiond? = 2f(t,) — f, wheref is the steady- gjrection of its movement, the time always increases). Ob-
state value achieved by the functibriThen, the character- yiously, the use of Eq. 12 would yield to an underesti-

istic time of damped transitions from rest responds to thenatedT,.

and the rest of the areA,, fromt, to infinity, which can be
easily calculated as

t
t—= t

1

[2f(ty) — f(t)]dt> (15)

expression As occurs with monotonous transitions, the convergence
of the improper integrals involved in the definition @f
CAtA 16 (Eq. 19) is automatically ensured because of the mass con-
¢ fx (16) servation law. Iff is a velocity, it can be shown that, because

the mass accumulated in the steady statés always finite
Notice that now the normalization factor is not given by thewhen the system achieves a stationary regime, then the area
real change in the variable under stufiyJsing integration A, is also finite. Therefore], must be finite.
by parts, the numerator of this equation can be rewritten as Another alternative interpretation of Eq. 19 comes from
the theory of distribution functions. The variadiean be
o \ always decomposed as a sum of nondecreasing functions,
J f(t)dt + f f(t)dt)

A+ A =lim (—Tt + 2f (tPty — ie.,f=g9— h, where

t— 0 t . f(t) |f O = t = tl
. O=1t1) ift=t,

(17)  characteristic times can be calculated by using Eg. 12. As
Fig. 4B shows,T¢ = B /f(t;) andT" = B,/(f(t,) — T). Now,
the characteristic time dfcan be defined as the weighted

- ! Because botly andh are increasing functions of time, their

1

t1 df f . . . .
“mU t—dt Jtdt) %/(;rr?g_(la_hc_)fthe characteristic times of the increagiagdh,
(o} cr
f(t)Te + (f(ty) — HTD
IROL ST 0
=lim t 2f(ty) — f

As can easily be checked, this expression coincides with Eq.
16 and, therefore, with the definition given in Eq. 19.

Fig. 4 C illustrates the difference between the character-
istic time T, and Easterby’s definition;=. In this example
) (18) the value obtained for" is lower than that corresponding to

In a similar way, the denominator can be expressed as

]  df df t|df
= I'm(J adt— J ot dt) = I'”‘U ar |t T., but the opposite situation can also be found. This fact
t— t1 t—=x \Y0

can be understood by noting that the characteristic time
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takes into account the masss au jeuduring the transition, characteristic times. Thus we define

whereasrE only considers the mass accumulated at steady

state, which is always lower than or equal to the former. ﬁ

Nevertheless, the normalization factor that enters the ex- B

pression for= is lower than the respective value fr(i.e.,

f =< ), which explains why the quotient between them canWhere, againf* is the asymptotic state obtained after in-

be lower than, equal to, or greater than the characteristi¥ersion of the evolution curve, a is the area enclosed

time. between this asymptotic state and the inverted curve. It can
It is important to remark that the same definition (Eq. 19)Pe deduced that (see Appendix)

also applies to transitions from any stat&o any stated. In

(21)

particular, temporal perturbations can be treated as a par- AF — f xt q ‘ dt
ticular case of critically damped transitions in which the dt
final state is the original one, and thilis can be obtained 0 (22)
from Eq. 19.
? | df
f* :f a’dt
Damped oscillations 0

The evolution of a system variable that reaches the steadynd then, the characteristic time responds again to Eq. 19.
state through damped oscillations is shown by curve 1 of For these complex situations, the problem of showing the
Flg 5. To look for the correct expression for the CharaCterTange of convergence of Eqg. 21 cannot be Straightforward|y
istic time, we follow the same reasoning as that applied insolved. Now, in the determination dt, an infinite sum of

the previous section. Now the curve must be inverted ingreas (a series of real numbers) is involved. Then the
every place wherefttit is negative, that is, between each improper integrals that appear in Eq. 22 converge if and
maximum and its next minimum. This yields curve 2 in Fig. only if this series converges. In general, it can be stated that
5. Because the curve oscillates infinitely approaching theo have a finite characteristic timef/dt must tend to zero
steady state, the number of terms in which the overall aregaster than 1# ast approaches infinity. This condition is
must be decomposed tends to infinity. As discussed in th@jways satisfied whefis a combination of negative expo-
previous subsection, both transitions 1 and 2, have identica{entials, as are the solutions of linear ordinary differential
equations. It is worth remarking that an infinite valueTgf
would mean either that the system does not reach a steady
regime or that this approximation is tremendously slow (see

tion Evaluation of the Characteristic Time in a Reaction
SN - sec | .
I oA AAp4 As Al r Model Involving an Allosteric Enzyme, below).

Sustained oscillations

2 The evolution of an observabiehat evolves toward a limit

b cyclef is represented in Fig. &. Although the final state is

nonstationary (fidt # 0), it is still possible to compute the

/, characteristic time of the transition of any variablghy

analyzing the evolution of — f. The resulting curve is

7 represented in Fig. B, and, as can be seen, it is completely

analogous to the curve that evolves under damped oscilla-

/ \ |~ — tions to a steady state. Therefore, Eq. 19 can be extended to
these kinds of systems only by taking into account the

functionf — f instead off:

]

7

t, L, t t & t = |d[f — ﬂ
time f t i ’dt
FIGURE 5 Temporal evolution of a system variable with damping. T = 0 (23)
Curve 1 represents the evolution of a variabl®ward the steady state ¢ “ | d[f — ﬂ
through damped oscillations. As the estimationTpfrequires the mono-
tonicity of f, its profile must be inverted in every place in whidtdtlis, for L dt

instance, negative. This process leads to curve 2. Following the same

reasoning as that applied in Fig. 4, the characteristic time of this system can . -
be obtained through the ratio between the hatched areé afid= Ax/f* However, contrary to Eqg. 19, now the function of tirhe

(see Appendix). appears in the expression Bf.



32 Biophysical Journal Volume 77 July 1999

—
N\
im N
\Jm \\\M §\

time time

FIGURE 6 () Temporal evolution toward a limit cycle. The thicker curve shows the temporal evolution of an output §igna, limit cycle,T,
represented by the thinner curvB) Damped convergence of the functibr f. The thinner curve shows the evolutionfof f versus time. This evolution
profile represents the approximation of the output sighad the limit cycle f, and is qualitatively identical to that shown in Fig. 5. This makes it possible
to follow the same reasoning and to obtdinas the ratio between the hatched afézand the normalization factoff (— )*.

It must be remarked that, in one-step linear reactiorproduct. The parametercan be interpreted as a scale factor
schemes forced with a periodic input, the characteristic tim¢hat appears from the relationship between the dissociation
corresponds to the reciprocal of the real part of the eigeneonstants for the enzyme with respect to the substrate and
value. This fact shows the existence of a relationship beproduct.
tweenT, and the eigenvalues of the system, even when the Provided a dimeric enzyme, and when the association of
absolute value of fédt is used. the substrate to its inactive form is neglected, the funcation

is given by the following expression:

EVALUATION OF THE CHARACTERISTIC TIME IN L+ @@t 2
A REACTION MODEL INVOLVING AN bla, y) = o DTV
ALLOSTERIC ENZYME L+ 1+ a)%1+y)

With the aim of analyzing the applicability af; to meta-  \yhereL is the allosteric constant of the enzyme.
bolic systems in which complex dynamics appear, the PFK  ag has been well illustrated by the authors (Goldbeter and
model of Goldbeter and collaborators (Goldbeter and Lefet efever, 1972: Goldbeter and Nicolis, 1976), this system
ver, 1972; Goldbeter and Nicolis, 1976, Goldbeter, 1996) ispresents a very rich dynamic behavior depending on the
studied. This model describes the phosphorylation of frucyg|yes of the parameters. As a matter of fact, all of the
tose 6-P through the action of the enzyme phosphofructokiyansitions analyzed in the previous section (monotonous,
nase in glycolysis. This reaction has been proved to be thgamped, oscillatory) appear in this model. In particular, the
main cause of the oscillatory behavior of this pathway. injection rate of substratey, has often been used as the
The dimensionless equations that account for the dynamyjfyrcation parameter (keeping the rest of the parameters

(25)

ics of the system are constant). For instance, for the setpp= 4s %, q=1,L =
da 5% 10° k = 0.1 s %, the following bifurcation diagram has
@V od(a, ) been found (Goldbeter, 1996) (see Table 1): for low values

(24) of v, the system presents an asymptotically stable steady
dy state. In particular, when & v = 0.078, this state is an
at ded(a, y) — Ky asymptotically stable node, changing to an asymptotically

stable one-tangent node for 0.088 v = 0.082. In the
where o and y denote the normalized concentrations of interval 0.082< v = 0.1083, the system presents an as-
substrate (ATP or fructose 6-phosphate) and product (ADRmptotically stable focus. For larger valuesothe fixed

or fructose 1,6-bisphosphate), respectivetydenotes the point becomes unstable through a Hopf bifurcation, and a

constant input rate of substrateis related to the maximum periodic orbit surrounding it appears, i.e., a limit cycle

rate of the enzyme PFK, ards the constant output rate of (0.1083< v = 1.486). The amplitude and period of this
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TABLE 1 Dynamic behavior of the PFK model as a function 100 pr.
of the input rate v
Dynamic &
behavior starting 80 1
Bifurcation parameter Phase plane from rest ®
\ S 40
L& _
0<v=0.078 /‘ '\ Fig. 1 =60 "
é 0.00 0.02 0.04 0.06 0.08 0.10
)
0.078< v = 0.082 @ Fig. 4A g 40 4
0.082< v = 0.1083 9 Fig. 5 20 - !
0.1083< v = 1.486 @ Fig. 6A 04 : :
T T T T T
0 1 2 3 4
. ?;
1.486< v = 3.00 . Fig. 5
FIGURE 7 Estimation ofT, and 75 in a reaction step mediated by an

allosteric enzyme. The characteristic time is evaluated for the model
) described by Eq. 24. The parameters usedzare4 s 1, q=1,L = 5 X
3.00<v=385 @ Fig. 4A 10°%, andk = 0.1 s . Depending on the value of the input flux,different
dynamic behaviors can be found (see Table 1). Notice fipiends to
infinity near the Hopf bifurcation point&—B and B-C, because the real

3.85 < 4.00 AN ‘(/ Fig. 1 part of the eigenvalues tends to zero. The inset shows the interval &
Sosv=4 ;~ 9. 0.1083, in which the system converges to a fixed point (node or focus) and,
s \ thus, where Easterby’s definition can be applied. The qualitative difference

between the two magnitudeg, (represented by a continuous line) aifd
(shown by a discontinuous line), can be seen.

orbit depend on the value of. Finally, in the interval
(1.486, 4.00) the system again has a unique fixed point thaachieve a stationary regime because more matter enters than
is either an asymptotically stable focus (1.486/ = 3.00)  can be processed by the enzymes.

or an asymptotically stable node in the interval (300 = Finally, it is worth comparing the values obtained for the
4.00) (concretely, a one-tangent node for 30 = 3.85  transient time defined by Easterby] and the characteris-
and a simple node for 3.85 v = 4.00). tic time (T,). As was stated in previous sections, in those

Although this model has been deeply analyzed and it§éanges where the system presents a monotonous conver-
application to the glycolytic pathway broadly admitted, asgence to a node, which occurs in the intervals (0, 0.078) and
far as we know, there is no work devoted to the study of theg3.85, 4.00), the two definitions coincide. However, in the
response time of this enzymatic reaction scheme. In thigntervals (0.078, 0.082) and (3.00, 3.85), they differ, al-
section, the characteristic time will be estimated for differ-though the attractor is still a node (critically damped ap-
ent values of the bifurcation parameter. It is assumed that gtroximation to the fixed point). As can be seen in Fig. 7, in
initial time, when an injection of substrate is applied, thethe ranges in which the global attractor of the system is a
system is completely empty, i.e., the system undergoes #@cus ((0.082, 0.1083) and (1.486, 3.00)j,is lower than
transition from rest. Fig. 7 shows the resulting valuesTfor ~ T.. For the limit cycle regime (0.1083, 1.486), Easterby’s
As can be seen, the characteristic time can be obtainedefinition is no longer valid. However, for large valuestpf
under any kind of dynamic behavior. Moreover, this mag-an average transit time can be defined(gs= (L/T)f{""
nitude is a continuous function of the injection velocity, 7(t)dt, wherer(t) = o(t)/v. The comparison witfT. shows
although bifurcations node-focus and focus-node existan important difference between the two magnitudes, as the
However, it tends to infinity near the Hopf bifurcation average of Easterby’s definition decreases monotonically,
points, A-B and B-C. This fact is a direct consequence of even in the bifurcation poird-B.
the appearance of centers at these bifurcation points (so that
.the real parts of the elgeqvqlugs approach zero). The,'?f'mtBISCUSSION
increase of the characteristic time for valuev afear 4 S
is due to the existence of a limit in the capacity of theln this paper we have studied the response time of general
system. As a matter of fact, whern> 4, the system does not metabolic systems. With this aim, an average time called
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characteristic time, denoted as, has been defined. When As can be seen, the normalization factor changes, depending
the variable of interestf, is monotonous, this magnitude on the interval off analyzed ([0¢] in this case). This fact
takes into account the area between the evolution curve déads us to conclude that the characteristic time is not,
the variable and its value at the steady stdted\onetheless, strictly speaking, an additive function. On the contrary, the
in more complex situations (in which the sign of/dl  contribution toT. of any part of the curve must be weighted
changes with time) the characteristic time is related to amwith the contribution of this partial transition with respect to
area defined by the global trajectory of the observable anthe whole transition (see subsection Damped Oscillations).
a hypothetical staté*. Such an area must be normalized by In practice, when a partial tim&_(«) is measured, the
a factor that depends on the final state and the initiainformation contained in the global curve for times higher
conditions. In this wayT, is dependent on the characteris- than« is being neglected, and then the contribution of this
tics of the system dynamics and must be considered partial curve to the transition is different from that when the
function instead of a parameter. It must be pointed out thatwhole profile is considered. This means that, as occurs with
from an intuitive geometric definition, a general mathemat-some magnitudes in statistics, the partial characteristic time
ical expression has been obtained. Thus, although a diffechanges as more data are taken into account.
ent expression fofT, can be deduced in each kind of  The definition of the characteristic time must be seen as
transition (see Egs. 6, 8, 11, 12, and 19), all of theman extension of the transient time introduced by Easterby for
correspond to the general Eq. 23, valid for any variablesystems under constant input flux (Easterby, 1973), which,
(fluxes, metabolite concentrations, etc.) and for systems$ogether with the transition time defined by Heinrich and
evolving under any type of boundary constraint (constanRapoport (1975), has been commonly used to measure the
input flux, constant affinity, etc.), undergoing any kind of response time of metabolic reactions. This work has shown
transition (from rest, from any stateto any stateb, relax-  that they have a similar physical meaning, as both magni-
ation after a perturbation, etc.) and achieving any kind oftudes are weighting the time with a function representative
final regime, either stationary or oscillatory. of the variable under study (implicitly,f@it in Easterby’s

To show the applicability of this definition to calculation time, and, explicitly,f — f in the definition proposed by
of the characteristic time of biochemical systems, a theoHeinrich and Rapoport). This aspect was already pointed
retical model of a reaction step mediated by an allosteriout for linear systems in the early 1980s by Hearon (1981a).
enzyme (Goldbeter and Lefever, 1972; Goldbeter and Nico- The question of which function (eithef/dt or f — f) must
lis, 1976) has been studied. It has been shown that, depentle chosen for evaluating, has been solved by attending to
ing on the rate of injection of substrate, the model two main criteria: first, it is well known from statistics that
displays a large variety of behaviors, from stable focus tavhen information about a certain probability distribution is
limit cycles (see Table 1). Despite this complexity, Eq. 23required, the weighting function is always its derivative,
has been used to compute the characteristic time for alle., the density function. Thus the first moment of the
values ofv (see Fig. 7). Two major comments are worth distribution, the analog t®., as well as higher moments are
mentioning again. First, except at those points where a Hopalculated. Second, by usind/dt as the density function,
bifurcation occurs, the characteristic time depends continuwe are weighting the time accordingly with the rate of
ously on the input ratg. Second, the results present a clearvariation during the transition, thus stressing the temporal
divergence of the characteristic time with respect to otherange where most of the transition occurs. On the contrary,
magnitudes previously defined. In particular, in those situ-averaging withf — f as the density function mainly weights
ations in which the system variable is not monotonous, thehe initiation period of the transition.
difference with Easterby’s definition comes from the fact It is reasonable to expect that response times must be
that the definition of the characteristic time takes into ac-under enzymatic control. As is usually done, a control
count the relationship between the total mass processed lypefficient that measures the fractional changé@due to
the system and the total trajectory covered by the variabla fractional change in one enzynig, can be defined as
during the transition.

The characteristic timel,, can be obtained as a limit of
partial characteristic times:

T, = lim T{«) (26)

a—>0

o JTE_alnT,
ETUET. 0InE

(28)

As was proved by Acerenza et al. (Acerenza and Kacser,
1990), assuming a linear relationship between reaction rates
where and total enzyme concentrations, a simultaneous change in
all of the enzymatic concentrations by the same factor will

at E i f]‘dt only change the time scale of the system (see alsd Mele
dt dez-Hevia et al., 1996). Thus it can be concluded Thas
T(a) = 0 (27) a homogeneous function of degredl with respect to the

aid ~ enzyme concentration, and then the summation thea¥em,
alf— f]‘dt CL = —1, holds. A practical consequence of this fact is
0 that, under the above assumptions, the characteristic time of




Llorens et al. Transition times in Metabolic Pathways 35

any variable is scalable. Therefore, it can be used to comArkin et al., 1997). Work in this direction is currently being
pare experimental profiles obtained under different condi-done.
tions, such as different enzyme concentrations.
It is important to note that' the summation theorem hasAppENDD(
been stated for control coefficients of Easterby’s transient
time (Mel'endez—Hevia et al. 1990) as well as of the tran-ThiS appendix is devoted to proving that the quotient betw&feand f*,
sition time of Heinrich and F’Qa oports (1975) However irlgiven in Eq. 21, is equivalent to the general definitionTp{Eq. 19), even
’ _p p. \ : » "or transitions with damped oscillations (see Fig. 5).
light of the results presented in this article, the study of the The numerator of Eq. 19 is given by
distribution of control coefficients in metabolic pathways

working under constraints different from constant input flux co|dfp - . 1 df
(Meléndez-Hevia et al., 1990, 1996; Cascante et al., 1996) t ‘&’dt = 2(-1 tadt (A1)
should be revised. 0 n=0 tn

The interpretation ofT, as the average of a function it t, = 0. Integrating by parts, each of the integrals of the right-hand
makes it possible to define another interesting magnitudesummation can be expressed as
the standard deviation arounf, referred to ass. This

. . th+1 df th+1
parameter is given by f t g Ot = Fthe )ty — Ftt, — j fihdt  (A2)
- 112 tn fn
- d[f — f]‘ -
_ 2 resulting in
J (t=To? =g |dt
0 ®
5= - (29) df
- d[f—f]‘dt j |t
dt 0
0
N—1

= lim {2 > (=DMt )t, + (— DN H(ty )ty

n=1

and yields a certain measure of the width of the density
function [d[f — f]/dt|. Therefore, it gives information about N=e
the shape of the evolution profile of the varialfle- f|. A

. . . N-1 the1
value ofs near zero would indicate that the response is of it |
the type once for all, whereas a high value ofvould * Ea( 1 fat,  (A3)
- 1,

correspond to a smooth transition. Obviously, it is also "
possible to define higher order moments. Among themjhe asymptotic value dfobtained after inversion of the evolution curve in
perhaps the most interesting is the third moment, also calleﬁj'ﬁse intervals in Whichkfiﬁl't is negative read§ = limy,_.. f§, = limy_...
skewnessK,,, which |_nforms us about the asymmetry of the ifl;(:itl(tls vlhgreTI; Js,(ft,li _[f((fé;k)+ ( f_(t{)ﬂlz]lfgz;“i azreE tg;ll tl(nlis)kiul?(r;k;hat
pro'gr.efss. curve, thatis, abOF“ the Way_ in which the pro‘?‘?ss%e overall area contained between the straightfineand the inverted
of initiation and asymptotic relaxation of the transition cyrve is
occur.

At a macroscopic level, the response time of an organism - . N
can be an important aspect of its adaptation to the surround- A= lim A = lim X A (A4)
ings and therefore of its survival. Also from a biotechno- N—> N—or k=1
|Ogica| VieWpOint, it could be desirable to minimize the WhereAk is thekth area. It can be proved by induction that
response time (i.e., after administration of drugs, or to
obtain cellular products). But even the shape of the response
may be of interest. Thus different values of the triplEj 6, A=) + 10 = te) = 2 2(= D™ (G (b — te-a)
K,,) would imply different strategies of response. This study =t
automatically leads to a problem of multicriteria optimization. .

Because the evaluation ©f only needs the knowledge of + (_1)kj f(t)dt (A5)
the “output” of the system, this magnitude can be used to
evaluate the temporal transition of any device, experimental _
or theoretical, without knowing its structure. In other words, ©" &l k = 1. 2, ... Therefore, théith area can be written as

k—1

te-1

this means that the system can be considered a black box N-1

that responds to either external or internal perturbations bya¥ = (f* — f¥)t, + 2 E(_l)nﬂf (t)t, + (— DN (ty_ )ty
changing its output. A characteristic time exists not only for n=1

linear reaction chains, but also for pathways of any com-

plexity (i.e., metabolic networks). In this sense, it must be N1 tn

remarked that, by analyzing output signals, some important + E(—l)”f f(t)dt (A6)
clues about the structure of metabolism can be obtained n=1 t-1
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Comparing Eq. A6 and Eq. A3, Easterby, J. S. 1973. Coupled enzyme assays: a general expression for the
transient.Biochim. Biophys. Acte293:552—-558.
N-1 1 df Easterby, J. S. 1981. A generalized theory of the transition time for
A’Kj _ z (—l)n t— dt| = (f* _ f,lil)tN (A7) sequential enzyme reactiorBiochem. J199:155-161.
n=0 dt Easterby, J. S. 1986. The effect of feedback on pathway transient response.
fn Biochem. J233:871-875.

Goldbeter, A. 1996. Biochemical Oscillations and Cellular Rhythms. Cam-
bridge University Press, Cambridge.

lim (f* — f”*\l)tN =0 (A8) Goldbeter, A., _and_ R. Lefever. 1_972. I_Dissfipatiye structures for an allosteric

model. Application to glycolytic oscillation®iophys. J12:1302-1315.

Goldbeter, A., and G. Nicolis. 1976. An allosteric enzyme model with
positive feedback applied to glycolytic oscillations.Progress in The-
oretical Biology, Vol. 4. F. Snell and R. Rosen, editors. Academic Press,
New York. 65-160.

. _ 7 |df d Hearon, J. Z. 1981a. Asymptotic output of compartmental systbdtath.
A= gt (A9) Biosci. 55:259-264.
0 Hearon, J. Z. 1981b. Transient times in enzyme and coupled enzyme
systemsMath. Biosci.56:129-140.
In a similar way, it can be seen that Heinrich, R., and T. A. Rapoport. 1975. Mathematical analysis of multien-
zyme systems. Il. Steady state and transient conBwSystems.
= | gf N-1 t df 7:130-136.
—|dt = lim E(_]_)nﬂ — dt Heinrich, R., and S. Schuster. 1996. The Regulation of Cellular Systems.
n=1

Because in practicky, — f * faster thant,, — o asN tends to infinity, then

N—x

Therefore,

dt dt Chapman Hall, New York.
0 N Hess, B., and B. Wurster. 1970. Transient time of the pyruvate kinase-
lactate dehydrogenase system of rabbit muscle in vEBBS Lett.
N-1 9:73-77.
= lim { > (—1)™"[f(t,) — f(t._)]} = (A10)  Lloréns, M., J. C. Nin, and F. Montero. 1997. Transient times in linear
n=1 metabolic pathways under constant affinity constraifg®chem. J.
327:493-498.
Lupiéfez, J. A., L. Gar@a-Salguero, N. V. Torres, J. Pefagcand E.
Meléndez-Hevia. 1996. Metabolic support of the flight promptness of
birds. Comp. Biochem. Physiol13B:439-443.
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Therefore, the quotient betwedyi and f* leads to Eq. 19.
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